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Abstract 

Many key bacterial pathogens are frequently carried asymptomatically, and the emergence and 

spread of these opportunistic pathogens can be driven, or mitigated, via demographic changes 

within the host population. These inter-host transmission dynamics combine with basic 

evolutionary parameters such as rates of mutation and recombination, population size and selection, 

to shape the genetic diversity within bacterial populations. Whilst many studies have focused on 

how molecular processes underpin bacterial population structure, the impact of host migration and 

the connectivity of the local populations has received far less attention. A stochastic neutral model 

incorporating heightened local transmission has been previously shown to fit closely with genetic 

data for several bacterial species. However, this model did not incorporate transmission limiting 

population stratification, nor the possibility of migration of strains between subpopulations, which 

we address here by presenting an extended model. We study the consequences of migration in terms 

of shared genetic variation and show by simulation that the previously used summary statistic, the 

allelic mismatch distribution, can be insensitive to even large changes in microepidemic and 

migration rates. Using likelihood-free inference with genotype network topological summaries we 

fit a simpler model to commensal and hospital samples from the common nosocomial pathogens 

Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus 

faecium. Only the hospital data for E. faecium display clearly marked deviations from the model 

predictions which may be attributable to its adaptation to the hospital environment.  
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Introduction 

Bacteria colonizing multicellular hosts are organized in a hierarchy of local interconnected 

subpopulations forming a complex metapopulation as a whole. The subpopulations can range in 

scale from discrete intracellular colonies residing within a single host cell to pervasive strains 

circulating among hosts across cities, countries and continents (Fraser et al., 2009). Although most 

bacteria are harmless or even advantageous to their host organisms, some cause infectious disease, 

and understanding the evolutionary dynamics and the factors producing the genetic variation of 

pathogen populations is important for combatting disease emergence and spread.  

Previous work has demonstrated that a simple model of stochastic microepidemics arising from 

repeated sampling of localized transmission chains, can explain genotypic variation in local 

surveillance data from several common human pathogens (Fraser et al., 2005; Hanage et al., 2006), 

under an assumption that all isolates are equally fit (neutrality). Conceptually, the microepidemic 

model is similar to the Λ-coalescent models (Pitman, 1999; Sagitov, 1999) which allow coalescence 

of multiple lineages simultaneously. However, under the microepidemic model no single genealogy 

would typically adequately capture the relatedness of samples since recombination is allowed to 

shuffle alleles across the haploid population. In the studies of Fraser et al. and Hanage et al., 

populations were characterized by a simple measure of the level of genotype relatedness known as 

the allelic mismatch distribution, which is defined by the empirical distribution of the allelic 

distance between pairs of individuals. Similar pairwise comparisons have been widely used in 

classical ecology and population genetics and different patterns in the mismatch distribution can be 

associated with various factors contributing to the population structure, including: population 

growth (Harpending, 1994; Rogers and Harpending, 1992), selection (Bamshad et al., 2002), and 

host contact network structure (Plucinski et al., 2011). The mismatch distribution has also been used 

to detect deviations from neutrality or constant population size (Mousset et al., 2004) and for 

inference about bacterial recombination rates (Hudson, 1987).   

Population structure is one of the most studied phenomena in population genetics, both from the 

theoretical and applied perspective (Ewens, 2004; Hartl and Clark, 2007; Rousset, 2004). Both in 

bacteria and eukaryotes there are numerous situations where the effects of population structure are 

complex and challenging to quantify analytically. One of the main reason for this is the need to 

simultaneously account for several major forces known to impact the neutral evolution of 

populations. For bacterial pathogen populations it is typical to consider mutation, recombination 

and clonal expansion, whereas migration has been given less attention. Migration may for example 

be caused by anthroponosis and zoonosis when multiple different host organisms are colonized by 

the same bacterial species. The presence of multiple simultaneous forces hampers both the 

theoretical derivation of limit results for such models and empirical fitting due to likelihood 

equations not necessarily being available in closed form. Fraser et al. solved the likelihood 

intractability arising from microepidemics by using a stochastic mixture distribution to account for 

the increase in the probability of sampling identical strains from the same transmission chain 

(Fraser et al., 2005). An analogous approximation technique has later been independently 

introduced in a more general ecological setting and it is known as the synthetic likelihood (Wood, 

2010).  



