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Abstract

We present a numerical scheme for fluid-structure interaction based on hierarchical B-Spline

grids and fictitious domain/distributed Lagrange multipliers. The incompressible Navier-

Stokes equations are solved over a Cartesian grid discretised with B-Splines. The fluid grid

near the immersed solids is refined locally using hierarchical B-Splines. The immersed solid

is modelled as geometrically-exact beam discretised with standard linear Lagrange shape

functions. The kinematic constraint at the fluid-solid interface are enforced with distributed

Lagrange multipliers. The unconditionally-stable and second-order accurate generalised-α

method is used for integration in time for both the fluid and solid domains. A fully-implicit

and fully-coupled solution scheme is developed by using Newton-Raphson method to solve

the non-linear system of equations obtained with Galerkin weak formulation. First, the

spatial and temporal convergence of the proposed scheme is assessed by studying steady

and unsteady flow past a fixed cylinder. Then, the scheme is applied to several benchmark

problems to demonstrate the efficiency and robustness of the proposed scheme. The results

obtained with the present scheme are compared with the reference values.

Keywords: Fictitious domain methods; Immersed boundary methods; Fluid-structure
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vibrations.

∗Corresponding author
Email address: c.kadapa@swansea.ac.uk (C. Kadapa )

Preprint submitted to Elsevier December 18, 2015

*Manuscript
Click here to download Manuscript: paper-fsi-postreview.tex Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Introduction

Fluid-structure interaction is a phenomenon frequently encountered in the fields of science

and engineering. Many factors, such as properties of the fluid and structure, extent of

deformations of the structure, and instabilities due to added-mass, influence the development

and applicability of a numerical scheme for simulating FSI problems. In the traditional

arbitrary Lagrangian-Eulerian (ALE) approach with body-fitted meshes, which is extensively

studied and understood (see Chapter 14 in [1] and references therein), the fluid is solved on

a body-fitted mesh which is either adjusted or re-meshed depending upon the extent of the

deformations of the solid, see [29, 53]. However, ALE comes with several disadvantages: a.)

it requires the generation of body-fitted meshes which is a cumbersome task for complicated

geometries, b.) the fluid mesh needs to be updated or re-meshed depending upon the extent

of solid deformations, c.) every re-meshing step involves a data-mapping from old mesh to

the new mesh which is also prone to errors. Hence, the applicability of ALE formulation

is limited by the ease of generating body-fitted meshes and the robustness of re-meshing

algorithms. Moreover, for more demanding fluid-structure interaction applications involving

topological changes, e.g., self-contacts in structural model, simulation of check-valves and

multiple fibres submerged in flow, ALE formulation may fail because of zero-volume elements

when the structural parts are in contact. Extending such numerical schemes for FSI based

on body-fitted meshes to 3D problems where the solid undergoes extreme deformations is

a challenging task, for which it is difficult to ensure the robustness of the scheme. To

overcome these difficulties alternate solution strategies based on fixed Cartesian grids are

being explored.

The immersed or embedded or non-body-fitted or Cartesian grid based methods are

simpler, easy to implement and computationally more efficient than the methods based

on body-fitted meshes for problems where the solids undergo huge deformations and/or

topological changes and multiphase and mixing flows. In these type of methods the fluid is

modelled in an Eulerian frame of reference and the solid is modelled in a Lagrangian frame.

The solid, that may either be fixed or undergoing extreme deformations and/or topological

2
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changes, is immersed into the fluid grid with discretisation that does not need to match

the solid boundaries. The interface conditions at the fluid-solid interface are enforced via

several techniques and it is this technique that distinguishes different immersed methods.

To our knowledge, immersed boundary methods (IBM) introduced and pioneered by Peskin

[46] is the first research work carried out in the direction of non-body-fitted meshes. In [46]

and its variation [39, 41, 49, 52] the kinematic constraint at fluid-solid interface is enforced

using body-force approach. The body-force is computed assuming that the Lagrange points

are connected to artificial springs with high stiffness values. This method restricts the time

steps to small values irrespective of whether the fluid solver is implicit or explicit. Later,

immersed interface method (IIM) was introduced by [35, 36, 38, 44] in which derivatives in

the cells cut the boundary of the immersed solid are modified in order to accommodate the

jumps in velocity and/or pressure. Due to this modification process IIM is applicable only

to FSI problems with bulky solids. Historically, in majority of the research work carried out

with IBM and IIM the fluid problem is solved using finite-difference and finite-volume grids

which lack local refinement capability.

IBM and IIM based on standard finite element meshes are studied in [4, 37]. Zhang and

Gay [64], Yao et al. [61] and Zhang et al. [65] studied immersed finite element methods

for fluid-structure interaction problems. However, the amount of research in such methods

is limited and most of these methods still inherit the disadvantages of Peskin’s immersed

boundary method ([46]). For example, the way the interacting forces are computed and

velocities are interpolated from fluid mesh to solid mesh and vice-versa, restricts the time

steps to very small values.

Höllig [25, 26] used B-Splines for the first time in the context of immersed finite element

methods and developed weighted extended B-Splines (WEB-Splines). Later, this concept

was extended by [50, 51, 55] to FSI problems. Though this method seems to be promising

to simulate FSI problems, it involves a basis function modification algorithm in order to

tackle instabilities due to the presence of small cut-cells. Also, for problems involving thin

structures this approach poses several difficulties in identifying and modifying the basis

functions. To overcome these limitations, the fictitious domain method (FDM) pioneered

3
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by Glowinski [15, 18–23, 43, 45] seems to be an efficient alternative. FDM is another class

of embedded methods where the kinematic constraint at the fluid-solid interface is enforced

using Lagrange multipliers. FDM offers several advantages over the classical IBM ([46]),

IIM ([35]) and WEB-Spline method ([25]). While the kinematic constraint at the fluid-solid

interface is applied weakly in IBM, it is applied strongly in FDM using Lagrange multipliers.

Moreover, the Lagrange multipliers are tractions on the boundary of the immersed body

which can be used directly for FSI problems. Furthermore, in FDM, there is no need to

modify the basis functions of the fluid grid in order to ensure the cut-cell stabilisation as the

fluid is solved everywhere in background fluid grid. So far, in the literature, the fluid grid in

FDM is discretised with the standard Lagrange polynomials — Taylor-Hood or Crouziex-

Raviart family elements [3] — with or without bubble functions [42]. In this work we propose

a fictitious domain formulation for simulating FSI problems based on hierarchical B-Spline

grid. The numerical scheme proposed in this paper can be considered as an extension of

immersogeometric framework described by [33] in the sense that the non-uniform rational

B-splines (NURBS) used in [30] to discretise the background fluid grid are replaced here

with B-Splines to discretise the fluid problem and hierarchical B-Splines to enrich the fluid

grid near immersed bodies. The main motivation behind using hierarchical B-Splines is that

use of local refinement results in significant savings in computational time as already proven

in [5, 56].

This research work is focussed on fluid-structure interaction phenomenon where the struc-

tures are usually thin, for example., heart-valves, filaments, flags, parachutes, pulp fibres.

