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Highlights 
 

 Enhanced drag resolved for different geometry aspect ratios with a 
swanINNFM model 

 Experimental drag measurements have been quantitatively captured 
 At fixed elasticity, there is increase in drag with rise in solvent fraction 
 Transition phases are detected between steady, oscillatory, and unstable 

solutions  
 Flow-rate increase exhibits larger drag compared to fluid-relaxation time 

increase 
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The falling sphere problem and capturing enhanced drag with Boger fluids 

 

I.E. Garduño, H.R. Tamaddon-Jahromi, M.F. Webster
* 

 
Institute of Non-Newtonian Fluid Mechanics Swansea University Bay Campus, College of 

Engineering, Fabian Way Swansea, SA1 8EN, UK 

 

Abstract 

In this computational study, the ability of an extensional White–Metzner construction 

with the FENE-CR model is considered to reflect experimental enhanced drag data of 

Jones et al. [1]. The numerical drag predictions for three different aspect ratios of 

sphere:tube radii {0.5, 0.4, 0.2} are obtained with a hybrid finite element/volume 

(fe/fv) algorithm. Excellent agreement is extracted for all three aspect ratios against 

the experimental measurements, and at any specified rate, the tighter-fitting the aspect 

ratio the lower the resulting drag. Moreover, as the Weissenberg number is increased, 

the transition between steady-state and oscillatory flow is recognised from the 

instantaneous pressure data, prior to numerical divergence. A main realisation in this 

study is that it is important to select the same procedure of Wi-continuation across 

experimental and computational protocols, to extract comparable levels of drag. 

Clearly the 
1
 -increase mode (common computational form), is more involved than 

the Q-increase mode (usual experimental form), and as such, less robust as a reliable 

method for accurate drag prediction and enhanced drag capture. In general, flow-rate 

increase (Q-increase) conditions generate larger drag enhancement, when compared 

to fluid-relaxation time increase (
1 -increase), at comparable levels of dissipative-

factor (
D ). The investigation also follows parametric variation in solvent fraction 

( solvent ) in one particular geometric aspect-ratio instance. This reveals that at any 

specific fixed elasticity level, there is an increase in drag observed with rise in 
solvent . 

In addition, high solute/low-solvent fractions at low dissipative-factor, were only 

found to generate drag reduction, consistent with the literature. New and key facets to 

this fe/fv implementation are summarised, in appealing to: an improved velocity 

gradient boundary conditions imposed at the centreline (VGR-correction); continuity 

correction; absolute value of the stress-trace function (ABS-f-correction); increasing 

flow-rate solution continuation; alongside advanced techniques in fv-time 

discretisation, discrete treatment of pressure terms, and compatible stress/velocity-

gradient representation. 

 

Keywords: Viscoelastic fluid; FENE-CR; Extensional White-Metzner model 

(swanINNFM); Flow past a sphere; Drag coefficient 
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1. Introduction 

 

This article tackles one of the fundamental grand-challenge problems in 

computational rheology that of predictive capture of enhanced drag observed for 

Boger fluids in the falling sphere experiment. State-of-the-art reviews well cover the 

topic in Walters and Tanner [2], Brown et al. [3], McKinley [4], Caswell et al. [5], 

and Chhabra [6]). Such an experiment (see Jones et al. [1]), may be conducted with 

varying diameter (2R) tubes and spheres (2a), to achieve increased terminal velocities 

at a fixed geometric aspect-ratio ( sphere /a R  ). Once the sphere achieves its terminal 

velocity, travelling along the centreline of the tube, the flow is then considered as 

steady. The relevant bounding fluid properties therefore reflect constant shear 

viscosity, extensional hardening yet finite extensibility, and a quadratic to less-than-

quadratic first-normal stress-difference at larger shear rates. Notably, the extensional 

and normal-stress properties of the fluid are of crucial importance in detecting the all-

important rheological influence upon the enhanced drag exerted on a sphere falling 

through a constant viscosity viscoelastic fluid of Boger-type, displaying strain-

hardening properties. 

 

On the experimental side, Jones et al. [1] studied two Boger fluids, termed Type-I and 

Type-II, with findings that have been used extensively for comparison throughout this 

investigation. For PIB/PB-based Boger fluid (Type-II), these authors have shown 

modest increase in drag coefficient to 1.3 with ( sphere 0.5  ) at Weissenberg number 

(Wi=1.35), noting intersection with the Newtonian reference line at Wi~0.625. As 

aspect ratio ( sphere ) declines (through values of 0.4 and 0.2) and at any fixed Wi up to 

~1.30, such drag values are observed to elevate quite considerably. For example at 

Wi=1.30, a drag coefficient of 1.7 is achieved with sphere =0.4, and of 2.0 with 

sphere =0.2. For aspect ratio sphere ≤0.15, the drag becomes independent of further 

aspect ratio adjustment (see below for more details). In addition, Becker et al. [7] 

examined the problem experimentally using a digital imaging system for an aspect 

ratio of ( sphere =0.243) and a polyisobutylene (PIB) Boger fluid. The motion of the 

sphere was taken as accelerating from rest, falling down the centreline of a cylindrical 

tube. Transient numerical solutions (velocity profiles) were supplied through a 

Lagrangian finite element method whilst including inertia, using both single and 

multi-mode Oldroyd models. Experimentally, these authors observed large transient 

velocity overshoots of O(50%), prior to achieving terminal settling velocities. Becker 

et al. with single-mode representation, could not re-capture the large increases in 

steady-state drag-coefficient of Jones et al., noted for both Type-I and Type-II fluids 

(maximum drag-value, K=3.7), at comparable aspect-ratio of ( sphere =0.25). Similarly, 

Becker et al. detected a maximum drag-value of K=2.4 by experiment, and K=2.2 by 

single-mode Oldroyd prediction at limiting De~3.4. One notes here that Jones et al., 

only detected O(30%) transient velocity overshoots, shown for Type-I fluids. Such 

differences in observational findings may be due to several factors, not least being – 

use of different fluids with varying properties and composition (networked structures, 

aging, densities of these fluids, zero shear-rate viscosities and relaxation times), and 

precise determination of terminal velocities. The authors acknowledge that the 

experimental measurements themselves are prone to error bars, and relatively small 

differences in raw drag enhancement can be distorted under relative drag-coefficient 
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reporting, due to adjustment in base KN-values (Newtonian-drag) as aspect-ratio is 

altered. Furthermore, the multi-mode transient predictions of Becker et al., with a 

four-mode Oldroyd model, under-predicted the evolution of the sphere-velocity, yet 

provided improved overall quantitative agreement with the experimental data over 

single-mode predictions, reducing the magnitude of discrepancy to the overshoot 

achieved. Nevertheless, similar levels of terminal velocity were approached at steady-

state for single- and multi-mode solutions, comparable to the experimental data. 

Hence, the expectation is of similar levels of steady-state drag. Still, Becker et al. cite 

(Bird et al. 1987 [8]), in reference to transient representation, quoting that “Although 

the Oldroyd-B model provides a reasonable description of the material functions for a 

Boger fluid in steady shearing flows, it is widely appreciated that the presence of a 

single relaxation time λ1 renders the model incapable of quantitatively describing 

transient phenomena of real polymeric fluids, even in the linear viscoelastic limit”. 

 

In a study performed over the polymer properties (solvent quality and polymer 

molecular weight), Solomon and Muller [9] concluded that the final drag on a sphere 

is determined by the interplay between the quality of the solvent, and the shear and 

extensional rheology of the solutions involved. Further discussion on this particular 

aspect can be found in Walters and Tanner [2] and McKinley [4]. 

 

This falling sphere problem has proven both classical and popular. Yet, despite the 

simplicity of the flow and the absence of geometric singularities, numerical 

simulations have proven conspicuously incapable of capturing the enhanced drags 

observed experimentally for these strain-hardening fluids, as described above. Many 

computational predictions report only drag reduction, and often prove limited in 

steady-solution acquisition to a critical elasticity level, governed by (Wicrit), beyond 

which upturn in drag has remained an open question. This barrier to the lack of 

numerical convergence has been attributed in part to a number of issues - the complex 

mixture of shear and extensional flow regimes encountered (hence to the 

mathematical properties of the problem itself); problem discretisation and constitutive 

representation; and to the method of solution employed. Neither does shifting to a 

multi-mode representation, change this overall position. Hence, the discrepancy 

between the significant enhanced drag observed experimentally, and the under-

prediction provided by simulation at high Wi-levels, has emerged as an outstanding 

computational issue to resolve (see the literature - Tiefenbruck and Leal [10], 

Gervang et al. [11], Mena et al. [12], Owens and Phillips [13], Chhabra [6]). 

 

Caswell et al. [5] pointed out that this discrepancy, between experimental 

measurements and computed solutions, may be somewhat due to the inadequacy of 

the constitutive models used. As a consequence, various numerical schemes have been 

benchmarked on the standardised specification of the flow problem – that of the 

creeping motion of a sphere in a constant shear-viscosity viscoelastic fluid (generally, 

Oldroyd-B, single-mode), contained within a cylindrical tube with an aspect ratio 

of sphere 0.5  , (see for example, Brown et al. [3]; Tanner [14]; Owens and Phillips 

[15]). Moreover, Satrape et al. [16] performed a numerical study for this benchmark 

problem using a FENE-CR model. These authors concluded that the finitely-

extensible dumbbell construction gave access to a somewhat larger range of Wi-

values (as taken up in the present study).  
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Moreover, the magnitude of the solvent fraction (
solvent , see definition below) was 

also found to regulate the faster or slower decrease of the drag as a function of Wi. In 

this regard, with sphere 0.5   and for the Oldroyd-B model, Tamaddon-Jahromi et al. 