To improve understanding of the evolutionary dynamics of structured bacterial populations, we 

employ a simulation-based approach to neutral models that can account for the multiple stochastic 

forces impacting the genetic diversity that persists over time. By capturing both a heterogeneous 

span of microepidemics and migration events across the boundaries limiting transmission between 

subpopulations, we characterize the expected behavior of the metapopulations as a whole. This 

provides an opportunity to explore the limits of inferring the model parameters from genetic 

surveillance data.  

Materials and Methods 

Model 

We consider a neutral Wright-Fisher infinite alleles model for a finite haploid population with N 

individuals and discrete non-overlapping generations, where the reproduction takes place by 

random sampling of N individuals from the current generation to the next generation (Ewens, 2004). 

When the population is assumed structured, the subpopulation sizes are indexed by N1, N2. The 

parameters which may vary across subpopulations are indexed accordingly. We note that the host 

population which the haploid organism uses as a habitat remains implicit in our study and we 

consider no within-host variation. This would correspond to assuming a strong transmission 

bottleneck for each host in a standard epidemic model. Mutations are introduced per generation by a 

Poisson process with the rate θ = μNτ, where μ is the per locus mutation rate and τ is a scaling factor 

representing the generation time in calendar time. In all subsequent work we set τ = 1, unless 

otherwise mentioned.  

We assume that each individual is characterized by a genotype comprising alleles at L unlinked loci, 

where a mutation event at any locus always introduces a novel allele. In both the real and simulated 

MLST data sets considered in the Results section the number of loci L is invariably equal to seven. 

Recombination between randomly chosen genotypes occurs at any locus according to a Poisson 

process with the rate defined as ρ = rNτ, where r is the rate per locus in relation to the mutation rate. 

This is the definition typically employed in bacterial population genetics and it quantifies the 

recombination rate as the expected number of recombination events per mutation event to reflect the 

average level of clonality in the population. Given the design of the MLST typing schemes, we 

assume that each recombination event involves only a single locus. This is motivated by the 

genomic distances between the chosen loci, which are large enough to have a negligible probability 

for a single recombination event affecting simultaneously multiple MLST loci.    

Microepidemics are modeled as doubly stochastic events, with the frequency of new 

microepidemics per generation following a Poisson distribution with mean ωNτ. The size of each 

microepidemic has a Poisson distribution with mean γ. Each microepidemic is generated 

independently similar to the assumptions in Fraser et al. such that first a single individual is 

randomly chosen, after which its genotype is propagated to Y randomly chosen other individuals 

such that Y has Poisson distribution with mean γ. When the population is stratified, the 

microepidemic rates of the subpopulations are denoted by ω1, γ1 and ω2, γ2, respectively. Migration 

between subpopulations is a Poisson process with the rates τN1m12, τN2m21 per generation, where the 

first subindex of the parameters m12, m21 defines the source and the second subindex the target 

subpopulation. In migration events genotypes of a Poisson distributed number of randomly chosen 



individuals from the source population replace the genotypes of randomly chosen individuals in the 

target population.  

In our simulations the model events were generated in the following order: reproduction, mutation, 

recombination, microepidemics and migration at each generation. The population was simulated 

until allelic diversity reached equilibrium and in all the reported results each subpopulation size was 

N = 2000, unless otherwise indicated. The allelic mismatch distribution corresponding to state of a 

population is defined by considering the fractions of all pairs of genotypes which have exactly l = 0, 

…, L distinct alleles. Medians and 95% confidence intervals for the allelic mismatch distributions 

were obtained by recording the population state every 100th generation after initial 500 generations 

until 20000 generations, and using these values to calculate the corresponding quantiles of the 

mismatch probabilities.  

Data and population summaries 

MLST isolate data were accessed (September 15, 2014) from the following databases: 

http://efaecalis.mlst.net/ (E. faecalis), http://efaecium.mlst.net/ (E. faecium), http://saureus.mlst.net/ 

(S. aureus), and (May 10, 2015) from: http://sepidermidis.mlst.net/ (S. epidermidis). These open 

MLST databases comprise sequences for seven unlinked housekeeping loci, which are under strong 

purifying selection. Hence, all mutations observed in the corresponding bacterial populations can be 

assumed to be selectively neutral. The length of these loci varies between approximately 350-550 

nucleotides and the total number of third codon positions was used to scale the mutation rate in the 

analyses. Each observed human isolate was classified as either a commensal or hospital strain based 

on the available metadata. Isolates with an unknown origin were excluded from the analyses. MLST 

databases curate and accept submissions of novel data from epidemiological studies, which may be 

collected locally or globally. Hence, in terms of sampling the global database can be biased by a 

smaller number of large studies inflating the frequencies of certain genotypes. To mitigate against 

such biases, we used frequency independent summaries in the model fitting (see below for details).  