So, the flexible solid structure is modelled as infinitely thin line using geometrically-exact

beam formulation (see Chapter 17 in [67]).

This paper is organised as follows. In Section 2, we give a brief overview of B-Splines

and their hierarchical refinement. In Section 3 we give a short introduction and advan-

tages of FDM. In Section 4 we describe the formulation for fluid-flexible solid interaction.

In Section 5, the generalised-α time integration schemes are discussed. Section 6 gives a

brief description of geometrically-exact formulation for the beam. Numerical examples are

presented in Section 7. First, we study the conservation properties of the proposed scheme.

4
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Then, we validate the proposed scheme by studying the steady and unsteady flow past a

circular cylinder. Later, we study several benchmark examples using the proposed numerical

scheme and analyse the simulation results obtained. We conclude this paper with Section 8

by drawing conclusions and pointing out directions for further research.

2. Hierarchical B-Splines

In this work we use hierarchical B-Splines for spatial discretisation of the Cartesian grid

for the fluid. We present a brief overview of B-Splines and their hierarchical refinement in

this section. For a detailed discussion on B-Splines the reader is suggested to refer to the

standard books on non-uniform rational B-splines (NURBS) by Piegl and Tiller [47] and

Rogers [48].

2.1. Univariate B-Splines

B-Splines are piecewise-continuous polynomial functions. For a given knot vector Ξ =

{ξ0, . . . , ξn+a+1} and degree of polynomial a, the univariate B-Spline functions are evaluated

by the recurrence relations,

Ni,0(ξ) =





1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

(1)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2)

A B-Spline basis function Ni,a of degree a spans from knot ξi to knot ξi+a+1 as shown in

Fig. 1 and is at least Ca−1 continuous in (ξi, ξi+a+1). Uniform B-Splines are considered

throughout this paper, i.e. ∆ξ = ξi+1 − ξi is constant throughout the domain (when there

is no local refinement).

5
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ξ0 ξ1 ξ2 ξ3 ξ4 ξ5
0.00

0.25

0.50

0.75

1.00
Q1

Q2

Q3

Q4

Figure 1: Univariate B-Spline basis functions.

2.2. B-Splines in higher dimensions

One of the remarkable advantages of B-Splines is the ease with which they can be ex-

tended to higher dimensions. This is done using tensor products. With Nξ, Nη and Nζ

as the univariate B-Spline functions in ξ, η, and ζ parametric directions, respectively, the

multivariate B-Spline basis functions in two- and three-dimensions are given as,

N(ξ, η) = Nξ ⊗Nη in 2D (3)

N(ξ, η, ζ) = Nξ ⊗Nη ⊗Nζ in 3D (4)

The support of a 2D B-Spline basis function that is of equal polynomial order in both

parametric directions is illustrated in Fig. 2.

Constant

Linear

Quadratic

Cubic

ξ

η

Figure 2: Support of a equal-order B-Spline basis function in 2D.
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2.3. B-Spline subdivision and their two-scale relation

The most important property of the B-Spline functions in the context of the present work

is their subdivision property which is also known widely as two-scale relation. According

to this remarkable property, a single B-Spline function can be written as a sum of scaled

and translated copies of itself. For a general B-Spline function Na, the two-scale relation is

written as,

Na(ξ) =

a+1∑

i=0

αiNa(2ξ − i) (5)

where, αi are functions of Binomial coefficients, given as,

αi =
1

2a


a + 1

i


 (6)

In the context of hierarchical refinement, this property can be restated as: a B-Spline func-

tion on a knot vector with knot span ∆ξ can be evaluated as a linear combination of B-Spline

functions defined on a knot vector with knot span ∆ξ/2. That is, B-Spline basis functions

Nk(ξ) at level k can be written as a linear combination of B-Spline basis functions Nk+1(ξ)

at level k+1. Mathematically,

Nk(ξ) = S Nk+1(ξ) (7)

where, S is the subdivision matrix which contains the coefficients α from Eq. (5). The two-

scale relation is schematically illustrated in Fig. 3 for linear, quadratic, cubic and quartic

B-Splines. This property of B-Spline functions is utilised to evaluate the B-Spline functions

at coarse levels from those at refined levels, when performing numerical integration and

post-processing.

7
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0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Original

Refined

(a) Linear (Q1)

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Original

Refined

(b) Quadratic (Q2)

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Original

Refined

(c) Cubic (Q3)

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Original

Refined

(d) Quartic (Q4)

Figure 3: Two-scale relation of the B-Spline functions.

2.4. Hierarchical refinement

The main motivation behind using hierarchical refinement is to improve the computa-

tional efficiency. This is achieved by locally refining the B-Spline grid near the immersed

bodies thereby reducing the total number of DOF. The computational advantages of hierar-

chical refinement have already been demonstrated in [5, 56]. The hierarchical refinement of

B-Splines is a difficult task involving complex algorithms, see [5, 56]. However, it can be im-

plemented quite elegantly and robustly using trees, widely used data structures in computer

science [10, 54], and the concepts of templates in the programming language C++ [58]. In

this work we have adopted the same approach as described by Schillinger et al. [56] and

suggest the reader to refer the same for the detailed description of the algorithms involved

in hierarchical refinement of B-Splines.

The amount of time required to produce the local refinement is negligible when com-

pared to the total computational time of the whole simulation. Moreover, in all of these

examples presented in this paper the local refinement is performed only once and is kept

constant throughout the simulation, which makes the time cost of local refinement even

more insignificant.

8
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3. Fictitious domain method

The fictitious domain methods (FDM) are a class of domain embedding methods used for

numerical solutions of partial differential equations. These methods have been extensively

studied in Glowinski [15, 18–23, 43, 45] for particle flows and other fluid-structure interaction

phenomena. In FDM, the fluid domain is extended into the interior of the solid domain and

the fluid equations are solved throughout the entire Cartesian grid. As illustrated in Fig.

4, a solid body Ωb, with its boundary Γb that may or may not change in time, is placed

over the top of a fluid domain Ωf . As a result, the fluid mesh does not have to match

at the fluid-solid interface and hence, a Cartesian grid can be used for the fluid domain.

The fluid is modelled using Eulerian approach and the solid is represented with Lagrangian

description. The kinematic constraint at the interface between fluid and the solid is enforced

via Lagrange multipliers.

The advantages of FDM over their body-fitted counterparts can be summarized as:

• there is no need for complicated and time-consuming body-fitted meshes. So, the

discretisation is easy and can be parallelised effectively.

• as there is no body-fitted mesh, complicated unstructured re-meshing, due to excessive

displacements and distortions of the solid, is totally avoided.

• the numerical scheme is free of data-mapping errors that is otherwise present in body-

fitted ALE schemes where re-meshing is required.

• properties of structured grids can be exploited in developing efficient parallel solvers,

for example parallel multigrid preconditioners, when compared with unstructured

grids.

• FSI problems with topological changes and mixing and multiphase flows can be sim-

ulated efficiently.

9
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Ωf

Γb

ΓfΩb

Figure 4: Fictitious domain method - schematic description.