[17] presented a comparison of the drag versus elasticity increase (reported in 

Deborah number, De, here equivalent to Wi) for three alternative levels of solvent 

fraction (
solvent =1/9, 0.5, 0.9) up to Wi=1.2. The results reflected a decreasing trend in 

drag across all three solvent fractions, with no sign of predicted enhancement. The 

authors concluded that at any specific fixed elasticity level, there is an increase in 

drag observed with rise in 
solvent  (

solvent 1  ). For cross-comparison purposes with 

the literature, the same authors also included the results of Bodart and Crochet [18], 

and Lunsmann et al. [19], where there is general consensus observed in drag results 

across methods and solvent fractions.  

 

Further analysis for values of 
solvent =0.25 has revealed high stress levels, within the 

region between the sphere and the tube wall, larger in comparison to those in the 

wake region (Fan et al. [20]). Hence, it is widely acknowledged that 
solvent 0.5   may 

not have been the optimal choice for the benchmark. This has lead to alternative 

solvent -ratios being proposed (
solvent 0.125   and  0.25, see Brown & McKinley [3]), 

even though for these ratios there is sparsity of experimental data to hand. 

 

Lunsmann et al. [19] investigated the case 
solvent 0.125   for a variety of constitutive 

equations obtaining good agreement between their corresponding numerical solutions 

for   Wi <1.6 . In addition, Zheng et al. [21] used a similarity solution, in the 

neighbourhood of the tube-centreline through the wake region, and probed the 

existence of a limiting Wi-value (approximately 0.6, for an Oldroyd-B model). 

Nevertheless, none of these numerical solutions have captured drag enhancement, as 

in experimental findings for different instances of 
solvent . In addition, one of the 

major challenges offered by this particular problem has been to resolve steady-state 

solutions in such complex flow scenarios at relatively high levels of Wi. The lack of 

success in reaching high Wi has often been attributed to the sharp gradients in the 

polymeric stresses generated (progressive stimulation of ever-thinner stress boundary 

layers), that heighten with Wi-rise (Happel and Brenner [21]; Bodart and Crochet 

[18]; Zheng et al. [22], Owens and Phillips [13]). However, Petera [23] later found 

that stable steady-state numerical solutions could be reached up to Wi=6.6 with the 

UCM model, by using a Lagrangian particle-line scheme. This author observed that 

the drag factor (K) fell from the Newtonian reference value of 6.0 to a minimum of 

~4.0, before levelling out and then showing a modest rise. This result gives some 

hope that numerical convergence issues may be overcome, and that some upturn in 

drag may be realised; nevertheless, this is still far from the desired enhanced drag 

position sought through prediction. 

 

Our earlier work on the viscoelastic falling-sphere problem [17, 24] has considered 

various forms of constitutive representation for Boger fluids, such as constant 

viscosity Oldroyd-B, FENE-CR [25] and White-Metzner [26] models. In the present 

study, proceeding from the above background and to reflect enhanced drag for 

different problem aspect-ratios, the various properties are explored of the 

conformation of two constant shear-viscosity models - the White-Metzner 
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construction and the FENE-CR model. Hence, and primarily for a single geometric 

aspect-ratio (
solvent 0.5  ), solution parametric windows have been investigated to 

predict and encapsulate the available experimental data. This demonstrates the 

limitations of steady solution extraction, prior to an oscillatory solution phase and 

eventual solution instability. Subsequently, this position is then extended to 

alternative, more loosely-fitting aspect-ratios of 
solvent 0.25   and 0.2, where a similar 

realisation is gathered. Finally, numerical solutions with adjustment in fluid solvent-

fraction (
solvent ) are also considered, in one particular aspect-ratio instance 

(
solvent 0.5  ). This provides some insight and comparison upon the standard 

computational-benchmark drag-results provided for the problem-setting of 

solvent 1/ 9 
 
(low-solvent/high-solute). 

 

Vital to the current algorithmic formulation and solution procedure are several new 

aspects. This includes: improved discrete velocity gradient treatment on the flow-

centreline (VGR-correction); imposition of a correction for continuity; adopting the 

absolute form of the stress-structure function (f-ABS representation, [27]); increasing 

flow-rate through solution continuation; alongside advanced techniques in fv time-

discretisation, discrete treatment of pressure terms, and compatible stress/velocity-

gradient representation [28, 29]. 

 

2. Governing equations and flow problem 

The flow problem is specified through the relevant equation system, given in non-

dimensional terms, for isothermal, viscous, incompressible flow and represented via 

equations for conservation of mass and momentum transport, viz.  

 

  Ñ×u = 0,          (1) 

.Re Re p
t


    



u
u u T        (2) 

In the above, T  is the stress, defined as 
solvent2  T d . Field variables u, d, and p 

represent fluid velocity, the rate-of-deformation is 
  (Ñu +Ñu†) / 2 , and the 

hydrodynamic pressure, respectively. In addition, the dimensionless Group Reynolds 

number  0Re UL   is introduced based on density ρ, characteristic velocity scale 

U  (terminal velocity of the sphere) and length scale L=a (sphere radius). From this, a 

time scale is derived  L U , the inverse of which defines a characteristic deformation 

rate; together with the zero-shear rate viscosity  0 . Then, a solvent-fraction ratio 

may be defined as  solvent solvent solvent polymeric= +    , where 
solvent  and polymeric  

represent individual solvent and solute components, respectively. 

 

2.1 Constitutive modelling: FENE-CR, Extensional White-Metzner FENE-CR models 

 

Here one seeks a constitutive model that leads to a constant shear viscosity, and yet, 

possesses the specific rheometrical properties of relevance to Boger-type fluids, such 

as: a quadratic N1 over a reasonable range of shear rates, giving way to some 

weakening; but also, vanishing N2 (see Chilcott and Rallison [25]). 
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The FENE-CR model (Finite Extendible Nonlinear Elasticity - Chilcott and Rallison) 

satisfies these requirements and provides the following expression for the stress, 

expressed through a conformation transformation and a configuration tensor A, as: 

f (Tr( ))( I) 0.Wi


  A A         (3) 

 

Here, the stretch functional 
  f (Tr(A))  in eq. (3) depends on the trace (A) and the 

extensibility parameter 
FENEL , and is given by: 

1
f (Tr( )) .

1 Tr( ) /



A

A
2
FENEL

        (4) 

Then, the extra-stress is recovered, in split form from the corresponding polymeric 

stress () and solvent contribution, as 

 

solvent2 T d , 

 

where Kramers expression relates stress and configuration tensors, viz. 

 

solvent(1 )
f(Tr( ))

Wi


 A A .        (5) 

Note here, use of the non-dimensional Group Weissenberg number, 
1U / aWi  , 

with dependency upon a single relaxation time (
1 ) and a characteristic rate ( U / a ). 

Moreover, as discussed below in depth, note that incrementation in Wi may be 

gathered under elevation of characteristic rate (flow-rate, Q-increase; through rise in 

terminal flow velocity U), or under elevation of fluid elastic-memory (
1 -increase). 

Accordingly, notation and equivalence in scaling used, between the experimental 

(
1 1

Aber

1

ExpWi Wi U a    ) and simulation (
1 1 1

Swan SimWi Wi U L    ) Weissenberg 

numbers is provided in Appendix-I. 

 

Furthermore, a viscoelastic extensional White-Metzner model has also been 

investigated, combining the benefits of the White-Metzner formulation (White and 

Metzner [26]) with a viscous extensional model (as proposed by Debbaut & Crochet 

[30], Debbaut et al. [31], and used in Tamaddon-Jahromi et al. [32]). One notes that 

the White-Metzner model itself was derived from network theory applied to 

polymers. The theory assumes a flowing polymer consisting of long-chain molecules, 

connected in a continuously changing network structure with temporary junctions. 

Here, a modified White-Metzner constitutive equation has been introduced, in which 

the viscosity   becomes a function of the second and third generalised invariants of 

the rate-of-strain tensor [33]. As such, this equation is able to incorporate extensional-

hardening effects within the expression for the viscosity (extension-rate dependency), 

without affecting the behavioural response in shear.  

 

The resulting hybrid constitutive model is then a combination of the FENE-CR model 

with the extensional White-Metzner model, termed the swanINNFM model. This 

combination was inspired by our earlier trials and experiences with a similar hybrid 

construction of extensional White-Metzner with the linear-PTT model [32]. Such an 

swanINNFM model (see [33] for choice of naming convention) is expressed as: 
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solvent
solvent

(1 )
f (Tr( )) ( ) 2 ( )T

Wi


    


 A A d,      (6) 

 

where  is defined below in expressions (7) and Appendix-II. 

 

The Debbaut and Crochet [30] viscosity form  [cosh ]D   is also incorporated here, 

in this swanINNFM version, introducing the extension-rate  and a dissipative 

material time-scale parameter of  D : 

 

 ( ) cosh .D              (7) 

 

Alternative truncated forms of ( )   are provided in Tamaddon-Jahromi et al. [33] 

Appendix-II, in particular the quadratic form  
2

( ) 1 D      (indicated 

swanINNFM(q)) strongly favoured in this work for its less-severe dissipative 

contribution with -rise. 