For a compact visualization of the population data, eBURST networks were produced using default 

settings (Feil et al., 2004). Turner et al. demonstrated that eBURST provides a robust recapitulation 

of the genetic relatedness of strains in a bacterial population based on the MLST resolution (Turner 

et al., 2007). More generally, to quantify topological properties of the network of unique genotypes 

obtained from a population state and to do inference about model parameters we calculated 

genotype degree distributions and distributions of geodesic distances between pairs of genotypes, 

which are standard measures of network topology (Goh et al., 2002). The network of unique 

genotypes has the advantage over allelic mismatch distribution that each genotype is only 

considered once, which makes it more robust to oversampling of identical genotypes often 

occurring in pathogen studies.  

The topological summaries were calculated as follows. First, the set of unique genotypes is 

identified for an observed state of a population (either real or simulated). Then, an adjacency matrix 

is defined for the unique genotypes, such that a pair of genotypes are adjacent if they differ at 

maximally one locus. This matrix defines a network for the genotypes from which topological 

summaries can be calculated. The degree distribution corresponds to the empirical distribution of 

the number of neighbors a network node has. The geodesic distance between two nodes is the 



shortest path from a genotype to another genotype in the network. The distribution of geodesic 

distances is then the empirical distribution calculated over all pairs of genotypes. Here we used the 

convention of considering only connected network components when calculating the distances and 

ignoring the genotypes that are isolated from all the remaining genotypes.     

Inference 

Since the microepidemic models have intractable likelihoods, we used a likelihood-free inference 

procedure akin to Approximate Bayesian Computation (ABC) inference to fit models to the MLST 

data with the two topological summary statistics defined previously. The allelic mismatch 

distributions were not considered in the inference due to concerns about robustness with respect to 

the mixed sampling strategies involved in the global MLST databases as explained earlier. 

Depending on the parameter values, simulation of the population until convergence can be very 

time-consuming and additionally one needs to assess the stochasticity of the summaries for given 

parameter values. Hence we used the recent Bayesian optimization based likelihood-free inference 

method (BOLFI) which is several orders of magnitude faster than standard Monte Carlo sampling 

based ABC inference approaches (Gutmann, 2015). To obtain point estimates for the parameters we 

used in total 1,000 acquisition points in the parameter space and for each point 100 forward 

simulations were performed to calculate the expected values of the two summary statistics. The 

objective function used in BOLFI was the sum of absolute relative errors to the means of the 

corresponding summaries calculated from each population in the MLST data sets. To investigate the 

model fit to the data we produced 100 predictive simulations for each data set using values of the 

point estimates and compared the empirical means with the predictive distribution. 

When fitting the models to the data we used the following existing estimates of the recombination 

rate (r/m) from the literature: S. aureus – 0.43, S. epidermidis – 2.5, E. faecalis – 0.60, E. faecium – 

0.70 (de Been et al., 2013a; Everitt et al., 2014; Miragaia et al., 2007; Vos and Didelot, 2009). Since 

the existing mutation rate estimates are calculated per site and year, their direct use is not feasible in 

our simulation model as the exact relation between the generation time in the model and in calendar 

time is unknown. Therefore, we defined the mutation rate in the model as an unknown parameter 

scaled by the number of third codon positions present in the concatenated MLST gene sequences 

and a baseline rate equal to 1.5∙10
-6

. The unscaled mutation rate parameter was restricted to the 

range 10
-1

 – 10
-3

, since larger values resulted in extremely slow simulations and smaller values 

produced an insufficient amount of variation in preliminary runs. In model fitting we used a 

simplified model with the migration rates set equal to zero, which was equivalent to fitting a three 

parameter model separately to the commensal and hospital samples for all four species. The two 

microepidemic rate parameters were both assigned ranges between 10
-4

 and 50.    