4. Formulation

4.1. Governing equations

4.1.1. Governing equations for the fluid

For an incompressible viscous fluid the initial-boundary value problem is stated as:

Given gf : Ωf → R3; v̄f : Γf
D → R3; and t̄f : Γf

N → R3, find velocity, vf : Ω → R3; and

pressure, p : Ω → R, such that:

ρf ∂vf

∂t
+ ρf (vf · ∇)vf − µf∆vf +∇p = gf in Ωf (8a)

∇ · vf = 0 in Ωf (8b)

vf = v̄f on Γf
D (8c)

tf = σf · nf = t̄f in Γf
N (8d)

vf(·, 0) = vf
0 in Ωf (8e)

where, ρf is the density of the fluid, µf is the dynamic viscosity of the fluid, gf is the body

force, nf is the unit outward normal on the boundary, Γf , of Ωf and the pseudo-stress σf

is given by,

σf = µ∇vf − p I (9)

10
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Γf
D is the part of the boundary of the domain Ωf where Dirichlet boundary condition v̄f is

applied and Γf
N is the part of the boundary of the domain Ωf where Neumann boundary

condition t̄f is applied. Here, Γf = Γf
D∪Γf

N and Γf
D∩Γf

N = ∅, while vf
0 is the initial velocity

of the fluid in the domain Ωf .

4.1.2. Governing equations for the solid

The initial-boundary value problem of elasticity, in the current configuration, is stated

as:

Given gs : Ω → R3; d̄s : ΓD → R3; and t̄s : ΓN → R3, find displacement ds : Ω → R3, such

that:

ρs ∂
2ds

∂t2
+∇ · σs = gs in Ωs (10a)

ds = d̄s on Γs
D (10b)

ts = σs · ns = t̄s in Γs
N (10c)

ds(·, 0) = ds
0 in Ωs (10d)

ḋs(·, 0) = ḋs
0 in Ωs (10e)

where, ρs is the density of the solid, gs is the body force on the solid and σs is the Cauchy’s

stress, ns is the unit outward normal on the boundary, Γs, of Ωs, Γs
D is the part of the

boundary of the domain Ωs where Dirichlet boundary condition d̄s is applied and Γs
N is the

part of the boundary of the domain Ωs where Neumann boundary condition t̄s is applied.

Here, Γs = Γs
D ∪ Γs

N and Γs
D ∩ Γs

N = ∅, while ds
0 and ḋs

0 are the initial displacement and

initial velocity of the solid, respectively.

4.1.3. Governing equations at the interface

Two conditions have to be satisfied at the fluid-structure interface, denoted as Γf−s.

The first one is the no-slip condition, which enforces that the fluid at interface between fluid

and solid moves at the same velocity as the boundary of the solid. The second condition

enforces the equilibrium of stresses along the interface. Mathematically, these two conditions
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are written as,

vf = vs on Γf−s (11)

tf + ts = 0 on Γf−s (12)

where, tf and ts are the tractions exerted by the fluid and solid, respectively, on the interface.

4.2. Weak formulation

Variational equations for FSI can now be written as: Find the fluid velocity vf ∈ Svf

and pressure p ∈ Sp, the structural velocities vs ∈ Svs and the Lagrange multiplier λ ∈ Sλ

such that for all weighting functions wf ∈ Vvf , q ∈ Vp, ws ∈ Vvs and ϕ ∈ Vλ

Bf({wf , q}, {vf , p})− F f({wf , q}) +

∫

Γ

wf · λ dΓ = 0 (13)

Bs(ws,vs)− F s(ws)−
∫

Γ

ws · λ dΓ = 0 (14)
∫

Γ

ϕ · (vf − vs) dΓ = 0 (15)

where,

Bf({w, q}, {v, p}) =

∫

Ωf

w · ρf

(
∂v

∂t
+ v · ∇v

)
dΩf

+

∫

Ωf

ε(w) : σf(v, p) dΩf +

∫

Ωf

q∇ · v dΩf (16)

F f({w, q}) =

∫

Ωf

w · gf dΩf +

∫

Γf
N

w · t̄f dΓf
N (17)

Bs(w,v) =

∫

Ωs

w · ρs ∂v

∂t
|X dΩs +

∫

Ωs

ε(w) : σs(v) dΩs (18)

F s(w) =

∫

Ωs

w · gs dΩs +

∫

Γs
N

w · t̄s dΓs
N (19)

The variational formulations given by Eqs. (13) and (14) give the following Euler-

Lagrange conditions on the fluid-structure interface Γf−s:

λ = −σfnf = σsns (20)

12
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with,

nf = −ns (21)

5. Integration in time

In order to complete the discretisation of the weak forms a numerical time integration

scheme has to be chosen. In the present work we use the generalised-α method for both the

fluid and solid domains. The generalised-α scheme is first introduced by Chung and Hulbert

[9] for second-order differential equations arising in structural dynamics. This scheme was

later applied to incompressible Navier-Stokes by Jansen et al. [28]. The scheme has been

proven to be unconditionally stable and second-order accurate for linear problems, see [9,

12, 28]. Also, this scheme allows the user to control the high-frequency damping using a

single parameter, called as spectral radius and denoted usually by ρ∞.

The total time-interval of interest [0, T ] is subdivided into time instants 0 = t0 < t1 <

t2 < . . . tN = T with time step size ∆t = tn+1 − tn.

5.1. Generalised-α method for the solid

With ds
n, vs

n and as
n as the displacement, velocity and acceleration of a solid point at

time instant tn, the basic system of equations for the generalised-α method for the solid is

given as,

ds
n+1 = ds

n + ∆tvs
n + ∆t2

(
(
1

2
− βs)as

n + βsas
n+1

)
(22)

vs
n+1 = vs

n + ∆t
(
(1− γ)as

n + γas
n+1

)
(23)

ds
n+αs

f
= (1− αs

f)ds
n + αs

f ds
n+1 (24)

vs
n+αs

f
= (1− αs

f)vs
n + αs

f vs
n+1 (25)

as
n+αs

m
= (1− αs

m) as
n + αs

m as
n+1 (26)

13
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In this work, we choose velocity as the primary variable for the solid domain. So, Eqs. (22)

and (23) are rearranged as,

ds
n+1 = ds

n +
∆t(γs − βs)

γ
vs

n +
∆t2(γs − 2βs)

2γs
as

n +
∆tβs

γs
vs

n+1 (27)

as
n+1 =

γs − 1

γs
as

n +
1

γs∆t
(vs

n+1 − vs
n) (28)

Once the velocity vs
n+1 at time tn+1 is obtained the displacement ds

n+1 and acceleration as
n+1

can be computed from Eqs. (27) and (28), respectively.

Chung and Hulbert [9] have shown that this method is unconditionally stable and second-

order accurate for the combination of parameters,

αs
m =

2− ρs
∞

ρs
∞ + 1

, αs
f =

1

1 + ρs
∞

(29)

γs =
1

2
+ αs

m − αs
f , βs =

1

4
(1 + αs

m − αs
f )

2 (30)

The amount of high-frequency dissipation can controlled by choosing spectral radius ρs
∞ ∈

[0, 1].

