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A new framework for large strain electromechanics

based on convex multi-variable strain energies: Finite

Element discretisation and computational

implementation.

Rogelio Ortigosa, Antonio J. Gil1

Zienkiewicz Centre for Computational Engineering, College of Engineering

Swansea University, Bay Campus, SA1 8EN, United Kingdom

Abstract

In Reference [1], Gil and Ortigosa introduced a new convex multi-variable
framework for the numerical simulation of Electro Active Polymers (EAP)
in the presence of extreme deformations and electric fields. This extends
the concept of polyconvexity to strain energies which depend on non-strain
based variables. The consideration of the new concept of multi-variable con-
vexity guarantees the well posedness of generalised Gibbs’ energy density
functionals and, hence, opens up the possibility of a new family of mixed
variational principles. The aim of this paper is to present, as an example, the
Finite Element implementation of two of these mixed variational principles.
These types of enhanced methodologies are known to be necessary in sce-
narios in which the simpler displacement-potential based formulation yields
non-physical results, such as volumetric locking, bending and shear locking,
pressure oscillations and electro-mechanical locking, to name but a few. Cru-
cially, the use of interpolation spaces in which some of the unknown fields are
described as piecewise discontinuous across elements can be used in order to
efficiently condense these fields out. This results in mixed formulations with
a computational cost comparable to that of the displacement-potential based
approach, yet far more accurate. Finally, a series of very challenging numer-
ical examples are presented in order to demonstrate the accuracy, robustness
and efficiency of the proposed methodology.

1Corresponding author: a.j.gil@swansea.ac.uk
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1. Introduction

The present manuscript presents a Finite Element computational frame-
work tailor–made for the simulation of Electro Active Polymers (EAPs) [2–7]
in applications where very large deformations and electric fields are involved.
Dielectric elastomers and piezoelectric polymers are examples of EAPs which
can be subjected to these extreme scenarios. For instance, giant electrically
induced deformations of 1980% have been reported in the experimental liter-
ature [8] for the most representative example of dielectric elastomers, namely,
the elastomer VHB 4910. Moderate electrically induced deformations of 40%
have been reported in piezoelectric polymers, such as the highly popular
PolyVinylidene DiFlouride (PVDF).

Several authors [9–14] have contributed to the development of variational
approaches in the context of nonlinear electro-elasticity. Very importantly in
this case, the constitutive laws governing the physics of the coupled problem
must satisfy physically meaningful constitutive inequalities [15]. Bustamante
and Merodio [16] studied under what ranges of deformation and magnetic
field the Baker-Ericksen inequality [15] would be compromised, specifically
considering smart materials belonging to the class of magneto-sensitive elas-
tomers2. Recently, a material stability criterion based on an incremental
quasi-convexity condition of the energy functional has been introduced by
Miehe et al [17].

In Reference [1], Gil and Ortigosa, following the work of Rogers [18],
extend the concept of polyconvexity [15, 19–26] to the field of nonlinear
electro-elasticity based on a new convex multi-variable definition of the en-
ergy functional. It should be emphasised that the new definition of multi-
variable convexity ensures [1] the material stability and well posedness of
the equations. The existence of minimisers would also require the study of
the sequentially weak lower semicontinuity and the coercivity of the energy
functional. The internal energy density, defined as a convex multi-variable
function of a new electro-kinematic variable set, including the deformation

2There exists a clear similitude between magneto-elasticity and electro-elasticity
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gradient F , its adjoint H , its determinant J , the Lagrangian electric dis-
placement field D0 and an additional spatial or Eulerian vector d computed
as the product between the deformation gradient tensor and the Lagrangian
electric displacement field. This definition enables the most accepted consti-
tutive inequality, namely ellipticity (rank-one convexity) [15], to be fulfilled
for the entire range of deformations and electric fields. Moreover, taking
advantage of a new tensor cross product operation [24, 27], tedious alge-
bra is remarkably simplified yielding insightful representations of otherwise
complex expressions (i.e. electro-mechanical tangent operators).