Results 

Simulated populations 

We extended the microepidemic infinite alleles model with mutation and recombination rates 

previously proposed by Fraser et al. (Fraser et al., 2005) to incorporate population stratification, 

whereby genotypes are free to move between subpopulations at a defined rate. In addition, rather 

than using a single microepidemic parameter to describe localized transmission (Fraser et al., 2005), 



we introduced two parameters modulating the distributions of both the frequency and sizes of the 

transmission clusters in stochastic fashion. Our microepidemic infinite alleles migration model 

(MIAMI) can thereby encompass a wide variety of evolutionary and ecological parameter space. 

Since the resulting patterns of genetic variation reflect a complex function of several factors, we 

consider first a model without population stratification to delineate the influence of each of the 

model components.  

The frequency distribution of the number of allelic mismatches between pairs of genotypes is a 

classical approach to describe the distribution of genetic variation within a population, see 

Introduction. Depending on the interplay of several factors, a population may either have a peaked 

or flat equilibrium distribution over the space of summary statistics, such as the allelic mismatch 

distribution (Fig. 1). For lower mutation rates, high recombination rate (r/m) will lead to bell-

shaped mismatch distributions, since recombination acts as a cohesive force keeping genetic 

variation together as a cloud in the space of possible genotypes (Fraser et al., 2007). The mismatch 

distribution becomes less sensitive to changes in the recombination rate and the equilibrium 

distribution becomes more peaked when the mutation rate increases (Fig. 1). 

Fig. 2 shows the impact of heightened localized transmission (microepidemics) on genetic 

relatedness visualized using eBURST (Feil et al., 2004; Francisco et al., 2009) and the allele 

mismatch distribution. The rate of mutation and homologous recombination varies among bacterial 

pathogens and this can have a marked effect on the population structure. To model the interplay of 

these two important factors at different levels, four evolutionary scenarios were considered: low 

mutation and recombination rate (A), mutation dominates (B), recombination dominates (C), both 

mutation and recombination effects are sizeable (D). If mutation dominates over recombination 

(Fig. 2,B), microepidemics do not lead to as pronounced changes in the relatedness pattern as in the 

situation where both mutation and recombination rates are low (Fig. 2,A). Interconnected clusters 

do emerge under a high rate of recombination, often spanning across large parts of the entire 

population (Fig. 2,C). The variability of the mismatch distribution at the equilibrium becomes 

elevated under all regimes of baseline parameter values when microepidemics occur at a frequent 

rate, as illustrated by the broader confidence intervals (Fig. 2,A-D). Both the frequency and size 

distribution of the individual microepidemics influence how much probability mass is shifted 

towards identical genotypes, but the change is also influenced by mutation and recombination rate 

parameters (Supplementary Fig. 1).  

The effect of migration rate on the allelic mismatch distribution within a subpopulation is a 

complicated function of mutation, recombination and microepidemic rates in a structured 

population, even if there are only two subpopulations (Fig. 3). We studied the combinations in 

which a subpopulation undergoes microepidemic expansions at a moderate rate and is coupled with 

another subpopulation where the rate varies from zero to twice that of the first subpopulation. An 

increase of the migration rate between the two subpopulations by an order of magnitude leads either 

to a substantial decrease of the genotypic diversity (Supplementary Fig. 2, i), an increase in the 

genotypic diversity (Supplementary Fig. 2, a), or to no change at all (Supplementary Fig. 2, e), 

depending on whether the subpopulation considered as a source experiences more, less, or an equal 

amount of the microepidemics, compared with the target subpopulation. The effect of migration 

remains equally complex for the between-subpopulations allelic mismatch distribution, which is 



insensitive to a change in the migration rate by an order of magnitude for many combinations of 

subpopulation dynamics (Supplementary Fig. 3). Population stratification combined with 

asymmetric migration rates can produce patterns of relatedness which are otherwise unlikely under 

the neutral model (Supplementary Fig. 4). For example, in all our simulations a characteristic U-

shaped allelic mismatch distribution only arose when the migration rate was highly asymmetric and 

one subpopulation experienced considerable microepidemics while the other one had none 

(Supplementary Figures 5,6). 

To obtain some descriptive analytical insight to the joint effect of microepidemic and migration 

rates on genotypic diversity, we considered how the baseline equilibrium probability of identical 

genotypes is affected by introducing at the limit a change to the population based on either 

mechanism. Fraser et al. derived the equilibrium probability of identical genotypes at L unlinked 

loci, under the assumption of no microepidemics (Fraser et al., 2005), which equals ��� =
���� !"#$ !$
���%��� . Here θ = 2μN, where μ is the per locus mutation rate and N is the population size. 