5.2. Generalised-α method for the fluid

Similarly, with vf
n and af

n as velocity and acceleration of a fluid at time instant tn, the

basic system of equations for the generalised-α method for the fluid is given as,

vf
n+1 = vf

n + ∆t
(
(1− γf)af

n + γfaf
n+1

)
(31)

vf

n+αf
f

= (1− αf
f )vf

n + αf
f vf

n+1 (32)

af

n+αf
m

= (1− αf
m)vf

n + αf
m af

n+1 (33)

By choosing fluid velocity vf as the primary variable Eq. (31) can be rearranged as,

af
n+1 =

1

γf∆t
(vf

n+1 − vf
n) +

γf − 1

γf
af

n (34)

Once the velocity vf
n+1 at time tn+1 is obtained the acceleration af

n+1 can be computed from

Eq. (34). In order to achieve the second-order accuracy the combination of parameters is,

αf
m =

1

2

3− ρf
∞

1 + ρf
∞

, αf
f =

1

1 + ρf
∞

, γf =
1

2
+ αf

m − αf
f (35)

14
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Similar to the time discretisation for solids, the numerical damping can be controlled by

choosing the spectral radius ρf
∞ ∈ [0, 1].

5.3. Interpolation in time at the interface

During the overall time-stepping algorithm the Lagrange multipliers λ have to be eval-

uated at the time instants tn+αs
f

and tn+αf
f
. Using the same parameters as in generalised-α

methods for the fluid and the solid, we can write,

λn+αf
f

= (1− αf
f ) λn + αf

f λn+1 (36)

λn+αs
f

= (1− αs
f ) λn + αs

f λn+1 (37)

In order to avoid mapping of data from tn+αs
f

to tn+αf
f

and vice-versa we choose same value

of spectral radius for both the fluid and the solid domains. This renders,

αs
f = αf

f (38)

tn+αs
f

= tn+αf
f

(39)

λn+αs
f

= λn+αf
f

(40)

With this choice, all the computations can be performed at one time instant tn+αs
f

= tn+αf
f
.

For situations when time instants tn+αs
f

and tn+αf
f

are different, the forces at the interface

have to be interpolated consistently. Failing to do so will result in instabilities and loss of

accuracy of the overall FSI scheme. For detailed discussion on this topic we refer the reader

to Joosten et al. [30, 31].

5.4. Discretisation

By taking the approximations for the solution variables and their corresponding test

functions as,

vf = Nvf
v̄f , wf = Nwf

w̄f (41)

p = Npp̄f , q = Nqq̄f (42)

vs = Nvs v̄s, ws = Nwsw̄s (43)

λ = Nλλ̄, φ = Nφφ̄ (44)

15
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and using the Newton-Raphson scheme to solve the non-linear system of equations resulting

from the weak-formulation, we obtain a matrix system of the form,




Kvf vf Kvf p Kvf λ 0

Kpvf 0 0 0

Kλvf 0 0 Kλvs

0 0 Kvsλ Kvsvs








dv̄f

dp̄

dλ̄

dv̄s





= −





Rvf

Rp

Rλ

Rvs





(45)

where, Nvf
, Np, Nλ and Nvs are the basis functions for the fluid velocity, fluid pressure,

Lagrange multipliers and solid velocity, respectively. Here, Nwf
, Nq, Nφ and Nws are the

corresponding test functions for the fluid velocity, fluid pressure, Lagrange multipliers and

solid velocity, respectively. In this work Nvf
, Nwf

, Np and Nq are B-Splines; Nλ and Nφ

are Dirac delta functions; and Nvs and Nws are linear Lagrange polynomials.

6. Geometrically exact formulation for the beam

In this work we model the solid as an infinitely thin line formulated with geometrically-

exact beam described in Zienkiewicz and Taylor [67]. This formulation takes into account

large displacements and finite rotations but assumes that the resulting strains are small.

Assuming that the beam is aligned with the X-axis and deforms in X-Y plane, the deformed

position from Fig. 5 can be written as,

x = X + u + Y sinβ

y = v + Y cosβ
(46)

where, u and v are the X- and Y-displacements and β is the angle between the normal to

the beam cross-section and X-axis.
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X,x

Y,y

u

v

β

Figure 5: Beam formulation - original and deformed configurations.

For the displacements in Eq. 46, the deformation gradient becomes,

F =




1 + ∂u
∂X

+ Y cosβ ∂β
∂X

sinβ 0

∂w
∂X

− Y sinβ ∂β
∂X

cosβ 0

0 0 1




(47)

Using the deformation gradient in Eq. 47, the two non-zero components of the Green-

Lagrange strain tensor (E = 1
2
(FTF− I)), ignoring the quadratic terms in Y, are,

EXX =
∂u

∂X
+

1

2

((
∂u

∂X

)2

+

(
∂w

∂X

)2
)

+ Y
∂β

∂X

(
cosβ

(
1 +

∂u

∂X

)
− sinβ

∂w

∂X

)
(48)

EXY =
1

2

(
sinβ

(
1 +

∂u

∂X

)
+ cosβ

∂w

∂X

)
(49)

Finite element formulation for the beam can be developed using variational statements

based on the Green-Lagrange tensor and the second Piola-Kirchhoff stress. For the detailed

description of the formulation the reader is suggested to refer to Chapter 17 in [67].

7. Numerical examples

It is an established fact that the mixed Galerkin formulation for incompressible Navier-

Stokes with equal-order interpolation for velocity and pressure violates LBB condition and

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

needs to be stabilised in order to obtain numerical solutions that are free from spurious

oscillations. However, our experience shows that the use of pressure stabilisation along

with Lagrange multipliers to enforce the kinematic constraint along the immersed boundary

affects the conservation of mass and hence leads to erroneous results. Hence, we first address

the issue of conservation using an example of steady flow over a fixed cylinder placed inside

a narrow channel. Then, we validate our numerical scheme by studying the flow over a fixed

circular cylinder at Reynolds numbers 20, 40, 100 and 200 and compare the drag coefficient

(CD), lift coefficient CL and Strouhal number St with the reference values. Finally, several

fluid-structure interaction benchmark tests are presented.

In this work, the direct solver PARDISO [2] is used to solve the global matrix system in

Eq. 45. For all the problems involving unsteady flow, a spectral radius value of ρ∞ = 0.8

(same value for both fluid and solid for FSI examples) is used .

7.1. Conservation test

In this example we demonstrate the conservation properties of the proposed numerical

scheme by studying flow over a cylinder in a narrow channel. This example was studied

in [8] to investigate and improve the conservation properties of least-squares finite element

formulation. The geometry of the problem is as shown in Fig. 6. The density and viscosity

of the fluid are ρf = 1.0 and µf = 0.1, respectively. The boundary conditions are: (vx, vy) =

(1.0, 0.0) on the entire outer boundary and (vx, vy) = (0, 0) on the surface of the cylinder.

The boundary of the cylinder is discretised with 200 equally spaced points. Simulations

are performed on an uniform mesh of 300 × 100 elements, shown in Fig. 7, with linear

(Q1), quadratic (Q2) and cubic (Q3) B-Splines. Two sets of simulations are performed, one

without any pressure stabilisation and the other with PSPG stabilisation [57], in order to

assess the conservation.