Crucially, the new multi-variable convexity criterion enables the incorpo-
ration of the internal energy of the vacuum as a degenerate case [1]. In ad-
dition, the consideration of convex multi-variable internal energy functionals
leads to positive definiteness of the generalised electro-mechanical acoustic
tensor [28–30] and hence, existence of real wave speeds in the material in
the vicinity of an equilibrium configuration. This analysis is shown in Ref-
erence [31] as a by-product of the hyperbolicity of a generalised system of
conservation laws, along the same lines as References [21, 32–38].

From the computational standpoint, most authors [39–43] tend to prefer
Finite Element computational frameworks where only geometry and electric
potential are part of the solution. However, it is well known that these types
of formulations can produce non-physical results, such as volumetric lock-
ing, bending and shear locking, pressure oscillations and electro-mechanical
locking, to name but a few [44–46].

The consideration of convex multi-variable energy functionals brings ad-
ditional benefits, including the solution to above shortcomings. Indeed, the
extended set of variables {F ,H , J,D0,d} enables the introduction of work
conjugates {ΣF ,ΣH ,ΣJ ,ΣD0

,Σd}, where the satisfaction of multi-variable
convexity guarantees that the relationship between both sets is one to one
and invertible. Based on this, a new family of extended Hu-Washizu type
of variational principles [22, 47–54] can be introduced [1]. The development
of these new mixed variational principles [1] is a robust alternative to re-
solve the spurious (non-physical) mechanisms associated to the more classical
displacement-potential approach.

This paper is organised as follows. Section 2 briefly introduces the gov-
erning equations of the problem, with special emphasis in the extension of
the concept of polyconvexity from the field of convex multi-variable non-
linear elasticity to the more general field of nonlinear electro-elasticity [1],
where the basic ingredients of the new framework are presented. In addi-
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tion, a series of generalised Gibbs’ energy density functionals are presented,
defined through the use of Legendre transformations. Section 3 presents two
of the extended Hu-Washizu type of mixed variational principles presented
in Reference [1], which will be the main objective of this paper. Section 4
is focussed on the Finite Element discretisation and implementation of the
variational principles presented in previous Section 3. Section 5 includes a
wide spectrum of challenging numerical examples in order to demonstrate the
robustness and applicability of the proposed enhanced mixed formulations,
ranging from simpler isotropic to more complex anisotropic convex multi-
variable models. Finally, Section 6 provides some concluding remarks and a
summary of the key contributions of this paper.

Three appendices have been included for the sake of completeness. Ap-
pendix A shows how to relate the various expressions of the tangent operator
of the internal energy, when expressed both in terms of the displacements and
electric displacement field and when expressed in terms of the extended set
of electro-kinetic variables {F ,H , J,D0,d}. Appendix B establishes the
relationship between the classical components of the Helmholtz’s energy and
those associated with the internal energy. Finally, Appendix C presents the
auxiliary residuals and stiffness matrices associated with the static condensa-
tion process carried out over one of the Hu-Washizu type of mixed variational
principles presented in Section 3.

2. Nonlinear continuum electromechanics

2.1. Motion and deformation

Let us consider the motion of a continuum which could represent a di-
electric elastomer or a piezoelectric polymer. This continuum is defined by
a domain V with boundary ∂V in its initial or material configuration3. Af-
ter the motion, the continuum occupies a spatial configuration defined by
a domain v with boundary ∂v. The motion is defined by a pseudo-time t
dependent mapping field φ which links a material particle from material con-
figuration X ∈ V to spatial configuration x ∈ v according to x = φ(X, t).
Displacement boundary conditions can be defined as x = (φ)∂uV on the
boundary ∂uV ⊂ ∂V .

3A more general formulation is presented in Reference [1] including the effect of a
surrounding medium (i.e. vacuum).
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The deformation gradient tensor or fibre-map F , is defined as the material
gradient ∇0 of the spatial configuration [15, 19, 55–62]

F = ∇0x =
∂φ(X, t)

∂X
. (1)

1x,1X

3x,3X

2x,2X

)t,X(φ=x

dV

JdV=dv

Xd

XdF=xd

AdH=ad

Ad

Figure 1: Deformation mapping of a continuum and definition of F ,H , J .