Furthermore, the recombination rate is defined as ρ = 2rN, where r is the rate per locus in relation to 

the mutation rate. Since this extension of the classical equilibrium result by Kimura to allow for 

recombination is based on the assumption that in any generation only a single event occurs, Fraser 

et al. handled the effect of microepidemics on a population at equilibrium implicitly by introducing 

a probabilistic mixture where a single parameter represents the increase in the probability ��� caused 

by microepidemics. To gain some descriptive insight, we quantify the change in the probability of 

identical strains by evaluating the expectation of the effect of microepidemic and migration events 

when allowed only at the equilibrium of a simpler population model with only mutation and 

recombination events. 

Consider first the effect of stochastic microepidemics occurring in a single generation. The expected 

number of identical genotype pairs arising from them equals (& + 1)'*, , where ω is the scaled 

rate at which microepidemics occur per generation and γ is the expected size of each microepidemic 

(Methods). After this single generation the additional fraction of identical strains introduced to the 

population is 
(-��)/02

30'4
, which is an increasing function of both the expected size and rate of 

microepidemics. Note that this value does not in general equal the probability ���, because the latter 

depends also on the number of identical genotype pairs already present in the population before 

introduction of the microepidemic.  

Next, consider two subpopulations of sizes N1, N2, which at equilibrium become connected with 

migration rates N1m12, N2m21, respectively, in addition to the effect of introducing microepidemics 

(Methods). Each subpopulation is assumed to have its own set of parameters &�'*�,�, &''*',' 

governing the extent of microepidemics. Assume now that the subpopulations are of equal size N1 = 

N2. Then, the expected contribution to the fraction of identical strains in subpopulation 1 by an 

increase in the migration rate m21 depends generally on whether &�'*�,� > &''*',' or &�'*�,� <
&''*',', since larger and more frequent microepidemics in subpopulation 2 will increase the 

probability that the genotypes migrating to subpopulation 1 are identical to each other. Conversely, 

increased migration from subpopulation 2 will have expected effect of decreasing the probability 

when the extent of microepidemics in subpopulation 2 is smaller than in subpopulation 1. A 



difference in the sizes of the subpopulations can further amplify these effects since the rates of 

events are relative to them. The varying magnitudes of these effects are illustrated by simulation in 

the Supplementary Figures 2,3,4. However, it should be noted that the stated relationships are 

dependent on the values of the rate parameters and need not hold throughout the parameter range.  

MLST data 

Global surveillance data based on MLST typing for several common nosocomial bacterial 

pathogens (S. aureus, S. epidermidis, E. faecalis, E. faecium) generally match well with the 

expected shape of the allelic mismatch distribution for the considered archetypical population types 

(Fig. 4). eBURST diagrams provide additional insight into the structure of these populations (Fig. 

5). S. aureus is known to have a low recombination rate (Everitt et al., 2014) and its population 

structure is mainly shaped by a combination of mutation rate and intensive clonal expansion of 

distinct genotypes (Fig. 5, C). Conversely, its sister species S. epidermidis displays the bell-shaped 

mismatch distribution typical for organisms with high recombination rate (Meric et al., 2015) (Fig. 

4, D) and a large connected network of related genotypes (Fig. 5, D).  

Contrasting the population structures of E. faecium and E. faecalis reveals marked differences, 

where E. faecium forms large networks of related genotypes characteristic of highly 

recombinogenic bacteria (Fig. 5, B) (Turner et al., 2007), despite a relatively low estimated 

recombination rate. E. faecalis shows only limited clustering of genotypes (Fig. 5, A) and a 

mismatch distribution typical for a population dominated by mutation, with a slight increase of 

identical genotype pairs due to localized hospital transmission (Fig. 4, A). 

As shown previously, our analyses of simulated populations under a wide range of microepidemic 

and migration rates revealed that the allelic mismatch distribution can be insensitive to changes in 

parameter values over 1-2 orders of magnitude. Hence, we concluded that inferring the model 

parameters using the allelic mismatch distribution may not be robust enough. Instead, a simplified 

model with unknown mutation and microepidemic rates was fitted separately to the commensal and 

hospital populations for each species using the topological summary statistics of the genotype 

networks (Table 1). 