The contour plots of pressure presented in Fig. 8 show that equal-order B-Splines for

velocity and pressure, without any pressure stabilisation, results in spurious oscillations in

the pressure field for linear and cubic B-Splines. In contrast, for quadratic B-Splines the

pressure field is smooth. Use of of pressure stabilisation alleviates this problem and results

18
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in smooth pressure field, as expected.

However, the contour plots of X-velocity shown in Fig. 9 indicate that pressure stabili-

sation significantly affects the amount of flow though the openings BC and DE (see Fig. 6)

and reduces the peak velocity of flow across the openings. The reduction in flow through

the openings is balanced by the significant spurious flow inside the cylinder, and this can be

confirmed from the profiles of X-velocity along the vertical line AC (in Fig. 6) illustrated in

Fig. 10. In order to assess the accuracy, volumetric flow rates across the opening BC in Fig.

6 are computed and compared with the theoretical value. Computed flow rates, tabulated in

Table 1, clearly indicate that pressure stabilisation used along with Lagrange multipliers to

enforce kinematic constraints significantly affects mass conservation. The same behaviour

has also been observed in [33], wherein the stabilisation parameter is scaled-down in the

vicinity of the immersed bodies by using an ad hoc parameter. This scaling parameter and

also the extent of the fluid domain in the vicinity of immersed bodies in which the stabilisa-

tion parameter has to be lowered needs to be chosen carefully so that the results obtained

are accurate. Because of these difficulties associated with the scaling of the stabilisation

parameter and also because the pressure field obtained with equal-order quadratic B-Splines

is smooth enough (Fig. 8(c)) we decide to use equal-order B-Splines without any pressure

stabilisation for all the examples presented in this paper. Even though this combination

of velocity-pressure is inf-sup unstable the numerical results obtained match well with the

reference values in all the examples that have been attempted..
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b 1.0
(0,0)

(-1.5,-0.75)

(3.0,0.75)

A

B
C

D
E

Figure 6: Conservation test: geometry of the problem.

Figure 7: Conservation test: mesh used for the simulations.
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-52.959

0.000

52.959

-102.112

109.725
pres

(a) Q1 without stabilisation

0.000

7.289

-10.654

18.504
pres

(b) Q1 with stabilisation

0.000

9.390

-13.795

23.766
pres

(c) Q2 without stabilisation

0.000

7.981

-11.914

20.011
pres

(d) Q2 with stabilisation

0.000

9.890

-14.977

24.582
pres

(e) Q3 without stabilisation

0.000

8.781

-13.008

22.116
pres

(f) Q3 with stabilisation

Figure 8: Conservation test: contour plots of pressure without and with PSPG stabilisation for linear (Q1),

quadratic (Q2) and cubic (Q3) B-Splines.
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1.110

2.219

3.329

-0.235

4.204
vel X

(a) Q1 without stabilisation

0.941

1.882

2.822

-0.195

3.568
vel X

(b) Q1 with stabilisation

1.094

2.188

3.283

-0.178

4.199
vel X

(c) Q2 without stabilisation

1.025

2.049

3.074

-0.156

3.942
vel X

(d) Q2 with stabilisation

1.087

2.174

3.261

-0.148

4.200
vel X

(e) Q3 without stabilisation

1.054

2.108

3.162

-0.146

4.071
vel X

(f) Q3 with stabilisation

Figure 9: Conservation test: contour plots of X-velocity without and with PSPG stabilisation for linear

(Q1), quadratic (Q2) and cubic (Q3) B-Splines.
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−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
X velocity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Y 
co

or
di
na

te

Q1 -noStab
Q2 -noStab
Q3 -noStab
Q1 -Stab
Q2 -Stab
Q3 -Stab

Figure 10: Conservation test: X-velocity profiles along the vertical line AC in Fig. 6, without (Qa-noStab)

and with PSPG stabilisation (Qa-Stab) for linear (Q1), quadratic (Q2) and cubic (Q3) B-Splines.

B-Spline

degree

with stabilisation without stabilisation

flow rate % error flow rate % error

Q1 0.6326 15.65 0.745 0.67

Q2 0.6983 6.89 0.746 0.53

Q3 0.7222 3.71 0.746 0.53

Table 1: Conservation test: comparison of flow rates across BC. Due to symmetric nature of the problem

the theoretical value of flow rate across BC is 0.75.
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7.2. Flow past a fixed cylinder

The geometry and boundary conditions of the problem are as shown in Fig. 11(a). The

fluid domain is refined with hierarchical B-Splines around the cylinder as shown in Figs.

11(b) and 11(c). First, this problem is studied with steady Navier-Stokes for Re = 20 and

Re = 40 with different levels of hierarchical refinements in order to check the convergence

with respect to spatial discretisation. The computed values of CD, presented in Table. 2

along with the reference values, indicate that the accuracy improves with the refinement.

The table also contains the information about the number of points used to represent the

boundary of the cylinder (NBP) and total degree of freedom (DOF) in each model. Contour

plots of pressure, vorticity and streamlines obtained with Level-4 mesh for Re = 20 and

Re = 40 are shown in Fig. 12. Vector plots of Lagrange multipliers obtained with Level-1

to Level-4 meshes are shown in Fig. 13. The plots indicate that the the multiplier field

becomes smooth with refinement. We believe that this effect is direct manifestation of the

inf-sup stability of velocity-multiplier field.

Later, we studied the flow for Re = 100 and Re = 200 to check the accuracy of results for

unsteady flows. These studies are performed on Level-3 and Level-4 meshes, with ∆t = 0.1

and ∆t = 0.05 for each mesh, and the results are tabulated in Table. 3. Figs. 14 and 15

show the evolution of CD and CL, for Re = 100 and Re = 200, respectively. Evolution

of CL for Re = 100 and Re = 200 with Level-4 mesh with ∆t = 0.1 and ∆t = 0.05 is

shown in Fig. 16. Snapshots of pressure and streamlines at two different time instants for

Re = 100 with Level-3 mesh with ∆t = 0.1 are presented in Fig.17. These results obtained

with the proposed numerical scheme are well within range of those observed in the literature.

We believe that the accuracy can be improved further by extending the zone of refinement

around the cylinder and also using smaller time steps. However, we would like to emphasize

that such extensive studies are not the main focus of this paper.
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t x
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Figure 11: Flow past a fixed circular cylinder: a.) geometry and boundary conditions, b.) B-Spline mesh

and c.) hierarchical refinement near the cylinder.