 

The extensional viscosity of the new model is displayed in Fig. 1 for the range of 

0.1≤
D ≤1.5. Here, an increasing trend in 

e  is traceable for swanINNFM(q)
 
model, 

in comparison against that for the FENE-CR model. Sharp increase in extensional 

viscosity is presented with the value of D =1.5 around the strain-rate of O(0.3). For 

lower value of D =0.1 and D =0.5, the extensional viscosity (
e ) for swanINNFM(q)

 
 

model follows that of FENE-CR up to strain-rates of around O(3) and O(2), 

respectively.  

 

Furthermore and in order to attain high-Wi solutions for the models discussed above, 

the following algorithmic modifications have been proven necessary.  

 

ABS-f-correction. As demonstrated in [27] under thixotropic modelling, there are 

instances in mixed-type complex flow, as within the 4:1:4 contraction/expansion and 

near numerical Wi-solution breakdown, in which the dissipation function becomes 

negative, thus predicting negative values of the ffunctional during flow evolution 

and along the spatial domain. To avoid this possibility arising, and whilst retaining 

consistency with the underlying ideal shear and extensional flow derivation theory, a 

corresponding modification to the FENE-CR configuration tensor model of eq. (4) 

has been proposed, of the form: 

2

FENE

1
f (Tr( ))

1 Tr( ) / L



A

A
.       (8) 

Then, applying the absolute-value operation (ABS-correction to fFENE-CR), to every 

constituent component of the trace function, has the desired effect of significantly 

boosting Wicrit-levels (see [27] for more details). 

 

Centreline shear-free boundary condition imposition – VGR-correction The 

symmetry flow centre-line is the unique region in the flow-domain of uniaxial 

extension. The velocity gradient recovery correction procedure (VGR-correction) 

prevents build up of spurious numerical noise in solution evolution, both throughout 
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the individual Wi-solution states, and subsequently, through successive continuation-

stages of Wi-incrementation. Such VGR-correction is imposed solely on the 

centreline, enforcing: (i) shear-free flow, ensuring 1D-extensional deformation (eq. 

9); (ii) the pure extensional uniaxial relationship between the normal deformation-

gradients (eq. 10); and (iii) nodal-pointwise continuity imposed exactly, via a discrete 

approximation form (eq. 11). Adopting notation of 
^

zu

z






 (as a function of z-spatial 

variable, in uniaxial extension along the flow centreline), for the extension-rate on the 

centreline in the axial direction, then the following identities may be established and 

imposed via VGR-correction:  

 

0z ru u

r z

 
 

 
,                     (9) 

^1 1
,

2 2

r zu u

r z


 
   

 
                   (10) 

^1
.

2

r z ru u u

r z r


  
     

  
                  (11) 

Note that, eq. 11 has been utilised throughout the domain (in the constitutive 

equation), irrespective of 1D-centreline arguments. 

 

2.2 Problem specification  

 

In this study and following the experimental data of Jones et al. [1], different sphere-

to-tube radius ratios have been considered. Here, creeping flow is assumed 

( Re  O(10
−2

)) and as a result, the momentum convection term contribution is 

negligible. By default, the solvent contribution 
solvent  is taken to be 0.9, which is 

compatible with the use of Boger fluids in the experiments. Typical time-steps 

employed are of the order O(10
-4

) and a relative-increment time-stepping termination 

tolerance is selected (by default) of the order of 10
-6 

to determine temporal 

convergence to a steady state. Fig. 2 depicts the set of triangular meshes employed to 

satisfy solution spatial accuracy and mesh refinement requirements, showing zoomed 

sections around the sphere. In this study three specific meshes have been utilised, 

corresponding to the three geometric aspect-ratios of: a) sphere 0.5  , b) sphere 0.4  , 

and sphere 0.2  . To arrive at these choices, mesh refinement analysis has been 

covered elsewhere (Matallah et al. [33]). The number of degrees of freedom 

associated with these mesh are {35122, 42944, 51496} for 
sphere {0.5,0.4,0.2}  , as 

recorded in Table 1 along with other detailed characteristics for each mesh. 

 

The drag force on the sphere may be represented through the integration of projected 

pressure and stress components over the sphere surface (governed by quadrant angle 

0    , in the flow plane, centred at sphere-centre), providing the dimensionless 

expression [16] 

 

 2

0

2 sin( ) ( - )cos( ) sin( ) .rz zzD a T T p d



          (12) 
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As a consequence, the drag force, in an unbounded Newtonian fluid, is given by the 

so-called Stokes drag as 6D aU   0η , where the sphere radius is (a=L),  0 is the 

fluid viscosity, and ( UU  ) is the free-stream velocity far from the sphere. Then, 

the required drag coefficient in the bounded case is defined as /K D D . With 

respect to calibration of Newtonian drag values, Happel and Brenner [22] presented 

typical wall-correction factors for rigid spheres moving in a still liquid in a cylindrical 

tube. In Table 2, these Newtonian drag values are summarized, covering the three 

geometric sphere  ratios of current interest. In this data, excellent agreement is 

observed, when comparing our predicted drag values against those from the theory of 

Happel and Brenner [22]. 

 

3. Numerical discretisation 

In the present work, the hybrid finite element/finite volume (fe/fv) scheme used is an 

extension of that previously cited in references Belblidia et al. [28]; Wapperom and 

Webster [35]; Webster et al. [36]. In essence, the numerical solution procedure adopts 

a time-stepping fractional-staged approach to steady-state, specifically developed and 

advanced for viscoelastic flow problems. It combines a Taylor series expansion in 

time for the convection-diffusion subproblem, with a time-incremental pressure-

correction scheme for the generalised Navier-Stokes equations. This furnishes a semi-

implicit scheme for incompressible flow, implemented over three sub-staged 

equations per time-step. Spatial discretisation is accomplished in part by the velocity-

pressure finite-element approximation, on the parent-level quadratic-linear 

interpolation over the meshed-domain triangulation. This is accompanied by a cell-

vertex stress finite-volume approximation on each triangular sub-cell of an individual 

parent-triangular cell. Thus, the incompressible momentum-continuity equations are 

discretized and solved through this hybrid combination of: semi-implicit Taylor-

Galerkin/incremental pressure-correction algorithm (see, for example, Donea [37]; 

Zienkiewicz et al. [38]; Matallah et al. [39]), together with that of a cell-vertex finite 

volume sub-cell technique for stress.  

 

Traditionally, finite volume methods have been devised to address conservation laws, 

for which it is convenient to segregate into term-types, along with their individual 

treatment, of flux, source and temporal derivative terms. For the flux terms arising, 

cell-vertex fv-schemes applied to the configuration-stress (A) equation are based upon 

a fluctuation distribution upwinding technique, which distributes control volume 

residuals to provide nodal solution updates. Fluctuation distribution (FD) schemes, 

originally designed for pure advection problems, have been devised to satisfy 

properties of conservation, linearity preservation and/or positivity: they appear in 

various forms, for example – minimum diffusion (low-diffusion) B-scheme (LDB); 

positive streamwise invariant (PSI) scheme (Wapperom and Webster [40]). Then, the 

configuration stress nodal-update over an fv-cell and a single time-step has two 

contributions per node – one from its fluctuation distribution component, and another 

from its uniform distribution component subtended by its median dual cell (unique 

per node, non-overlapping nearest neighbour region, one-third kite-area of its 

triangular fv-cell). This procedure demands appropriate area-weighting to maintain 

consistency in time, and for temporal accuracy reasons has been extended to time-

terms likewise (see Webster et al. [36] for complete details). Being nodally-based, the 

VGR-correction procedures outlined above may be directly incorporated within the 

nodal fv-approximation for the configuration stress-variable solution components.  
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Such a hybrid-combined fe/fv scheme forms a time-stepping process, with a three 

fractional-staged structure and pc-formulation per time-step. On each time-step cycle 

[t
n
, t

n+1
] commencing from (u, A, p)

n
, the first stage solves a set of equations for 

velocity-stress update, subject to the current time-step pressure-solution (p
n
) (and 

immediate-past time-step pressure-solution (p
n-1

) for full incremental-pc form) in the 

momentum-stress equation subset. Second, the forward time-step pressure (p
n+1

) is 

updated by imposing the continuity constraint through a Poisson equation on the 

temporal pressure-increment (p
n+1

-p
n
) (which may be suitably adjusted with a time-

derivative of density for compressible flow (Keshtiban et al. [41]). At a third stage, 

the first fractional-stage velocity field (u*) is corrected with the updated pressure field 

temporal increment (p
n+1

-p
n
), to deliver the end-of-time step velocity field (u

n+1
). 

Fuller detail on these procedures is provided in the references cited above, together 

with Aboubacar et al. [42]. 

 

4. Experimental drag measurement 

 

Jones et al. [1] described experiments on an isolated sphere of radius a falling under 

gravity in a bath of viscoelastic fluid. The experimental results correspond to two 

types of Boger fluids: Type-I based on a mixture of maltose syrup/water-based with 

0.1% PAA (polyacrylamide) and Type-II containing a 0.19% PIB w/v 

(polyisobutylene) with a solvent consisting of polybutene (93%) and 2-chloropropane 

(7%). The rheological properties show that both types of fluids exhibited constant 

shear viscosity, over a sensible range of shear-rates, giving way to some slight shear-

thinning at high shear-rates. Equally, it is reported that first normal stress-difference 

(N1) results show the classical quadratic behaviour. 