In addition, J = det F represents the Jacobian or volume-map of the
deformation and H = JF−T , the co-factor or area-map [24, 36, 55]. Figure
1 depicts the deformation process as well as how the three kinematic maps
F , H and J relate differential fibre, area and volume elements, respectively,
between material and spatial configurations (i.e. dx = F dX, da = HdA
and dv = JdV ). With the help of the tensor cross product operation
introduced in [27] and exploited in [24, 63, 64], it is possible to redefine
conveniently the area and volume maps as

H =
1

2
F F ; J =

1

3
H : F , (2)

where for two-point second order tensors A and B, the tensor cross opera-
tion is computed as (A B)iI = EijkEIJKAjJBkK , with E the third order
alternating tensor. Throughout the paper, the symbol (·) is used to indicate
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the scalar product or contraction of a single index a · b = aibi; the symbol
(:) is used to indicate double contraction of two indices A : B = AijBij; the
symbol (×) is used to indicate the cross product between vectors [a× b]i =
Eijkajbk and the symbol (⊗) is used to indicate the outer or dyadic product
[a⊗ b]ij = aibj.

Let us define δu and u as virtual and incremental variations of x, which
satisfy compatible displacement based boundary conditions on ∂uV . Follow-
ing the notation of [55] and making use of the cross product operation
introduced above, the first and second directional derivatives of the co-factor
H and the Jacobian J with respect to virtual and incremental variations of
the geometry are evaluated as

DH [δu] = F ∇0δu; D2H [δu; u] = ∇0δu ∇0u; (3a)

DJ [δu] = H : ∇0δu; D2J [δu; u] = F : (∇0δu ∇0u) . (3b)

2.2. Gauss and Farady laws

The dielectric elastomer represented by the continuum described in Sec-
tion 2.1 is subjected in its material configuration V to an electric volume
charge ρe

0 per unit of undeformed volume and an electric surface charge ωe
0

per unit of undeformed area applied on ∂ωV ⊂ ∂V . For that continuum, the
integral version of the Gauss law can be written in a Lagrangian format as

∫

∂ωV

ωe
0 dA+

∫

V

ρe
0 dV = 0. (4)

In this case, the local version of equation (4) and the associated boundary
conditions can be written as4

DIVD0 = ρe
0 in V ; (5a)

D0 ·N = −ωe
0 on ∂ωV, (5b)

4In the general case where the effect of the surrounding vacuum is considered, equation
(5b) needs to be replaced with its more general version JD0K · N = ωe

0 on ∂ωV , where
JD0K represents the jump of variable D0 between the domain defined by the dielectric
V and the surrounding vacuum. Moreover, for the general case where the domain V is
comprised of sub-domains with interfaces ∂Vi ∩ ∂Vj , i 6= j, the following jump condition
must be satisfied, i.e JD0KN |∂Vi

= 0 on ∂Vi ∩ ∂Vj .

6



where D0 is the Lagrangian electric displacement vector. Alternatively, equa-
tion (5) can be presented in a spatial description in terms of the Eulerian
electric displacement field D, defined as D0 = HT D [9, 65]. Analogously,
the integral version of the static Faraday law can be written in a Lagrangian
format for a closed curve C embedded in V ∪ ∂V as

∮

C

E0 · dX = 0, (6)

where E0 is the Lagrangian electric field vector. The local version of equation
(6) and the associated boundary conditions can be expressed as5

E0 = −∇0ϕ in V ; (7a)

ϕ = (ϕ)∂ϕV on ∂ϕV, (7b)

where ϕ is an electric potential field that can be introduced in the case of
a contractible domain. In equation (7b), ∂ϕV ⊂ ∂V represents the part of
the boundary subjected to electric potential boundary conditions, such that
∂ωV ∪ ∂ϕV = ∂V and ∂ωV ∩ ∂ϕV = ∅. As above equations (5), equations
(7) could alternatively be presented in a spatial description in terms of the
Eulerian electric field E, which is related to its Lagrangian counterpart E0

through the standard fibre transformation E0 = F T E [9, 65].