NBP DOF CD for Re = 20 CD for Re = 40

Calhoun [7] - - 2.19 1.62

Russell and Wang [52] - - 2.13 1.60

Linnick and Fasel [39] - - 2.06 1.61

Present (Level-0) 10 20687 2.09 1.40

Present (Level-1) 20 21403 2.21 1.68

Present (Level-2) 40 22559 2.18 1.63

Present (Level-3) 80 25051 2.15 1.61

Present (Level-4) 160 29855 2.15 1.60

Table 2: Flow past a fixed circular cylinder: drag coefficient (CD) for Re = 20 and Re = 40 with different

levels of hierarchical refinement.
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Figure 12: Flow past a fixed circular cylinder: contour plots. top: Re = 20. bottom: Re = 40. left:

pressure, center: vorticity, right: streamlines.
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Figure 13: Flow past a fixed circular cylinder: vector plots of Lagrange multipliers for Re = 20 (top row)

and Re = 40 (bottom row) with Level-1, Level-2, Level-3 and Level-4 meshes. Scaling factors of 2, 4, 8

and 16 are used for plotting the multipliers obtained with Level-1, Level-2, Level-3 and Level-4 meshes,

respectively.
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Data
Re = 100 Re = 200

CD CL St CD CL St

Braza et al. [6] 1.36 ±0.250 - 1.40 ±0.750 -

Liu et al. [40] 1.35 ±0.339 0.165 1.31 ±0.690 0.192

Calhoun [7] 1.33 ±0.298 0.175 1.17 ±0.668 0.202

Russell and Wang [52] 1.38 ±0.300 0.169 1.29 ±0.500 0.195

Le et al. [34] 1.37 ±0.323 0.160 1.34 ±0.430 0.187

Kamensky et al. [33] 1.39 ±0.341 0.170 1.38 ±0.706 0.200

Present (Level-3 ∆t = 0.1) 1.42 ±0.360 0.173 1.51 ±0.789 0.203

Present (Level-3 ∆t = 0.05) 1.42 ±0.362 0.171 1.51 ±0.788 0.196

Present (Level-4 ∆t = 0.1) 1.39 ±0.339 0.165 1.42 ±0.711 0.200

Present (Level-4 ∆t = 0.05) 1.39 ±0.339 0.166 1.42 ±0.711 0.194

Table 3: Flow past a fixed circular cylinder: CD, CL and St for Re = 100 and Re = 200.

0 20 40 60 80 100 120 140
Time

1.1

1.2

1.3

1.4

1.5

1.6

C
D

Level-3
Level-4

(a) Drag coefficient (CD)
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(b) Lift coefficient (CL)

Figure 14: Flow past a fixed circular cylinder: evolution of CD and CL for Re = 100 with Level-3 and

Level-4 meshes with ∆t = 0.1.
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(b) Drag coefficient (CL)

Figure 15: Flow past a fixed circular cylinder: evolution of CD and CL for Re = 200 with Level-3 and

Level-4 meshes with ∆t = 0.1.
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Figure 16: Flow past a fixed circular cylinder: evolution of CL for Re = 100 and Re = 200 with Level-4

mesh for different time steps.
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Figure 17: Flow past a fixed circular cylinder: contour plots of pressure (left) and streamlines (right) at two

different time instants for Re = 100 with Level-3 mesh with ∆t = 0.1.

7.3. Two flapping leaves

This problem, introduced by [17] and studied by [24, 33, 60], is an idealised two-

dimensional model of mitral valve. The geometry and boundary conditions of the problem

are as shown in Fig. 18. The problem consists of two leaf valves of equal length fixed to the

boundaries of a 2D channel. These valves are subjected to sinusoidally varying horizontal

velocity profile on the inlet, given by,

vin = 5 y(1.61− y) (1.1 + sin(2πt)) (50)

No-slip boundary conditions are applied on the top and bottom sides of the channel and the

outlet is chosen to be traction-free. The material properties of the fluid and the solid are

same as those proposed in [17]. Density and viscosity of the fluid are ρf = 100 and µf = 10,

respectively. The thickness of the valve is h = 0.0212. Young’s modulus of the valve is

E = 5× 107 and Poisson’s ratio is ν = 0.4.

In this work, this problem is studied with three different levels of hierarchical B-Spline

refinement to assess the convergence with respect to spatial discretisation. The portion of

the fluid grid where the leaves undergo deformation is refined with hierarchical B-Splines

as shown in Fig. 19. Each leaf in Level-k mesh is modelled with 10 × 2k beam elements.

In order to assess temporal convergence of the presented numerical scheme, each of the
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discretisations is studied with two different time-steps. Figs. 20 and 21 show the X- and Y-

displacement of free end of a leaf for Level-0 and Level-2 meshes obtained with ∆t = 0.01 and

∆t = 0.005. These graphs indicate that there is negligible difference between the numerical

results obtained with the two different time steps. Fig. 22 shows the evolution of X- and

Y-displacement of the leaf tip for all the four meshes with ∆t = 0.005. Clearly, the solution

converges as the mesh is refined. Contour plots of X-velocity, pressure and vorticity at time

instant t = 0.5 are presented, respectively, in Figs. 23, 24, and 25. These plots also show that

the solution improves as the mesh is refined. Moreover, the important thing to notice from

those plots is that the pressure obtained is sufficiently smooth, except near the immersed

boundaries, and the oscillations in pressure disappear with mesh refinement. Eventhough

the velocity-pressure combination is inf-sup unstable the overall quality of pressure obtained

in this work is superior to that reported in [33].
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Figure 18: Two flapping leaves: geometry and boundary conditions.
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(a) Level-0 mesh. 10 beam elements for each leaf. (7598).

(b) Level-1 mesh. (10626) (c) Level-2 mesh. (21014) (d) Level-3 mesh. (59988)

Figure 19: Two flapping leaves: hierarchical refinements used for the analysis. The numbers in the brackets

indicate total DOFs in the model.
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Figure 20: Two flapping leaves: tip displacements for Level-0 mesh with different time steps.
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Figure 21: Two flapping leaves: tip displacements for Level-2 mesh with different time steps.
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Figure 22: Two flapping leaves: tip displacements with different levels of hierarchical refinement with

∆t = 0.005.
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(a) Level-0 (b) Level-1 (c) Level-2 (d) Level-3

Figure 23: Two flapping leaves: X-velocity contour plots at t = 0.5 with ∆t = 0.005.

(a) Level-0 (b) Level-1 (c) Level-2 (d) Level-3

Figure 24: Two flapping leaves: pressure contour plots at t = 0.5 with ∆t = 0.005.

(a) Level-0 (b) Level-1 (c) Level-2 (d) Level-3

Figure 25: Two flapping leaves: vorticity contour plots at t = 0.5 with ∆t = 0.005.

7.4. Vortex-induced vibrations of a flexible beam

This problem was introduced by [59] and is used as a benchmark to demonstrate the

accuracy of a numerical scheme for fluid-flexible body interaction. This problem has been

studied by [11, 13, 14, 27, 33] using various numerical schemes. The geometry and boundary

conditions of the problem are as shown in Fig. 26. All the dimensions shown in the geometry

description are in centimetres. Fluid density and viscosity are ρf = 1.18 × 10−3 g/cm3 and
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µf = 1.82× 10−4 g/cm s, respectively. The density of the beam material is ρs = 0.1 g/cm3,

its Young’s modulus is E = 2.5 × 106 g/cm s2 and Poisson’s ratio is ν = 0.35. The inflow

velocity in X-direction is vin = 51.3 cm/s. For these properties and based on side of the

square (D = 1.0 cm) Reynolds number is Re = ρfDvin/µf ≈ 333. The beam, which is

attached behind a fixed square body, starts to oscillate due to vortices shed by the corners

of the square body.
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Figure 26: Vortex-induced vibrations of a flexible beam: geometry and boundary conditions.