 

Two separated experimental devices were employed for each of the two types of 

Boger fluids. The first experimental set-up consisted of a rectangular cross-section 

(10cm x 5cm) and length of 80cm. The second one consisted of perspex cylindrical 

tubes with varying diameters in the range of 12, 6 and 2.13 cm. In a similar manner, 

spheres of different radii and densities were used. In the same study experimental 

results were reported for three aspect-ratios, the benchmark tight-fitting case 

sphere 0.5  , medium-fit sphere 0.4  , and the wide-fit case sphere 0.2   

(approximating unbounded). Type-I Boger fluids showed enhanced drag for 

sphere 0.25  . However, this enhancement essentially disappeared for the more tight-

fitting instance of sphere 0.5  , where within experimental error, findings could be 

considered as Newtonian in response,. 

 

The experimental data for Type-I Boger fluids in the limiting case sphere 1   and 

against a comparable Newtonian fluid (of the same zero shear-rate viscosity), clearly 

showed a substantially lower sphere-velocity, indicating significant drag 

enhancement. Even though the available data for the maltose syrup-based Boger 

fluids was limited, the findings indicated that a turning-point was likely in drag-

coefficient (K/KN) response whilst varying sphere  (drag enhancement claimed with 

sphere 0.25  , less in evidence for sphere 0.5  ). 
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A series of experiments for Type-II Boger fluid was conducted - one after mixing 

(newly mixed liquid Type-II(i)) and another after a pause of some two months, 

spanning a period of ~eight months (aged liquid Type-II(ii)). On this basis, an 

interpolation curve-fitting procedure was employed to yield the respective isobeta 

curves, where error bars are appropriate, both in terms of the fitting and the raw data 

measurements. Nevertheless, such data are held as a sound indicator of (K/KN)-levels 

and general trends in drag response. The authors admitted that the data gathered with 

these two Boger fluids has shown some distinctive differences, and may be argued to 

be associated with the time taken by the polyisobutylene chains to achieve their 

equilibrium configuration in the viscous polybutene solvent. 

 

Furthermore, some drag reduction in the experimental data for Type-II(i) fluid was 

observed at low Wi, followed by large enhanced drag at higher Wi. Comparably, there 

was no drag reduction found with Type-II(ii) fluid; clearly different behaviour 

between the two sets of data for the same fluid. Experimental results on the aged-

sample (Type-II(ii)) showed that within experimental error, (K/KN, Wi) data in the 

range 0≤ sphere ≤0.15 are independent of sphere . There appears to be a minor increment 

in (K/KN)-values at fixed Wi in the range 0.15< sphere ≤0.2. Fig. 3 reproduces the three 

isobeta (K/KN, Wi) curves reported in Jones et al. [1] for sphere ={0.2, 0.4, 0.5} and the 

Type-II(i) Boger fluid. Values of sphere  near 0.2 would appear to provide the maxima 

in drag-coefficient. For values in the range 0.2< sphere ≤0.5, there is substantial decline 

in drag-coefficient values at any fixed Wi, as concluded for Type-I fluids. The 

benchmark-case corresponding to the fitted-case sphere 0.5  , shows some initial 

decrease in K/KN to Wi~0.3, beyond which drag enhancement is reported. 

Subsequently, a critical solution level is reached at Wi=1.35 with K/KN =1.3. 

Regarding the medium-fit sphere 0.4  instance, there is only a slight indication of 

initial drag-reduction at low Wi, prior to reaching Wi~0.15, followed by more rapid 

drag enhancement (than for sphere 0.5   case) to Wicrit=1.30. Finally, in the wide-

fitting case sphere 0.2  , there is barely any initial drag-reduction captured in the 

interpolation, as found in the more-fitted instances. However, it must be 

acknowledged here, that only two data-points are taken, at mid-to-larger rates. Hence, 

there is insufficient information at low rates to determine more precisely the position 

on early drag undershoot. For this particular sphere 0.2  instance, the final and 

maximal drag-value reached is K/KN=2, corresponding to Wi=1.30. 

 

5. Prior evidence from numerical solutions 

Effect of normal stress (N1) and extensional viscosity (
e ) on drag:  

Models A-D, α, J, and FENE-CR models - earlier results 

 

Much of the initial development and background work to the present study is covered 

in Aguayo et al. [42]. There, the work focussed on the Oldroyd-B model and only on 

enhanced pressure-drop measurement, whilst addressing contraction and contraction-

expansion type-flows, under both planar and axisymmetric configurations. As a 

follow on, in Tamaddon-Jahromi et al. [17] various numerical studies were performed 

on drag enhancement for the (2:1) flow-past-a-sphere problem, alongside pressure-

drop enhancement for the (4:1:4) contraction-expansion flow problem. In this manner, 
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it was possible to compare and contrast the similarities in nature of these two classical 

flow problems. The main objective there was to shed light on the key material 

functions that were responsible for such enhancements, in both drag and pressure-

drop. 

  

In order to achieve this particular goal, Tamaddon-Jahromi et al. [24] compared and 

contrasted drag response for four constant shear-viscosity models (designated A-D), 

each incrementally adjusting a single material functional property from its base-

Newtonian (A-model) form (constant ηe, vanishing N1, no memory ). This provided 

material functions for three representative model-variants (B-D) (see Tables 1 and 2 

in Tamaddon-Jahromi et al. [33] ) - a purely-viscous extensional-inelastic form (B-

model; non-zero 
e , vanishing N1, no memory); a White-Metzner C-model (constant 

e , non-zero N1, with memory); and the classical Oldroyd-B form (D-model; non-zero 

e , non-zero N1, with memory). The lack of finite-extensibility of the Oldroyd-B 

model (D-model), and its over-strong sustained quadratic response in N1, are both 

features overcome in subsequent work by drawing upon FENE-CR functionality (see 

below).  

 

Over these four model variants, the corresponding drag predictions of [17], as 

reproduced in Fig. 4 against Wi
sim

, were held to be highly instructive. For example, 

from this evidence it was apparent that the extensional-inelastic B-model was capable 

of generating the much-sought after experimental drag enhancement, resulting in a 

rapid rise within the low Weissenberg number range (Wi<0.5). Such a response could 

then be associated unequivocally with 
e -properties (when taken against A-

Newtonian and D-Oldroyd comparatives). Nevertheless, early numerical instability 

set in with the B-model, beyond this relatively low Wi-stage. In contrast with the 

White-Metzner C-model (N1-effects inclusion), an opposing and declining trend in 

drag was produced, this becoming gradually more pronounced with Wi-rise; prior to 

reaching a minimum in normalised drag coefficient (K/KN) (value ~0.86) around 

Wi=1.2, and a steady-solution limit-point around Wi~1.3. Drag predictions with the 

designated D-model of Oldroyd-B form (frequently used to represent Boger fluid 

response), that comprised of both {
e , N1}-effects, gave an intermediate response 

between models B and C. Such findings revealed drag-reduction characteristics 

associated with N1-effects (shared with model-C), whilst also indicating some 

retardation in the level of drag-reduction - an influence of 
e -effects (shared with 

model-B). Drag reduction for the D-model was fairly linear to Wi~0.8, then more 

pronounced in the range 0.8<Wi<1.0, prior to flattening out to a minimum in drag 

coefficient (value ~0.92), with its steady limit-point at Wi~1.1. Hence, D-model 

basically replicates a hindered C-model response, slightly retarded and elevated in 

drag response. 

 

In addition, still further exploration on drag response through more extensive 

constitutive variations, then drew upon FENE-CR derivations, as considered in 

Tamaddon-Jahromi et al. [17]. This development both permitted finite extensibility to 

be introduced and some weakening of N1–properties, whilst retaining the prevailing 

constant shear viscosity favoured option. The N1 behaviour for four such associated 

constitutive models is shown in Fig. 5a, with counterpart 
e -behaviour exposed in 

Fig. 5b. The 
e -properties show common unbounded response for Oldroyd-B, J-



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 14 

model and  -model (see below), and elevation in hardening for FENE-CR with 

rising LFENE. The Oldroyd-B N1-form displays the classical strong quadratic N1–

response against Wi-rise, whilst the FENE-CR is weaker than this, but stronger than 

linear response. A third White-Metzner/J-model, introducing an additional constant J-

parameter in N1–functionality (  1 mJ  , m=2), flattens the N1–response within the 

rate decade 10
0
≤ Wi ≤10

1
. Still, a fourth White-Metzner/α-model has been found 

useful too, which introduces an additional constant  -parameter on the Wi-

convective term of the constitutive model. Amongst other things, this has the effect of 

lateral shifts across the rate decades (retarding mechanism) in N1–functionality (note, 

 -model in Table 3). Then, combined and hybrid model FENE-CR(αJ
m

)-forms are 

also included, to reflect more generalised master-constructs with J-model,  -model 

and FENE-CR combinations. This allows one to explore alternative slopes in N1–

functionality, between zeroth and second-order, achieved by varying rate exponent m-

parameter, in the range {0.1≤m≤0.5}. At the same time, delayed and damped response 

may be introduced into N1–response, via lateral rate-shifts with an  -parameter of 

0.1.  

 

Tamaddon-Jahromi et al. [17] provided much of the drag data in Fig. 6 to represent a 

range of results for individual J-model,  -model, D-model and FENE-CR, alongside 

the theoretical prediction with the master-model generalisation of FENE-CR(αJ
m

). 