2.3. Translational and rotational equilibrium

In addition to the Gauss and Faraday laws presented in Section 2.2, the
kinematics of the continuum must be described through the conservation of
linear momentum. In the absence of inertial effects, the global conservation
of linear momentum leads to the integral translational equilibrium equations
[55, 59]

∫

∂tV

t0dA+

∫

V

f 0dV = 0, (8)

where f 0 represents a body force per unit of undeformed volume applied in V
and t0 a traction force per unit of undeformed area t0 applied on ∂tV ⊂ ∂V ,
such that ∂tV ∪ ∂uV = ∂V and ∂tV ∩ ∂uV = ∅. The local translational

5For the more general case where the domain V is comprised of sub-domains with inter-
faces ∂Vi∩∂Vj , i 6= j, the following jump condition must be satisfied, i.e JE0K×N |∂Vi

= 0

on ∂Vi ∩ ∂Vj .
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equilibrium equations and the associated boundary conditions can be written
as6

DIVP + f 0 = 0 in V ; (9a)

PN = t0 on ∂tV ; (9b)

φ = (φ)∂uV on ∂uV, (9c)

where P represents the first Piola-Kirchoff stress tensor. Furthermore, sat-
isfaction of rotational equilibrium leads to the well-known tensor condition
PF T = FP T .

2.4. The internal energy density: multi-variable convexity in electromechan-

ics

For the closure of the system of equations defined by (5) and (9) describ-
ing the behaviour of the dielectric elastomer, an additional constitutive law
satisfying appropriate constitutive inequalities [15] is needed. The most well
accepted constitutive inequality, namely ellipticity, is automatically satisfied
if the internal energy density functional e per unit of undeformed volume
e = e(∇0x,D0) is defined as [1]

e (∇0x,D0) = W (F ,H , J,D0,d) ; d = FD0. (10)

where W represents a convex muti-variable functional in terms of the ex-
tended set of arguments V = {F ,H , J,D0,d}. In [1], it has been shown
that the inclusion of the variable d in the set V enables the internal en-
ergy of the vacuum and that for an ideal dielectric elastomer model to be
included as a particular degenerate case. The new extended set V per-
mits the introduction of an associated set of work conjugate variables ΣV =
{ΣF ,ΣH ,ΣJ ,ΣD0

,Σd} as

ΣF =
∂W

∂F
; ΣH =

∂W

∂H
; ΣJ =

∂W

∂J
; ΣD0

=
∂W

∂D0

; Σd =
∂W

∂d
. (11)

6In the general case where the effect of the surrounding vacuum is considered, equation
(9b) has to be replaced with JP KN = t0 on ∂tV , where JP K represents the jump between
the first Piola-Kirchhoff stress tensor in the material occupying the region V and the
Maxwell stress in the surrounding medium. Moreover, for the general case where the
domain V represented by the electro active polymer is composed of sub-domains with
interfaces ∂Vi∩∂Vj , i 6= j, the following jump condition must be satisfied, i.e JP KN |∂Vi

= 0

on ∂Vi ∩ ∂Vj .
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For notational convenience, the following sets, featuring in subsequent
sections, will be introduced,

Vm = {F ,H , J}; Σm
V = {ΣF ,ΣH ,ΣJ};

Ve = {D0,d}; Σe
V = {ΣD0

,Σd};
V = {Vm,Ve}; ΣV = {Σm

V ,Σ
e
V}.

(12)

Following a similar procedure to that of [1, 24], an expression for the first
Piola-Kirchhoff stress tensor and the material electric field can be obtained
in terms of the elements of both sets V and ΣV as

P = ΣF + ΣH F + ΣJH + Σd ⊗D0; E0 = ΣD0
+ F TΣd. (13)

An expression for the Kirchhoff stress tensor [24] and the spatial electric
field (needed for post-processing purposes) emerges based upon the relations
Jσ = τ = PF T and E = F−T E0 as

Jσ = τ = ΣFF T +
(

ΣHHT
)

I + JΣJI + Σd ⊗ d;

E = F−T
(

ΣD0
+ F TΣd

)

= F−TΣD0
+ Σd,

(14)

where I denotes the second order identity tensor.