Overall, the simplified neutral model without explicit migration rates fits relatively well to the 

global MLST data. In particular, for S. aureus the observed summary statistics are near the averages 

of the predictive distribution for both commensal and hospital data, indicating that the characteristic 

patterns of several disconnected and large clonal complexes can frequently arise under neutrality 

when the mutation rate is sufficiently low and the microepidemic rates are high. Also for S. 

epidermidis the model fit appears reasonable, albeit the observed mean geodesic distance is higher 

in the commensal than predicted by the neutral model. The E. faecalis population shows somewhat 

worse fit than S. epidermidis and the estimated parameters are all at the end of their ranges in the 

hospital population, while two estimated parameters are at the end of their ranges in the commensal 

population. Inspection of the parameter values and the diversity of the observed data suggests that 

the model attempts to compensate the above bounded mutation rate by strongly increasing the rate 

of microepidemics while keeping their sizes minimal. The observed E. faecalis population has a 

high allelic diversity which could be explained by a higher mutation rate or effective circulation of 

alleles from multiple ecological sources by recombination. The only species which shows a more 



marked deviation from the neutral model is E. faecium. In its hospital population the model cannot 

predict the observed large average geodesic distance resulting from highly interconnected 

genotypes (Fig 5, D), despite of having a reasonable agreement with respect to the mean degree of 

the genotypes. The observed values of the two summary statistics are several times larger in the 

hospital population compared with the commensal population. The model over-predicts their values 

for the commensal population to an extent, which may be caused by the two parameters that are at 

their boundaries similar to the E. faecalis population.   

Table 1. Population characteristics of genotype relatedness for real and simulated data under 

estimated parameter values. N denotes the MLST sample size for each analyzed population. 

 S. aureus  S. epidermidis E. faecalis E. faecium 

N commensal 555 120 225 126 

N hospital 543 264 1003 1534 

Mean degree commensal 1.57 1.28 0.85 0.81 

Mean degree hospital 2.66 1.62 1.04 4.25 

Mean geodesic distance 

commensal 

2.02 3.32 1.58 1.46 

Mean geodesic distance 

hospital 

2.04 2.68 1.62 4.08 

Parameter estimates 

commensal 

θ = 0.054 

ω = 10
-4 

γ = 17.23 

θ = 0.165 

ω = 11.19
 

γ = 38.44 

θ = 0.165 

ω = 26.80
 

γ = 10
-4

 

θ = 0.165 

ω = 44.62
 

γ = 10
-4

 

Parameter estimates 

hospital 

θ = 0.006 

ω = 34.82
 

γ = 45.61 

θ = 0.054 

ω = 10
-4 

γ = 13.97 

θ = 0.165 

ω = 50
 

γ = 10
-4

 

θ = 0.012 

ω = 11.67
 

γ = 46.45 

Commensal: 

Predictive mean degree 

0.1 quantile 

0.9 quantile 

 

1.517   

1.429    

1.604 

 

1.368    

1.220  

1.605 

 

1.046 

0.991 

1.084 

 

1.008  

0.937 

1.062 

Hospital: 

Predictive mean degree 

0.1 quantile 

0.9 quantile 

 

2.548   

2.000    

3.384 

 

1.685 

1.566 

1.790 

 

1.023 

0.977 

1.069 

 

3.673  

3.055  

4.390 

Commensal: 

Predictive mean 

geodesic distance 

0.1 quantile 

0.9 quantile 

 

 

2.118 

1.935    

2.310 

 

 

2.458 

2.035 

3.023 

 

 

1.706 

1.619 

1.779 

 

 

1.698 

1.600 

1.787 

Hospital: 

Predictive mean 

geodesic distance 

0.1 quantile 

0.9 quantile 

 

 

2.064 

1.604    

2.363 

 

 

2.309 

2.078 

2.681 

 

 

1.728 

1.649 

1.800 

 

 

3.094 

2.467 

3.777 

 

Discussion 

Previously described neutral models specified by mutation and recombination rate in combination 

with microepidemics show a close fit to observed local genotype survey data for several commensal 

and pathogenic bacteria. This holds true for both short-term population evolution dominated by the 



local dynamics of microepidemics (Fraser et al., 2005; Hanage et al., 2006) and for longer time 

scales where recombination acts as a cohesive force keeping populations together(Fraser et al., 

2007). However, there is limited knowledge about how varying levels of isolation in host 

organisms, such as human and different animal species (Fraser et al., 2009), might influence the 

evolutionary dynamics and lead to structured populations in bacteria. Here we considered a neutral 

model incorporating microepidemics and migration, which mimics a situation where ecological 

factors limit transmission between subpopulations. Studying the model behavior with extensive 

simulations, we concluded that allelic mismatch distribution is an insensitive summary statistic 

under more complex population evolution scenarios where migration and microepidemic rates may 

vary substantially without notable changes in the population distribution of the summary statistic. 