From this further evidence, one can gather the positive enhanced-drag results 

available under both J-model and  -model realisations. The pure FENE-CR form, 

with both LFENE={3, 5} extensibility-parameter setting, effectively demonstrates that 

the unbounded extensional viscosity of D-model may be overcome. The Oldroyd-B 

D-model has its early Wi steady-limit ~1.1 attaining a drag of 0.916. Nevertheless, 

FENE-CR provides for only O(2%) drag-reduction, plateauing to drag levels of 

{K/KN =0.97, LFENE=3}, {K/KN =0.96, LFENE=5} at considerably larger Wi levels 

above 500 (actual limitation ~O(10
b
), b=3). The slightly larger limiting drag observed 

for LFENE=3 above LFENE=5, may be attributed to the weaker form for N1(LFENE=3) 

than that for N1(LFENE=5), which dominates any differences due to 
e -elevation, 

between 
e (LFENE=3) and 

e (LFENE=5).  

 

The J-model construct suffers from the rather severe limitation of low Wi-attenuation 

for steady solutions, and even more so than for the classical Oldroyd-B, D-model 

(with which it shares common extensional viscosity form, hence lacking in finite 

extensibility). This is held to be a further consequence of the functional complexity of 

the J-model. The J-model(J=1.0) only reached the solution limit-point of Wi=0.5, 

corresponding to a drag of K/KN =1.05; with J-model(J=0.1) the limit-point is also 

Wi=0.5, and the corresponding drag-value is K/KN ~1.002. The enhanced-drag 

response with the α-model of O(10%) for Wi=5.8, provides the most encouragement, 

both in terms of drag-enhancement level and extended range of Wi-solution 

attainment. This α-model result follows modest drag reduction up to Wi~4.0 (note, the 

similarity in trend here to some experimental findings). 

It is on this basis that the master model-generalisation FENE-CR(αJ
m

) was proposed, 

targeting the combination of J-model and  -model drag-enhancement, whilst 

coupling this to high-elasticity capability of the FENE-CR model. Hence, the 

theoretically derived drag-curve for FENE-CR(αJ
m

), which was anticipated to reach 

elasticity levels one order larger, Wi~O(10
2
) and drag-enhancement of O(100%). 

Unfortunately, in practice, such a FENE-CR(αJ
m

)-version inherits similar numerical 
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convergence characteristics to those of the J-model, and hence presents a barrier to 

further progression along this path.  

 

The way forward here is chartered by earlier findings and successes in modelling 

enhanced pressure-drops in contraction flows [32]. There, a hydrid constitutive model 

was proposed, from the combination of the viscous Debbaut and Crochet model [30] 

(with the extensional viscosity functionality) and the viscoelastic Linear Phan-Thien-

Tanner (LPTT) model. The Debbaut and Crochet [30] and Debbau et al. [31] papers 

offered the inclusion of a dissipative [ ] viscosity-law form, to provide an 

extensional viscous representation which unaffects that in shear. In [31], this 

particular hybrid combination of eWM_LPTT was conceived of as an extensional-

viscosity White-Metzner type model, layered on top of the LPTT model(
solvent =0.9); 

hence, with minimal shear-thinning impact. There, comparison was performed on 

enhanced pressure-drops (epd) between this viscoelastic eWM_LPTT and its 

equivalent purely-viscous extensional model, which in the viscous context, naturally 

gave rise to consideration of flow-rate increase (Q-increase, see below) to increment 

through deformation-rate (natural protocol to experimental practice). Such an 

eWM_LPTT supplied for the first time, some hope in capturing experimental-levels 

of enhanced pressure-drops in contraction-expansion flows over the relevant 

deformation-rate range (Rothstein and McKinley [44]). It is on this basis that the 

LPTT model has been replaced with a FENE-CR form, providing the counterpart 

eWM_FENE-CR, here renamed simply as swanINNFM model (as in section 2), 

following the constant viscosity line of investigation pursued thus far. The earlier 

constitutive model derivations that relied upon sub-functionals of {
1 2 3

  , ,   } to 

dictate {
e , N1}-formalisation, may also be re-applied here, but now adopting 

2
  of 

cosh-form (or its truncated quadratic-expansion equivalent), and setting 
1 3

1   (see 

Tables 1 and 2 in Tamaddon-Jahromi et al. [33]). Then, a stress-tensor framework 

provides the necessary steps to derive an equivalent swanINNFM structure. 

Additional benefit is then taken of the FENE-CR configuration-tensor (A-variable) 

construction, so that the dissipative contributions lie within the Kramers-stress 

reconstruction from the configuration-tensor, and hence, lie outside the differential 

evolution equation for the viscoelastic components of the system (a benefit that 

proves of some numerical advantage). To aid more-ready comparison, a schematic 

summary of the constitutive models cited above is provided in Table 3, along with 

their corresponding material properties and drag predictions. 

 

6. Present simulation results versus experimental evidence: various geometric 

ratios, flow-rate (Q-increase) 
Here, numerical solutions with the proposed new hybrid model of swanINNFM(q) are 

contrasted against the experimental drag data of Jones et al. [1], focusing on the three 

specific geometry aspect-ratios, sphere ={0.2, 0.4, 0.5}. The following analysis adopts 

standard experimental procedure for the falling-sphere problem, when considering 

increasing terminal sphere-velocity with the same fluid (through size/mass adjustment 

of the sphere) and hence, affecting an increase in flow rate (Q). Experimentally and at 

fixed geometric-ratio of sphere 0.5  , as in Jones et al. [1], this implies incrementation 

through sphere and tube-radii, and hence, providing data on the various ratios, 

governed by sphere (a) to tube (R) radii (
sphere /a R  ). 
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6.1 Drag predictions with sphere 0.5   

First, for this particular benchmark geometry choice, the normalised drag coefficient 

(K/KN) is plotted in Fig. 7 against 
1

ExpWi , with solutions extracted at each incremental 

value of 
D , selected at intervals between 0 0.55D  , spanning the experimental 

data. In the first instance with 0D  , the drag coefficient is simply that previously 

reported [17] with the original FENE-CR(LFENE=5) model, providing the base 

comparison. Subsequent and consecutive positive incrementation in 
D , is noted to 

stimulate a pronounced impact on drag. This is a direct consequence of increased 

dissipative contributions to the constitutive model (private communication, M.H. 

Wagner; see Tamaddon-Jahromi et al. [33]). Though in this instance the experimental 

data points are sparse (see on), the rise in drag is clearly now evident, and the family 

of 
D –solutions provide a tight window of capture of 0.25≤

D ≤0.45 for this data. In 

particular, this finding identifies the close match for the (
D =0.35)-solution. Beyond 

the experimental-data point at 
1

AberWi =1.35, steady solutions become more difficult to 

establish, and a relatively short phase is entered of oscillatory solutions (up to 

 
Wi

crit
=1.9, see on). In this phase, further steady solutions may only be extracted upon 

reduction in the D –level, to say D =0.3 as shown (switch of notation symbols). A 

first upper-limit in drag coefficient of K/KN ~1.35, applies when numerical solutions 

become unsteady (first transition point). This limit is depicted with a dashed 

horizontal line, and would appear to apply across a wide range of flow-rates (see 

cross-symbols for corresponding D ). The subsequent oscillatory phase occurs prior 

to meeting a second upper-limit in drag coefficient, where divergence is encountered. 

Here, temporal instability is detected, as noted in progressively sampled pressure 

solution values (under 
1

ExpWi  rise) - first steady, then oscillatory, finally numerically 

divergent – when the solution becomes finally intractable, with rapid divergence in 

the time-stepping process. 

 

Flow oscillation and temporal instability. To further analyse the temporal limiting 

drag position, Fig. 8 presents the results on comparative sampled-pressure just above 

the sphere (location indicated; (r, z) = (1.7, 0.0), in vertical plane of sphere-origin), in 

terms of evolutionary data for ever rising Wi-solutions at 0.35D  . In this form, the 

temporal variation of pressure is presented, whilst covering the solution interval 

Wi=[0.4, 1.9]. In passing, one notes that there is barely any indication of counterpart 

temporal fluctuations in the velocity field. From this evidence, one can detect - the 

initial onset of temporal oscillation in the interval 1.3<Wi≤1.4, its continued growth 

with Wi-rise in oscillation amplitude (fixed frequency), to the high-pressure 

oscillatory state at Wi=1.9 (between pressure-levels, 40 to 60 units). Beyond 

  
Wi

crit
= 1.9  solution state, numerical divergence is encountered and the problem 

becomes intractable henceforth. 

 

Solution fields Corresponding pressure, first normal stress difference (N1) fields and 

stress components profiles at the symmetry line are presented in Fig. 9 at 0.35D 
 

for various 
1

ExpWi ={0.4, 1.3, 1.5, 1.9}. The pressure fields of Fig. 9A, shown in 2D 

and 3D perspective, reveal solution increments pre-sphere that eventually cover the 
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whole sphere region as Wi rises. Solutions for (Wi≤1.3) are steady; solutions for 

(Wi≥1.4) are oscillatory-unsteady. Pressure maxima (at upstream stagnation point, see 

3D form) increase by some seven-times, from Wi=0.4 to Wi=1.9. It is interesting to 

note that the low-pressure region, aft of the sphere, becomes larger, and detaches 

upon approaching the critical solution level of Wicrit=1.9 (divergent subsequently). 

Furthermore, the area of low-pressure around the sphere significantly reduces at the 

oscillatory state of Wi=1.5, when compared with the steady-state solution at Wi=1.3. 