2.5. Tangent electromechanics operator for the internal energy

With a Newton-Raphson type of solution process in mind, the internal
energy e = e(∇0x,D0) can be further linearised leading to the tangent
operator

D2e [δu, δD0; u,∆D0] =
[

∇0δu : δD0·
]

[

C QT

Q θ

] [

: ∇0u

∆D0

]

, (15)

with the fourth order tensor C, the third order tensor Q and the second order
tensor θ defined as

C =
∂2e(F ,D0)

∂F ∂F

∣

∣

∣

∣

F=∇0x

; Q =
∂2e(F ,D0)

∂D0∂F

∣

∣

∣

∣

F=∇0x

; θ =
∂2e(F ,D0)

∂D0∂D0

∣

∣

∣

∣

F=∇0x

.

(16)
With the help of the tensor cross product [1, 24, 27], a more physically

insightful representation of the tangent operator (15) is

D2e [δu, δD0; u,∆D0] =
[

Sδ

]T
[HW ]

[

S∆

]

+ (ΣH + ΣJF ) : (∇0δu ∇0u)

+ Σd · ((∇0δu)∆D0 + (∇0u)δD0) ,
(17)
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where

[

Sδ

]T
=

[

(∇0δu) : (∇0δu F ) : (∇0δu : H) δD0· ((∇0δu)D0 + F δD0) ·
]

;

[

S∆

]

=













: (∇0u)
: (F ∇0u)
(H : ∇0u)

∆D0

∇0uD0 + F∆D0













,

(18)
and with the extended Hessian operator [HW ] denoting the symmetric posi-
tive definite operator containing the second derivatives of W (F ,H , J,D0,d)
as

[HW ] =





























WFF WFH WFJ WFD0
WFd

WHF WHH WHJ WHD0
WHd

WJF WJH WJJ WJD0
WJd

WD0F
WD0H

WD0J WD0D0
WD0d

WdF WdH WdJ WdD0
Wdd





























. (19)

As shown in Appendix A, it is possible to relate the constitutive tensors
C, Q and θ in equation (15) to the components of the Hessian operator [HW ]
in (19).

As stated in [1], this additive decomposition of the tangent operator is not
merely technical but, extremely useful, as the multi-physics of the problem is
completely captured in the first term on the right hand side of equation (17),
whilst geometrically nonlinear terms are collected on the second and third
terms. In Reference [1], the authors show how the positive definiteness of the
Hessian operator [HW ] in above (19) extends the concept of ellipticity (rank-
one convexity) to the field of electromechanics. In addition, in Reference
[31], the authors show how the positive definiteness of [HW ] guarantees the
existence of physical wave speeds (Legendre-Hadamard condition [15]) and
the symmetrisation of a system of conservation laws via a convex entropy
function.
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F = ∂Υ

∂ΣF

H = ∂Υ

∂ΣH

J = ∂Υ

∂ΣJ

D0 = ∂Υ

∂ΣD0

d = ∂Υ

∂Σd

F = ∂Ψ

∂ΣF

H = ∂Ψ

∂ΣH

J = ∂Ψ

∂ΣJ

ΣD0
= − ∂Ψ

∂D0

Σd = −∂Ψ

∂d

ΣF = ∂Φ

∂F
ΣH = ∂Φ

∂H
ΣJ = ∂Φ

∂J
D0 = − ∂Φ

∂ΣD0

d = − ∂Φ

∂Σd

Table 1: Expressions relating strain, stress, and electric variables for the
energy functionals Υ (20a), Ψ (20b) and Φ (20c).