   

The observed differences between E. faecium and E. faecalis, which both colonize the 

gastrointestinal tract, are particularly interesting since mutation and recombination rates have been 

estimated to be similar for the two species based on both MLST and whole-genome data(de Been et 

al., 2013b; Vos and Didelot, 2009). Moreover, they are responsible for roughly equal frequencies of 

nosocomial infections worldwide (Tedim et al., 2015; Willems et al., 2012). E. faecalis population 

structure bears the hallmarks of either a high rate of mutation or drift (or both). E. faecalis is known 

to colonize the vast majority of normal hosts within a population (Tedim et al., 2015), and therefore 

can be considered as part of the physiological commensal microbiota of humans and many other 

animals. Certainly, its population structure could be reflective of the evolutionary dynamics of a 

generalist organism which regularly experiences a high level of drift and gene flow between 

different host species.  

On the basis of the predictions made by our model, E. faecium would need to have substantially 

higher recombination rate than E. faecalis to lead to the observed pattern of genotype relatedness 

under neutrality (Table 1). Since there is evidence of the recombination rate not being substantially 

higher in E. faecium compared with E. faecalis, the only possibility for the large genotype networks 

to arise under our neutral model would be unobserved population stratification. If unobserved 

sources experiencing very large clonal expansions contributed continuously to the hospital 

subpopulation of E. faecium, the expected allelic mismatch distribution would bear the 

characteristics of a subpopulation with high recombination rate (Supplementary Fig. 3, i). It is 

known that intensive farming and animal production practices provide opportunities for rapid clonal 

expansion of bacterial strains colonizing the animal hosts. Given the known connection between 

strains from domesticated animals and the hospital associated E. faecium (Lebreton et al., 2013; 

Willems et al., 2012), it is plausible that these clonal expansions could manifest themselves as 

connected networks in the human hospital subpopulation. However, the extensively connected 

network of E. faecium genotypes would still remain unlikely unless the rate of recombination was 

substantial. An alternative explanation for the extensive genotype relatedness is a marked deviation 

from neutrality, such that the connected strains represent either a subpopulation adapted to the 

hospital environment, consistent with previous studies (Lebreton et al., 2013; Willems et al., 2012), 

or an adaptation to different host subpopulations (Faith et al., 2015). Further dense sampling will be 

required to characterize mechanistically the role of hospital adaption for creating the observed 

relatedness patterns of E. faecium strains. 



S. aureus and S. epidermidis frequently colonize the skin, soft tissue and the nares of human hosts, 

while also being ubiquitous in a range of animals. However, the overall population density and the 

proportion of human or animal hosts colonized by S. epidermidis largely exceed that of S. aureus, 

so that S. epidermidis, but not S. aureus, can be considered of a physiological commensal, part of 

the normal microbiota. Despite of this, S. aureus population showed the clearly best fit to the 

neutral model for both commensal and hospital samples. The human S. aureus population is 

characterized by several genetically distinct clonal complexes, each sharing a single ancestral 

genotype. Such a population can arise under the neutral mutation/drift driven evolutionary 

trajectory combined with a high rate of localized transmission, as evidenced by the estimated 

model. In this scenario clonal complexes appear and proliferate for a time, to be replaced by others 

arising through genetic drift at the operational timescale of decades or longer. This has been 

previously described as an ‘epidemic clonal’ structure (Smith et al., 2000).  

Both the commensal and hospital subpopulations of S. epidermidis display a pattern of genetic 

relatedness typical of a population where recombination is the dominant force generating population 

structure. An exception to this can be seen in the higher fraction of maximally distinct commensal 

genotypes, which could plausibly arise when novel strains infrequently migrate to the human 

commensal population from several non-overlapping zoonotic sources (Meric et al., 2015).  