Representative pressure minima at Wi=1.5 reach -6.4 units, whilst they approach -17.5 

units at Wi=1.3, see Fig. 9A. In Fig. 9B, there is further evidence, where equivalent 

first normal stress difference (N1) solutions become larger, aft-sphere (higher strain 

rates in the wake region), whilst a region of low N1 prevails pre-sphere (low strain 

rates). Here, first normal stress maxima around the sphere, increase by some 4.6 times 

from Wi=0.4 to Wi=1.3 and by 1.6 times from Wi=1.3 to Wi=1.9. The locations of N1 

minimums and maximums are clearly visible from the 3D plots of Fig. 9B. Here, 

large values of N1 above the sphere stretch over the sphere wake-region as Wi 

increases. Moreover, a region of N1-minimum develops in front of the sphere with Wi 

rise (almost 14 times increase in N1-minimum from Wi=0.4 to Wi=1.9, as of -1.2 units 

to -16.5 units). In addition, and as observed at Wi=0.4 in Fig. 7, the drag value lies 

under the Newtonian reference line. At this position, Fig 9A displays a N1-maxima of 

4.2 units above the sphere. With Wi=1.3, the maximum N1-values (19.3 units) 

increase by almost four-times in comparison to Wi=0.4, showing a significant drag 

enhancement of K/KN=1.2. Likewise at Wi=0.4, the development of high stress in the 

wake region is shown, with a maximum of N1=13.7 units, contrasting against the 

maximum value of 2.1 units in the same region at Wi=0.3. Note also that, the largest 

value of symmetry-line N1 increases by almost 11 times from Wi=0.4 to Wi=1.9 (from 

N1=0.5 unit to 5.7 units). 

Some interesting features can be elucidated from Fig. 9C where profiles of stress 

components are observed along the symmetry line and around the sphere for 

  
Wi

l
1

Exp
={0.4, 1.3, 1.5, 1.9}. As anticipated, the maximum normal stresses ( zz , rr ) 

values on the sphere surface and in the wake region are observed to grow with Wi. 

This explains the origin of the enhanced drag shown at high Wi (Wi>0.4) in Fig. 7. 

Here and as Wi rises, the shear-stress ( rz ) exhibits increasingly positive and negative 

values around the sphere. The values of the third azimuthal component of normal 

stress (  ), observed at centreline and along the sphere, are insignificant in 

comparison to axial ( zz ) and radial ( rr ) stress components. 

 

6.2 Predictions with sphere 0.4   

The medium-fit aspect-ratio of 
 

(Fig. 10) shows further enhancement in experimental 

drag calculations (now three-data points provided, with undershoot for 
1

ExpWi <0.25, 

from the interpolation) above that for
sphere 0.5  . This new aspect-ratio setting 

demands still larger levels of 
D -parameter, in order to match predictions with this 

refreshed set of experimental data. Typically here, the drag coefficient reaches the 

larger level of K/KN ~1.7 at 
1

ExpWi =1.25. This has led to trialling simulations with 

0.35≤
D ≤0.62, which has provided a wide span of predictive data, and a tighter 

window of capture for the experimental data with 0.45≤
D ≤0.62. Anticipating error 

bars on the experimental data, across the three aspect-ratios provided, one can gather 
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from the simulation fits that (
D =0.55)-solution matches both the lower and mid-

range data-points, but undershoots the upper data-point. In contrast, the ( D =0.62)-

solution matches both lower and upper-data point, but overshoots the mid-range data-

point. Interpolation across the original experimental data of Jones et al. [1] for the 

three aspect-ratios within the mid-point range, would indicate that this experimental 

mid-data-point measurement is subject to a larger error-bar. One suspects that this 

measurement should lie more closely to ( D =0.62)-curve (as for other 
sphere -factors). 

In this medium-fit instance of 
sphere 0.4  , the steady-unsteady first-transition 

dashed-line becomes located around K/KN ~1.73, somewhat above that of K/KN ~1.35 

for the 
sphere 0.5   case. In this more severe testing circumstance for 

sphere 0.4  , and 

to retain steady solutions up to the larger drag threshold demanded here, it has been 

necessary to halve the time-step factor (lowering temporal discretisation error, 

adjusting convergence tolerance threshold accordingly) for solutions beyond a prior 

limit-line at K/KN ~1.31 (as indicated). To further support the 
sphere 0.4  drag 

evidence and to detect the transition from steady-unsteady solutions with rising-Wi, 

again attention may be directed to study the evolution of the sampled-pressure above 

the sphere for the characteristic value of
D =0.45. Here, it is evident from Fig. 11 that 

such sampling becomes unsteady, and subject to oscillations of growing amplitude, 

within the interval 1.8≤Wi≤2.1, with onset prominent by Wi=1.9 (note, somewhat 

delayed from the reported onset of oscillation at  Wi=1.4 for the earlier tighter-fit case 

(
sphere 0.5  , D =0.35), shown in Fig. 8). Once more, beyond this terminating 

solution stage numerical divergence ensues; hence in this instance, 
 
Wi

crit
 is 2.1. 

 

6.3 Predictions with sphere 0.2   

The wide-fitting, less-constrained aspect-ratio corresponding to sphere 0.2   (Fig. 12), 

has proven to be the most severe test-case to resolve numerically, with maximum 

experimental drag coefficient measured of K/KN ~2.0. This case highlights only two 

experimental data points, in the mid-to-upper rate-range. The appropriate trial range 

of 
D -values in the simulations is now located as 0.25≤

D ≤0.75, which reveals a 

modest drag undershoot at low values of Wi≤0.2 (not shown in the original 

experimental data fits), and enhanced drag subsequently at larger Wi. The severity of 

the problem now demands additional strategies to secure steady solution states, 

beyond the dashed drag-threshold line indicated. For this problem instance, a direct 

flow-rate increase continuation strategy gave immediate numerical divergence in the 

time-stepping beyond this dashed-drag threshold line, at each value of 
D attempted. 

To progress further for each 
D –value, a successful continuation strategy used was 

then to freeze the flow-rate setting (indicated with vertical arrows at selected flow-

rate values, equivalent to fixing 1

ExpWi ), and conduct continuation through 
D –rise. 

This procedure was cross-checked under solutions with other geometry aspect-ratios 

to confirm consistency in drag calculation, irrespective of continuation option (
D –

rise or rate-rise). In this manner, the experimental data [1] was well-captured with 

0.63≤
D ≤0.65, inclusive of the upper rate-range drag data-point. Undoubtedly, the 

increased severity of the problem with its excessive drag levels, makes this aspect-

ratio the most challenging to resolve, both experimentally and through simulation. A 
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comparative summary of the various drag-data extracted is supplied through Fig. 13 

and Table 4 across each geometric aspect-ratio trialled. This covers the key 

experimental drag measurements used, against their counterpart predictions under 

variable dissipative time-scale of 
D  ( 0.35 0.62D  ). 

 

 

7. Fluid parameter 
1
 - increase and solvent-fraction variation  

7.1 Flow-rate (Q-increase) vs 
1 -increase flow conditions 

Figure 14 compares and contrasts the two modal-approaches to defining the flow 

problem for analysis – through increasing fluid relaxation-time (same terminal 

velocity for different fluids, common preference under simulation) and increasing 

problem flow-rate (through the terminal velocity, retaining the same fluid, preferred 

option under experimentation). Here and initially, base-settings apply of geometric 

ratio ( sphere 0.5  ) and solvent fraction (
solvent 0.9  ). As such Fig. 14a reflects drag 

findings for Wi-increase through fluid-elasticity (
1
 -increase, charted against 

1

ExpWi definition). Relative comparison is also made against FENE-CR and α–model 

solutions, where the evidence of null drag response for FENE-CR (slight drag 

reduction) is apparent over a wide range of Wi, and modest but delayed drag 

enhancement is detected with the α–model (more dissipative). To capture the 

experimental data under this 
1
 -increase solution-mode, it is necessary to continually 

increment the 
D -value, alongside Wi-incrementation (through

1
 ), so that 

0.75≤
D ≤1.39. In fact, a cubic relationship may be established between 

D  and 
1
 ; a 

fact that illustrates the complex interplay between dissipative time-constant and the 

fluid relaxation time at fixed terminal velocity. Nevertheless, on the positive side and 

in contrast to FENE-CR and α–model findings, a close fit to the experimental data is 

practical, with the proviso of the amplified levels of 
D  necessary in order to satisfy 

this goal. 

 

The corresponding and contrasting position under increasing terminal velocity is 

exposed within Fig. 14b (Q-increase). Under this continuation procedure in Wi, a 

close match to the experimental data is realised with a single dissipative fluid time-

constant of 0.35D  , up to Wi=1.35. Particularly creditable is the fine capture of the 

final upper-rate experimental data-point and the close tracking with the predictions of 

the experimental interpolation curve (based on only two data-points). Beyond this 

stage, a reduced value of 
D =0.3 is necessary to sustain steady solutions (as indicated 

with the dashed-line). As discussed above, oscillatory solutions in the pressure field 

are detected above K/KN=1.3, around when 
1

1.4ExpWi  . One concludes from this 

evidence, the importance of selection of the same procedure of Wi-continuation 

across experimental and computational protocols, if one is to derive sensible and 

comparable levels of drag.  

 

Clearly the 
1
 -increase mode, is somewhat more protracted than the Q-increase 

mode, and as such, less robust as a reliable method for accurate drag prediction and 

enhanced drag capture. 
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7.2 Influence of 
solvent  on Drag 

Having identified the position above for 
solvent 0.9   and Boger-fluid composition, it 

is also instructive for past-reference to the literature, to identify what impact the 

above deliberations have whilst considering alternative solvent-fraction composition. 