2.6. Alternative energy density functionals

Polyconvexity of the internal energy density W (V) (10) with respect to
its extended set of variables enables the definition of an extended Gibbs’
energy density Υ (ΣV), an extended enthalpy energy density Ψ (Σm

V ,Ve) and
an extended Helmholtz’s energy density Φ (Vm,Σe

V) as

Υ (ΣV) = sup
V

{Tm + T e −W (V)} ; (20a)

Ψ (Σm
V ,Ve) = sup

Vm

{Tm −W (V)} ; (20b)

Φ (Vm,Σe
V) = − sup

Ve

{T e −W (V)} , (20c)

where the sets Vm, Ve, Σm
V and Σe

V have been defined in (12) and with

Tm = ΣF : F + ΣH : H + ΣJJ ; T e = ΣD0
·D0 + Σd · d. (21)

Expressions relating strain, stress and electric variables, in terms of the
different energy functionals, are presented in Table 1. The definition of multi-
variable convexity in (10) ensures a one to one relationship between the
variables D0 and −∇0ϕ. In this case, it is possible to define an alternative
energy functional to the internal energy e = e(∇0x,D0) by making use of the
Legendre transform7. This might be a computationally convenient approach

7An advantage of employing a constitutive model defined by the energy functional in
(10) is that it ensures the existence of the Helmholtz’s energy density ab initio, which
cannot be necessarily guaranteed otherwise.
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in the case of pursuing a standard semi-discrete variational implementation
via the Finite Element Method, where the scalar electric potential is preferred
as an unknown over the electric displacement field vector. In this case, the
Helmholtz’s energy density Φ = Φ(∇0x,−∇0ϕ) can be defined as8

Φ (∇0x,−∇0ϕ) = − sup
D0

{−∇0ϕ ·D0 − e (∇0x,D0)} , (22)

leading to a definition for the stress and electric fields as

P =
∂Φ(F ,E0)

∂F

∣

∣

∣

∣

F=∇0x

E0=−∇0ϕ

; D0 = − ∂Φ(F ,E0)

∂E0

∣

∣

∣

∣

F=∇0x

E0=−∇0ϕ

. (23)

2.6.1. Tangent operators for the Helmholtz’s and extended Helmholtz’s energy

functionals

The tangent operator for the Helmholtz’s energy density Φ = Φ(∇0x,−∇0ϕ)
defined in (22) is computed as

D2Φ [δu, δϕ; u,∆ϕ] =
[

∇0δu : −∇0δϕ·
]

[

C∗ −PT

−P −ε

] [

: ∇0u

−∇0∆ϕ

]

,

(24)
with the fourth order elastic tensor C∗, the third order piezoelectric tensor
P and the second order dielectric tensor ε defined as

C∗ =
∂2Φ(F ,E0)

∂F ∂F

∣

∣

∣

∣

F=∇0x

E0=−∇0ϕ

; P = − ∂2Φ(F ,E0)

∂F ∂E0

∣

∣

∣

∣

F=∇0x

E0=−∇0ϕ

; ε = − ∂2Φ(F ,E0)

∂E0∂E0

∣

∣

∣

∣

F=∇0x

E0=−∇0ϕ

.

(25)
As shown in Appendix B, it is possible to relate the constitutive tensors

C?, P and ε in (25) to those emerging from the tangent operator of the
internal energy, namely C, Q and θ in (16).

Following a similar procedure to that of equation (17) and in preparation
for a new mixed variational principle presented in the following Section 3,
a possible tangent operator for the extended Helmholtz’s energy functional
Φ(Vm,Σe

V) defined in equation (20c) is obtained as

D2Φ [δu, δΣD0
, δΣd; u,∆ΣD0

,∆Σd] =
[

S
?
δ

]T
[HΦ]

[

S
?
∆

]

+ (ΣH + ΣJF ) : (∇0δu ∇0u) ,
(26)

8Alternatively, an equivalent definition of the Legendre transform in equation (22) can
be defined as Φ (∇0x,−∇0ϕ) = inf

D0

{∇0ϕ ·D0 + e (∇0x,D0)}.
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where

[

S
?
δ

]T
=

[

(∇0δu) : (∇0δu F ) : (∇0δu : H) δΣD0
· δΣd·

]

;

[

S
?
∆

]

=













: (∇0u)
: (F ∇0u)
(H : ∇0u)

∆ΣD0

∆Σd













,
(27)

and with the extended Hessian operator [HΦ] denoting the operator contain-
ing the second derivatives of Φ (F ,H , J,ΣD0