Figure 27: Vortex-induced vibrations of a flexible beam: hierarchical B-Spline mesh with three levels of

refinement. DOFs for Level-2 = 15966+160+123 = 16249. DOFs for Level-3 = 47514+320+243 = 48077.
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In this paper, we present numerical results obtained with two and three levels of hierar-

chical refinement. The hierarchically refined B-Spline mesh is shown in Fig. 27. For Level-2

mesh the square is represented by 40 points along its boundary and the beam is modelled

with 40 linear geometrically exact beam elements. These quantities are doubled for the

Level-3 mesh. This discretisation corresponds to approximately one point for each B-Spline

element. Time increments of ∆t = 0.005 and ∆t = 0.004, respectively, are used for the

Level-2 and Level-3 meshes. Evolution of Y-displacement of the beam-tip with respect to

time is presented in Fig. 28 and the maximum tip displacement and frequency of oscillations

are compared with the values from literature in Table. 4. The results obtained with the

present scheme match well the values from literature. Fig. 29 shows the contour plots of

magnitude of velocity, pressure and vorticity at two time instants for the Level-3 mesh.
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Figure 28: Vortex-induced vibrations of a flexible beam: evolution of vertical displacement of beam tip with

respect to time.
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Author Max tip-displacement Frequency (Hz)

Wall [59] 1.12 - 1.32 2.78 - 3.22

Dettmer and Perić [11] 1.1 - 1.4 2.96 - 3.31

Present (Level-2 mesh) 1.27 3.41

Present (Level-3 mesh) 1.26 3.22

Table 4: Vortex-induced vibrations of a flexible beam: maximum vertical displacement of the beam-tip and

frequency of oscillations obtained with Level-2 and Level-3 meshes.

30.00

60.00

0.00

83.92
vel Magn

-2.00

0.00

-3.45

1.94
pres

-200.00

0.00

200.00

-300.00

300.00
vortz

25.00

50.00

75.00

0.03

88.36
vel Magn

-2.00

0.00

-3.32

2.27
pres

-200.00

0.00

200.00

-300.00

300.00
vortz

Figure 29: Vortex-induced vibrations of a flexible beam: contour plots of velocity-magnitude, pressure and

vorticity at two different time instants for Level-3 mesh.

7.5. Single leaf in cross-flow

This problem is similar to that of heart-valve example but involves only one flexible leaf.

This example is chosen to demonstrate the robustness of the proposed method to simulate

the motion of flexible leaf undergoing extreme deformations. This problem was introduced

by Baaijens [3] and was also studied by Yu [62]. While [3, 62] modelled the leaf using

solid elements we model it using 1D beam elements. Unlike in Baaijens [3] we model the

dynamics of the beam. The geometry and boundary conditions are as depicted in Fig. 30.

The leaf is attached to the bottom wall of the channel where no-slip boundary condition

is applied. The density and viscosity of the fluid and solid are: ρf = 100.0, µf = 1.0,

36



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ρs = 100.0 and µs = 1.0×105. The thickness of the leaf is 0.0212. A pulsating velocity field,

vin = 1.5y(2− y)sin(2πt/10), is applied at the inlet.

Background fluid grid with 81×11 mesh at level-0 is enriched with three levels of hierar-

chical refinement as shown in Fig. 31. The leaf is modelled with 80 beam elements. A time

increment of ∆t = 0.02 is used in order to resolve the motion of the leaf accurately in time.

The oscillatory motion of the leaf is tracked and time histories of X- and Y-displacements

of the free end of the leaf are presented in Fig. 32. These graphs show that the symmetry

of oscillatory motion of the leaf on either side of vertical center is captured quite accurately.

Contour plots of velocity magnitude and pressure at four time instants during one cycle

of the oscillatory motion of the leaf, along with its deformed configurations, are presented

in Figs. 33 and 34, respectively. Baaijens [3] observed that use of Taylor-Hood family of

elements produced unsatisfactory results when the kinematic constraint is enforced with La-

grange multipliers and argued that a discontinuous interpolation of the pressure appears to

be mandatory. Therefore, the Crouzeix-Raviart family elements are used in [3]. We believe

that when Taylor-Hood family (bi-quadratic interpolation for velocity and linear continu-

ous interpolation pressure) is used, the pressure space within an element is not sufficient

to accommodate the pressure-jumps across the immersed boundaries and hence it yields

unsatisfactory velocity fields. Where as, the use of same basis for velocity and pressure (Q2

B-Splines) in the present work allows pressure-jumps even within an element and does not

pollute the velocity field.
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Figure 30: Single-leaf in cross-flow: geometry and boundary conditions.

Figure 31: Single-leaf in cross-flow: hierarchical B-Spline mesh. DOF = 60765 + 162 + 243 = 61170.
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Figure 32: Single-leaf in cross-flow: X- and Y-displacement of the free end of the leaf.
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Figure 33: Single-leaf in cross-flow: contour plots of velocity magnitude.
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Figure 34: Single-leaf in cross-flow: contour plots of pressure.

7.6. Self-sustained oscillations of a flexible filament

The geometry and boundary conditions of the problem are as depicted in Fig. 35. This

problem serves to model the phenomenon of flag-flapping, to understand the locomotion of

aquatic animals and micro-organisms, and also study of motion of filament in a soap-film.

This example has been studied in [16, 62, 63, 66]. In the present work we do not consider

the air-resistance of the fluid and acceleration due to gravity. We would also like to point
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out that the task of adding these terms to the present scheme is trivial.

Depending upon the parameters chosen the filament can either settle in a stretched-

straight state or sustained oscillating state. A three-level hierarchical B-Spline mesh as

shown in Fig. 36 is used for the purpose of analysis. The filament is modelled with 100

geometrically-exact beam elements. One end of the beam, denoted as A in Fig. 35, is

fixed. The perturbation is introduced into the system by placing the filament at an angle

arctan(δ0) to the horizontal direction, at time t = 0.

In this example we assess the oscillatory behaviour of the filament under different param-

eter combinations, same as in [62]. The fixed parameters are: fluid density, ρf = 1.0, length

of the filament L = 1.0 and thickness of the filament d = 0.025. Simulations are carried out

for different values of ρs, µf , µs and δ0 and the variation of the vertical displacement of the

free end of the filament is presented in Figs. 37, 38, 39 and 40, respectively. A timestep of

∆t = 0.02 is chosen for all the simulations. The following observations can be drawn from

these simulations.

• Different ρs

As shown in Fig. 37, the filament reaches stretched-straight state for (µf , µs, δ0) =

(0.01, 100, 0.1) and ρs = 2 and for the other values it undergoes sustained oscillatory

motion. The amplitude of oscillations increases with increasing the values of ρs. The

frequency of oscillations decreases with increasing the value of ρs, as expected.

• Different µf

Fig. 38 shows the filament response for (ρs, µs, δ0) = (8, 100, 0.1) and different µf .

The filament settles in stretched-straight state for µf = 0.01 and undergoes sustained

oscillatory motion for lower values of µf . The amplitude of oscillations as well as the

frequency increases with decreasing the value of µf .