To do this, the drag coefficient is considered for three values of solvent-fraction, 

solvent = {0.9, 0.5, 1/9}, and for the two protocols of Wi-incrementation – increasing 

fluid relaxation-time at fixed terminal velocity (
1
 -increase, Fig. 15a), and increasing 

terminal velocity at fixed fluid relaxation-time (Q-increase, Fig.14b). This covers 

fluid composition with high-solvent (
solvent 0.9  ), to high-solute (

solvent 1 9  ), 

passing through the intermediate stage for (
solvent 0.5  ). In this comparison exercise, 

the default geometry aspect-ratio used is 
sphere =0.5 and the dissipative time-constant 

is 0.25D  . Results with the base FENE-CR model are also included for direct 

cross-reference.  

 

The overview position from Fig. 14a,b is such that drag enhancement is only 

accessible via Q-increase; hence, this is absent from 
1
 -increase results of Fig. 15a, a 

finding consistent with the literature (as for Oldroyd-B model predictions [17]). 

Under Q-increase alone of Fig.14b, the high-solute ( solvent 1 9  )-data again imparts 

no drag enhancement (monotonically declining), prior to a relatively early termination 

of steady solutions around Wi~1.15. A more complete picture of trends with still 

larger Wi is provided through (
solvent 0.5  )-data. Here, the early monotonic decline is 

succeeded by reaching a lower minimum at Wi~0.7, with subsequent upturn, and 

intercepting the Newtonian reference line at Wi~2.3. The limit for steady solutions is 

reached at Wi~2.6, which represents a modest level of 5% drag enhancement. This 

trend-pattern for 
solvent 0.5   stands alone in its clear depiction of the local minimum 

and the transition from drag suppression-to-enhancement (reminiscent of Oldroyd-B 

results – and pressure-drop findings in [17]; and drag computations for flow-past-a-

cylinder in Owens & Phillips [13]). Final steady-solution limit-points vary between 

solvent-fractions, with elevation to 25% drag enhancement at Wi~1.9 and 
solvent 0.9   

(crossing Newtonian drag-line at Wi=0.75), for the same level of dissipative time-

constant 0.25D  . By raising the dissipative time-constant to 0.35D  (as shown in 

Fig.14b), drag is enhanced further to 30% (K/KN =1.3), whilst the Wi-steady-limit 

drops still further to Wi~1.5. At 
solvent 0.9  , there is evidence, though only slight, of 

early initial drag-reduction to a local minimum restricted to the zone Wi≤0.4.  

 

In contrast, the counterpart data with 
1
 -increase of Fig.15a, displays only drag-

reduction with Wi–rise and at each set 
solvent -value; though once more, one may note 

that drag does increase with elevation of 
solvent . Under this context of relatively static 

deformation-setting, limiting trends at larger-Wi tend to asymptote to a constant level 

of drag, and steady Wi limit-points are considerably larger than under Q-increase (see 

Table 5; a new challenge to reproduce for the experimental community). These 

critical steady Wi limit-points are reported as Wi={1.1, 2.6, 1.9} for 
solvent ={1/9, 0.5, 

0.9}. Drag findings with high-solvent 
solvent 0.9  , are practically replicated between 

those for the base-FENE-CR model and the new eWM_FENE-CR( 0.35D  ) model. 
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One notes in passing and in contrast to the above, this is because of the relatively low 

setting of the dissipative time-constant, which is shown above to require some 

elevation (to 0.75≤
D ≤1.39) in order to reflect drag enhancement.  

 

8. Conclusions 
 

A detailed study of the drag characteristics in flow-past-a-sphere has revealed some 

encouraging and provocative results. A new model with an extension-rate dependent 

viscosity White-Metzner/FENE-CR model (swanINNFM) has proven itself well-

capable of capturing the levels of enhanced drag, previously observed in experimental 

measurements, and impressively, over comparable measures of deformation-rates. 

New algorithmic steps have proven necessary to provide this match and the required 

increase in Wicrit. These steps include using: i) absolute f-functional representation 

(ABS-f-correction); ii) centreline velocity-gradient correction (VGR-correction); iii) 

continuity correction; iv) conformation tensor-A problem definition; v) flow-rate 

increase, as opposed to fluid-relaxation time increase.  

 

In this work, three geometric ratios of sphere 0.5  , sphere 0.4  , and sphere 0.2   have 

been closely analysed to derive a match to the experimental drag data of Jones et al. 

for their fluid Type-II [1]. Primarily, and for a single geometric aspect-ratio 

( sphere 0.5  ), solution parametric windows have been predicted that encapsulate the 

available experimental data. In itself, such tight-capture is believed to be a significant 

and novel computational breakthrough, albeit under a single-mode Maxwell 

relaxation-time approximation and steady-state conditions. We cite Tamaddon-

Jahromi et al. [33] with respect to discussion on the modelling of Boger fluids, and the 

use of a more representative multi-mode approximation, for its impact on present 

drag (or epd)-findings. It must be conceded that multi-mode approximation may 

tighten this position up somewhat further (whilst retaining the use of dissipative 
 
l

D
–

factor), through improved fitting to experimental fluid properties over wider 

deformation-rate ranges, though what is particularly sought here is better matching to 

steady extensional-viscosity (not that in shear-viscosity alone). Tamaddon-Jahromi et 

al. [33] also provides fuller discussion on the derivation of a physical understanding 

to this new swanINNFM model (with extension-rate dependent viscosity, constant in 

shear – hence, extensional dissipative response), applicable across length-scales and 

coordinate reference (considering fibre suspension additives). 

 

Subsequently, this position is then extended to alternative length-scales, with more 

loosely-fitting aspect-ratios of sphere 0.25   and 0.2, where similar realisation is 

gathered. Here, and for smaller sphere  values, larger 
D  values are required to match 

the experimental measurements. Furthermore, a new mode of flow instability has 

been identified with Wi-rise from the instantaneous pressure data. For sphere =0.5 with 

0.35D  , oscillatory fluctuations in pressure sample-point data above the sphere 

appear at Wi=1.4. This oscillatory phase survives up to Wi=1.9, prior to eventually 

giving way to an unstable divergent state. This position adjusts for the aspect-ratio of 

sphere =0.4, where pressure oscillation is observed at Wi=1.8 with 
D =0.45.  
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A main realisation in this study is the importance of selecting the same procedure of 

Wi-continuation across experimental and computational protocols, if one is to derive 

sensible and comparable levels of drag. Clearly the 
1
 -increase mode, is more 

protracted than the Q-increase mode, and as such, less robust as a reliable method for 

accurate drag prediction. It is also observed that flow-rate increase (Q-increase) 

conditions show larger drag enhancement, when compared to fluid-relaxation time 

increase (
1 -increase), at the same level of 

D .  

 

Finally, numerical solutions with adjustment in fluid solvent-fraction ( solvent =0.9, 

0.5, 1/9) have also been considered, in one particular geometric aspect-ratio instance 

( sphere 0.5  ). Here, only (Q-increase) solutions are found to yield drag enhancement; 

counterpart (
1 -increase) solutions only provide drag reduction (as reported 

frequently in the computational literature). At any specific fixed elasticity level, there 

is an increase in drag observed with rise in 
solvent . The results with the high-

solute/low-solvent composition of 
solvent =1/9 (and relatively low-dissipative base-

factor of 
D =0.25), only showed a declining trend in drag, largely in agreement with 

the literature (in which 
D =0). 
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Appendix I: Group Weissenberg numbers: Experimental versus Numerical  

Based on a sphere radius ( a  cm) and extracted characteristic velocity (from flow-rate 

and terminal velocity identity) of  U  cm/s, standard experimental practice would 

provide for incrementation in an experimental Weissenberg number 

(
1 1

Aber

1 UExpWi Wi a    ) through raising 
 U a  at fixed fluid relaxation time, 

1
 . 

Experimentally, this approach proves convenient for retention of the same fluid across 

multiple flow-rate test runs (Q-increase). One notes that the value reported in the 

experimental studies of Jones et al. for the relaxation time of Boger fluid Type-II 

is
1 0.38 s  .  

Equivalently, in the simulations, a Weissenberg number (
1 1 1

Swan SimWi Wi U L    ) is 

often stipulated, where  U  is a characteristic velocity (terminal velocity of the sphere) 

and  L  is a characteristic length (taken here as the radius of the sphere). In this form, 

common practice is to increment the simulation Weissenberg number 

(
1 1

SwanWi U L  ) by raising the fluid relaxation time, 
1 , at fixed rate, 

 U a  (
1 -

increase). Computationally, this choice is convenient as it renders common inlet 

boundary condition imposition over the respective differential problems – effectively 

holding flow-rate fixed (base levels of deformation), whilst varying the relaxation 

time in the stress equation (varying the fluid). 

 

One may derive a relationship between these two definitions of Weissenberg number, 

experimental (
1

Aber

1 UWi a  ) and computational (
1 1

SwanWi U L  ), and hence 

establish a scaling factor, in order to compare experimental and simulation findings 

on a one-to-one basis. 

 

From Jones et al. and assuming an experimental sphere radius of 0.635 cma  , and a 

fluid relaxation time of 1 0 38 sexp .  , identifies: 

1 1
0 63

0
5

38Aber U U
Wi .

.a
 

 
   

 
. 

 

From which, for example and to identify a base value of unity in the Group number 

1

AberWi , provides for a terminal velocity of  U =1.67cm/s and a rate of 

U 1.67
2.63

0.635a
   s

-1
. 