The complexities of within- and between-subpopulation strain dependence, and the extent of 

localized transmission and migration across ecological patch boundaries makes formal statistical 

inference about microepidemics and migration rates difficult. Given the sampling limitations of the 

MLST data and the computational challenges, we abstained from fitting the full model with non-

zero migration rates to the considered pathogen species. A particular challenge is that, when a 

population evolves within a drift dominated model, it is unlikely that reliable estimates of the 

parameters driving the population dynamics can be obtained without dense longitudinal sampling, 

since cross-sectional samples from the population structure can vary substantially. Similarly, as the 

consequences of migration events are dependent on other stochastically varying factors across the 

subpopulations, high migration rates may lead to a pattern of relatedness indistinguishable from 

those generated by low rates. It is possible that these issues could be resolved using various 

coalescent-based models, including the Λ-coalescent and its generalizations (Beerli and Felsenstein, 

1999; Beerli and Felsenstein, 2001; Choi and Hey, 2011; Hey and Machado, 2003; Hey and 

Nielsen, 2004; Pitman, 1999; Sagitov, 1999), which motivates further research on their adaptation 

to the study of large-scale bacterial pathogen populations. 

It is evident that a limited number of neutrally evolving core genes, such as those typically used in 

the MLST typing schemes, limits the scope of models that can be fitted to genetic surveillance data. 

However, our results imply that some evolutionary scenarios would remain unidentifiable even if 

housekeeping loci were considered at the whole-genome scale, in particular if the data are mainly 

cross-sectional even if densely covering the host population. Hence, one of our main conclusions is 

that the optimal data for studying dynamics in this fashion are densely sampled longitudinal 

surveillance data covering evolutionary events at whole-genome level (Croucher et al., 2013). This 

highlights the importance of easy access online repositories of genomic variation as an extension of 

the currently existing MLST databases and that sample metadata should be an equally important 

focus of the data sharing principles. Using such a strategy in the near future may enable important 



model-based predictions about the dynamics of existing and emerging pathogens that pose a 

considerable global challenge for human and animal health. 
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Figure legends 

Fig. 1. Allelic mismatch distributions for combinations of mutation and recombination rates in a population 

with N = 3000. Bold line in green shows the mean mismatch probability over 20000 generations, sampled at 

intervals of 100 generations. The green shaded area shows the 95% confidence interval and the colored lines 

are examples of mismatch distributions at random time points. Vertical axis in each panel shows the 

probability mass associated with the points of the curves across the values on the horizontal axis which 

correspond to the possible allelic distances with seven loci. Distributions are shown as continuous curves for 

visual clarity. 

Fig. 2. eBURST networks and mismatch distributions for a population without (grey) and with (yellow) 

microepidemics, where ω = 27, γ = 16. The 95% confidence intervals are shown by shaded areas and are 

defined as in Fig. 1. Numbers in the networks represent arbitrary genotype labels. The mutation and 

recombination parameters used are: 0.0011, 1 (A), 0.0088, 1 (B), 0.0011, 8 (C), 0.0088, 8 (D).  

Fig. 3. Schematic illustration of the combined effect of microepidemics and migration studied in detail in the 

supplementary materials. Colors represent genotype clusters. The population on the left is unstratified, in 

which case increasing rate (ω) and size (γ) of microepidemics lead to decreased genetic variation. In a 

stratified population with two subpopulations (P1, P2) the effect of increasing microepidemics (ω1, γ1) on 

genetic diversity in subpopulation P1 depends both on the microepidemics in subpopulation P2 (ω2, γ2) and on 

the migration rate (m21). The case with m21 = 0 leads to identical decrease of genetic variation as in an 

unstratified population. The notation “<<” is used to indicate that the parameters on the left side of the 

double inequality are much smaller than those on the right side.  

Fig. 4. Allelic mismatch distributions of commensal and hospital subpopulations of four common 

nosocomial bacterial pathogens. The right-most column shows the between-subpopulation mismatch 

distributions. 

Fig. 5. eBURST networks of the isolates used to calculate the mismatch distribution in Fig. 4; E. faecalis 

(A), E. faecium (B), S. aureus (C), S. epidermidis (D). 

 

highlights 

· Bacterial pathogens pose a considerable global challenge for human and animal health  

· The ability to draw robust inferences about evolutionary dynamics is important  

· Population stratification and host migration weaken parameter identifiability 

· A major hospital pathogen, Staphylococcus aureus, fits well with a neutral model 

· The hospital pathogen Enterococcus faecium shows strong deviation from neutrality 
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