• Different µs

The response of the filament for (µf , ρs, δ0) = (0.01, 8, 0.1) and different µs is shown

in Fig. 39. The filament undergoes sustained oscillatory motion for all the values of
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µs considered in the present work. However, it takes longer time for the oscillations

to develop as the value of µs is increased.

• Different δ0

The effect of initial perturbation δ0 for (µf , ρs, µs) = (0.01, 8, 100) is shown in Fig.

40. In this graph, Y-coordinate of the filament free end is plotted instead of its

displacement for the purpose of clean visualisation. The amplitude and frequency of

the oscillations remain the same but the amount of time required to establish the

sustained oscillations increases with decreasing δ0.

All the above observations made with respect to the stability of the filament and the am-

plitude of oscillations obtained from these simulations performed with the proposed scheme

match well with those reported in [62].
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Figure 35: Self-sustained oscillations of a flexible filament: geometry and boundary conditions.
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Figure 36: Self-sustained oscillations of a flexible filament: hierarchical B-Spline mesh used for the analysis.

DOFs = 42465 + 202 + 303 = 42970.

0 2 4 6 8 10 12 14
Time

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

Y-
di
sp

la
ce

m
en

t o
f t
he

 ti
p

ρs =2

ρs =4

ρs =6

ρs =8

Figure 37: Self-sustained oscillations of a flexible filament: evolution of tip displacement for (µf , µs, δ0) =

(0.01, 100, 0.1) and different ρs.
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Figure 38: Self-sustained oscillations of a flexible filament: evolution of tip displacement for (ρs, µs, δ0) =

(8, 100, 0.1) and different µf .
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Figure 39: Self-sustained oscillations of a flexible filament: evolution of tip displacement for (µf , ρs, δ0) =

(0.01, 8, 0.1) and different µs.
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Figure 40: Self-sustained oscillations of a flexible filament: evolution of tip displacement for (µf , ρs, µs) =

(0.01, 8, 100) and different δ0.

Figure 41: Self-sustained oscillations of a flexible filament: contour plots of pressure at two different time

instants, for (µf , µs, δ0) = (0.01, 100, 0.1) and ρs = 8.

8. Summary and conclusions

In this paper we presented a robust numerical scheme for fluid-flexible body interaction

based on hierarchical B-Spline Cartesian grids and fictitious-domain/distributed-Lagrange
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multipliers. The convergence of the proposed method with respect to spatial and temporal

discretisations is assessed and its ability to accurately simulate fluid-flexible body interac-

tions is demonstrated by studying several benchmark examples. The essential features of

the proposed scheme are summarised as follows:

• ease of generating Cartesian grid for the fluid and the ability to enrich it with local

refinement around immersed bodies using hierarchical B-Splines. This local refinement

strategy, which can be easily extended into three-dimensions, results in significant

savings in computational time.

• use of equal-order basis functions for velocity and pressure avoids the need to maintain

two different grids and/or need to compute two sets of basis functions at each Gauss

point while performing matrix computations.

• even though the velocity-pressure combination (equal-order quadratic B-Splines) used

in the present work is inf-sup unstable, the pressure obtained is sufficiently smooth

and the results obtained in FSI simulations match well with the reference values.

• the presented scheme yields accurate results even with large timesteps as the time-

integration is second-order unconditionally stable generalized-α method. This feature

is essential for simulating real-world problems in 3D.

We conclude this paper by pointing out some of the limitations of the presented scheme

and identifying the directions for future developments:

• Use of equal-order quadratic (Q2) B-Splines for both velocity and pressure, without

any pressure-stabilisation, used in this work give sufficiently smooth pressure even

though the combination is inf-sup unstable. Work should be carried out towards

understanding the reasons behind this peculiar behaviour of quadratic B-Splines.

• The boundary of the immersed objects is represented using a set of Lagrange points.

This can be improved by representing the boundary using edges in 2D (triangles in 3D)
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or using NURBS based discretisation so that the geometry of the immersed boundaries

can be represented exactly.

• In this work we have used a direct solver PARDISO [2] to solve the global matrix system

of equations. However, this may be prohibitively expensive in 3D which justifies the

research work on efficient iterative solvers for this class of problems.

• A fully-coupled monolithic scheme has been used in the present work. Though, this

can be used without worrying about added-mass issues, it would be worth exploring

staggered or partitioned schemes for the cases where the added-mass is not significant.
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[32] C. Kadapa, W. G. Dettmer, and D. Perić. NURBS based least-squares finite element methods for

fluid and solid mechanics. International Journal for Numerical Methods in Engineering, 101:521–539,

2015.

[33] D. Kamensky, M. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R.

Hughes. An immersogeometric variational framework for fluid-structure interaction: application to

bioprosthetic heart valves. Computational Methods in Applied Mechanics and Engineering, 284:1005–

1053, 2015.

[34] D. V. Le, B. C. Khoo, and J. Peraire. An immersed interface method for viscous incompressible flows

involving rigid and flexible boundaries. Journal of Computational Physics, 220:109–138, 2006.

[35] R. L. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous

coefficients and singular sources. SIAM Journal on Numerical Analysis, 31:1019–1044, 1994.

[36] R. L. Leveque and Z. Li. Immersed interface method for Stokes flow with elastic boundaries or surface

tension. SIAM Journal on Scientific Computing, 18:709–735, 1997.

48



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[37] Z. Li. The immersed interface method using a finite element formulation. Applied Numerical Mathe-

matics, 27:253–267, 1998.

[38] Z. Li and M. Lai. The immersed interface method for the Navier-Stokes equations with singular forces.

Journal of Computational Physics, 171:822–842, 2001.

[39] M. N. Linnick and H. F. Fasel. A high-order immersed interface method for simulating unsteady

incompressible flows on irregular domains. Journal of Computational Physics, 204:157–192, 2005.

[40] C. Liu, X. Sheng, and C. H. Sung. Preconditioned multigrid methods for unsteady incompressible

flows. Journal of Computational Physics, 139:35–57, 1998.

[41] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37:239–

261, 2005.

[42] T. Muroi and M. Kawahara. A fictitious domain method with the distributed Lagrange multiplier

for incompressible viscous flow around moving particle. Journal of Algorithms and Computational

Technology, 3:75–93, 2009.

[43] M. Nagai and M. M. Kawahara. A fictitious domain method with distributed Lagrange multiplier

for particulate flow. International Journal for Computational Methods in Engineering Science and

Mechanics, 8:115–122, 2007.

[44] X. D. Niu, C. Shu, Y. T. Chew, and Y. Peng. A momentum exchange-based immersed boundary-

lattice Boltzmann method for simulating incompressible viscous flows. Physics Letters A, 354:173–182,

2006.

[45] N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, and T. W. Pan. A new formulation of the

distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal

of Multiphase Flow, 26:1509–1524, 2000.

[46] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

[47] L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication). Springer-Verlag,

New York, 1997.

[48] D. F. Rogers. An Introduction to NURBS With Historical Perspective. Academic Press, San Diego,

CA, 2001.

[49] M. E. Rosar and C. S. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical

model. New York Journal of Mathematics, 7:281–302, 2001.
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