 

Following similar lines of argument for the Wi-simulation definition, and noting that 

the rate-factor 
 
U L( )  is held fixed (which may be taken unambiguously as base-

factor of unity s
-1

), whilst varying (
1
 ), then:  

1 1 1

Swan U
Wi

L
    . 

As such, unity may also be established for 
1

SwanWi  with a relaxation time setting of 

1 1 ssim  . 
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On this basis, one may establish parity in common Group numbers, when one 

recognises the fixed factor in each definition: 
 
U L( ) =1s

-1
 in the simulations, 

1 0 38 sexp .   in the experiments. Hence, a scaling factor of ( 11 exp/  ) emerges, which 

yields: 

 

1 1

Aber2.63SwanWi Wi  . 

 

Subsequently, once base parity has been established, the actual method of Wi-

incrementation employed, experimentally of computationally, is of course open to 

selection in either setting. 
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Meshes Elements Nodes 
Degree of freedom 

 , , pu  

sphere 0.5   
1600 3381 21177 

2687 5610 35122 

7400 15191 95042 

sphere 0.4   3306 6861 42944 

sphere 0.2   3986 8229 51496 

 

 

 

 

 

sphere a R   KN  Theory [20] KN  numerical  

(present study) 

0.2 1.680 1.688 

0.4 3.596 3.592 

0.5 5.970 5.931 

 
 
 
 

 

 

 

Models Material properties  

βSolvent 

Critical Wi 

(WiCrit) 

(K/KN) at  WiCrit 

B-model   

(Generalised 

Newtonian) 

ηe same as Old-B; ηs const; N1=0 0.9 0.4 1.15 

C-model 

 (White- Metzner) 

(ηe , ηs ) const;  N1 - damping 0.9 1.3 0.86 

D-model 

 (Oldroyd-B) 

ηe  extreme strain hardening;  

ηs const; N1=quadratic 

0.9 

0.5 

1/9 

1.1 

1.0 

1.2 

0.94 

0.86 

0.69 

-model 

 (White- Metzner) 

ηe same as Old-B; ηs const; 

N1=weaker than Old-B 

0.9 (=0.1) 5.9 1.11 

J-model 

 (White-Metzner) 

ηe same as Old-B; ηs const;  

N1 - damping 

(J=0, Oldroyd-B) 

0.9 

0.9 

(J=1.0)  0.5 

(J=0.1) 0.5 

1.02 

0.99 

FENE-CR(L=5) ηe same as Old-B (capped);  
ηs const;  

N1 - damping 

0.9 O(500) 0.96 

Table 1. Mesh characteristics: different sphere aspect ratios, 

sphere =a/R=0.5 (coarse, medium, refined), 
sphere =0.4, 

sphere =0.2 

 

Table 2. Newtonian drag values (KN ): theoretical vs numerical (present study) 
 

coarse 

medium 

refined 
 

min = -1628.2 

max = 12.5 

Table 3. Constitutive models, material properties and drag coefficients (K/KN ), 
sphere =0.5 
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Model 

 

sphereβ  

 

Wi 

 

 (K/KN)  

Prediction 

 (K/KN)  

Experimental 

swanINNFM(q) 

λD =0.35 

0.5 0.49 

3.48 

0.956 

1.241 

0.944 

1.250 

swanINNFM(q) 

λD =0.62 

 

0.4 

0.65 

2.25 

3.35 

1.004 

1.278 

1.570 

1.012 

1.258 

1.672 

swanINNFM(q) 

λD =0.65 

0.2 2.1 

3.5 

1.481 

2.041 

1.484 

2.009 

 
 

 

 

 

 

 

 

 

 

 

 
1 -increase 

SimWi ( ExpWi )  K/KN 

Q-increase 
SimWi ( ExpWi ) K/KN 

solvent =1/9  4.0 (1.5)       0.62  3.0 (1.1)    0.65 

solvent =0.5  55.0 (21.0)   0.78  7.0 (2.6)   1.02 

solvent =0.9  30.0 (11.0)    0.97  5.0 (1.9)    1.20 

Table 5 Critical ExpWi ( SimWi ) and drag coefficient K/KN , swanINNFM(q) model, 

solvent-fraction variation, 
D =0.25 

 

 

min = -1628.2 

max = 12.5 

Table 4. Normalised drag coefficient (K/KN ), swanINNFM(q) model, experimental data vs predictions, 

variable λD, sphere =0.5, 0.4, 0.2, 0.9Solvent   
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Fig. 1. Extensional viscosity of Oldroyd-B, FENE-CR, swanINNFM [q{ }] 

models, 0.1,  0.5,  1.5D  , 
solvent =0.9 

λD=0.1 

ηe 

λD=1.5 

λD=0.5 
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Fig. 2. a) Schematic diagram, flow past a sphere geometry; b, c, d) mesh 

patterns around sphere: b) sphere =a/R=0.5, coarse (elts=1600, nodes=3381, 

dof=21177,), medium (elts=2687, nodes=5610, dof=35122), and refined 

(elts=7400, nodes=15191, dof=95042); c) sphere =0.4; d) sphere =0.2 

b) a:R=0.5 

c) a:R=0.4 

d) a:R=0.2 

a 

Ru

R
u
/2

R 

r 
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Experimental, Jones et al. JNNFM, 1994
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Newtonian 
 ref. line 

Fig. 3. Normalised experimental data (drag coefficient (K/KN)) for Boger fluid Type-II(i) with different aspect 

ratios ( sphere =a/R=0.5, 0.4, 0.2), Jones et al. [1] 
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C (White-Metzner) model
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A (Newtonian ref. line)
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Fig. 4. Normalised drag coefficient (K/Kn) vs SimWi for Inelastic (B), Oldroyd-B (D), and White-Metzner (C) 

models, 
solvent =0.9, sphere =0.5 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 34 




e

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

[1] Oldroyd-B

[2] FENE-CR(L=5)

[3] FENE-CR(L=3)

.

[1]

[2]

[3]





N
1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4 [1] Oldroyd-B (J = 0.0)

[2]  model ,  = 0.1

[3] J model, J = 1.0, m=2.0

[4] FENE-CR, L=3

[5] FENE-CR, L=5

[6] FENE-CR (J
m
) (J=1.0, m=0.1, L=5)



[2][1]

[3]

[4]

[5]

[6]

Wi
Sim

K
/K

N

0 1 2 3 4 5 6 7
0.7

0.8

0.9

1

1.1

1.2

1.3
D (Oldroyd-B) model

FENE-CR, L
Fene

=5

FENE-CR, L
Fene

=3

 model, =0.1

J model (J=1.0)

J model (J=0.1)

D FENE- CR

L
Fene

=3 L
Fene

=5

J = 1.0

 model

J model

J = 0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FENE-CR(Jm)  model  
(=0.1, J=1.0, m=0.1, L=5) 

 prediction 

Wi~100 
100% 

Fig. 5.  Material function, a) first normal stress difference (N1), b) Extensional viscosity (ηe): Oldroyd-B, , J, 

FENE-CR, and FENE-CR(αJ
m

) models 

Fig. 6. Normalised drag coefficient (K/Kn) vs SimWi  for Oldroyd-B, J, FENE-CR, and FENE-CR(αJm) models, 

sphere =0.5 

 

N1 ηe a) b) 

 ηe (Oldroyd-B) = ηe ()= ηe (J) 

ηe (FENE-CR)= ηe (FENE-CR(J
m
))  

Newtonian 
 ref. line 
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Newtonian  
ref. line 

Fig. 7. Normalised drag coefficient (K/Kn) vs 
1

ExpWi  for swanINNFM(q) model, LFENE =5, 0≤
D ≤0.55,  

sphere =0.5 
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Fig. 8. Sample-point pressure evolution above sphere (as shown), various Wi
Exp

, swanINNFM(q), Q-increase, 

0.35D  , sphere =0.5 
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3D Fig. 9A 
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Fig. 9C  

Fig. 9.  A) Pressure, B) Normal stress difference (N1) fields, C) Stress components profiles at centreline and 

around sphere; various Wi
Exp

={0.4,1.3,1.5,1.9}, swanINNFM(q) model, LFENE =5, 
D =0.35, sphere =0.5 
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Fig. 10. Normalised drag coefficient (K/Kn) vs 
1

ExpWi , swanINNFM(q) model, LFENE =5, 0.35≤
D ≤0.62, 

sphere =0.4 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 41 

Fig. 11. Sample-point pressure evolution above the sphere (as shown), various Wi
Exp

, swanINNFM(q), Q-

increase, 
D =0.45, sphere =0.4 
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Fig. 12. Normalised drag coefficient (K/KN) vs 
1

ExpWi , swanINNFM(q) model, 0.25≤
D ≤0.75, sphere =0.2 
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Fig. 13 Drag correction factor (K/KN), βsphere comparison, experimental data Jones et al. (1994) with 

error bars vs swanINNFM(q) model, 0.35≤
D ≤0.65, βsolvent=0.9  

Newtonian  
ref. line 
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capturing experimental data, a) 
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Fig. 15. Normalised drag coefficient (K/Kn) vs 
1

ExpWi , varying solvent-fraction, swanINNFM(q) model,  

a) 
 
l

1
-increase, b) Q-increase, 

D =0.25, 
solvent =0.9, 0.5, 1/9 

λ1-increase 

a) 

b) 

Newtonian  
ref. line 

Newtonian  
ref. line 