,Σd) as

[HΦ] =





























ΦFF ΦFH ΦFJ ΦFΣD0
ΦFΣd

ΦHF ΦHH ΦHJ ΦHΣD0
ΦHΣd

ΦJF ΦJH ΦJJ ΦJΣD0
ΦJΣd

ΦΣD0
F ΦΣD0

F ΦΣD0
J ΦΣD0

ΣD0
ΦΣD0

Σd

ΦΣdF
ΦΣdF

ΦΣdJ ΦΣdΣD0
ΦΣdΣd





























. (28)

Notice that the definition of multi-variable convexity in equation (10)
enables to relate each of the components of the above Hessian operator [HΦ]
(28) with the components of the Hessian operator [HW ] (19), as shown in
Appendix B.

3. A survey of some variational principles in nonlinear electro-

elasticity

The governing equations and relevant aspects concerning the constitutive
modelling of electro active polymers have been presented in Section 2. The
objective of this section is to present some possible variational principles in
nonlinear electro-elasticity, in preparation for a subsequent Finite Element
semi-discretisation.

Traditional Finite Element based implementations resort to variational
principles where the geometry and the electrical potential are the only un-
knowns of the problem [40, 41]. A well established potential-displacement

13



based variational principle in terms of the Helmholtz’s energy (22) is defined
as

ΠΦ(x∗, ϕ∗) = inf
x

sup
ϕ







∫

V

Φ(∇0x,−∇0ϕ)dV − Πext(x, ϕ)







, (29)

where {x∗, ϕ∗} denotes the exact solution and where the external term Πext(x, ϕ)
is additively decomposed as Πext(x, ϕ) = Πm

ext(x) + Πe
ext(ϕ), with the purely

mechanical Πm
ext(x) and purely electric Πe

ext(ϕ) components defined as

Πm
ext(x) =

∫

V

f 0 · x dV+

∫

∂tV

t0 · x dA; Πe
ext(ϕ) = −

∫

V

ρe
0ϕdV−

∫

∂ωV

ωe
0ϕdA.

(30)
First and second derivatives of the Hemlholtz’s energy, featuring in the

stationary conditions of the variational principle ΠΦ (29) can be obtained
implicitly in terms of the derivatives and second derivatives of the internal
energy W (V), as shown in Appendix B.2.

However, potential-displacement based formulations produce inaccurate
solutions for strains, stresses, electric fields and electric displacement fields,
specially when low order discretisations are used. Gradients (of displacements
and electric potential) are poorly described by the solution of this type of
formulations [36]. It is well known that enhanced mixed formulations [22, 47–
54] can overcome these drawbacks.

A first Hu-Washizu mixed variational principle has been proposed in [1]
in terms of the internal energy W (V) of the system

ΠW (x∗,F ∗,H∗, J∗,Σ∗
F
,Σ∗

H
,Σ∗J , ϕ

∗,D∗
0,d

∗,Σ∗
d
)

= inf
x,F ,H,J,D0,d

sup
ΣF ,ΣH ,ΣJ ,ϕ,Σd

{
∫

V

W (V) dV +

∫

V

D0 ·∇0ϕdV

+

∫

V

[ΣF : (Fx − F ) + ΣH : (Hx −H) + ΣJ(Jx − J)

+Σd · (FxD0 − d)] dV − Πext(x, ϕ)} ,

(31)

where {Fx,Hx, Jx} in above equation (31) denote the geometrically com-
patible strain measures

Fx = ∇0x; Hx =
1

2
∇0x ∇0x; Jx = det∇0x. (32)
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A second Hu-Washizu mixed variational principle [1] in terms of the ex-
tended Helmholtz’s energy Φ(Vm,Σe

V) (20c) can also be defined as

ΠΦ(x∗,F ∗,H∗, J∗,Σ∗
F
,Σ∗

H
,Σ∗J , ϕ

∗,D∗
0,Σ

∗
D0
,Σd

∗)

= inf
x,F ,H,J,D0

sup
ΣF ,ΣH ,ΣJ ,ϕ,ΣD0

,Σd







∫

V

Φ(Vm,Σe
V)dV

+

∫

V

[ΣF : (Fx − F ) + ΣH : (Hx −H) + ΣJ(Jx − J)

+D0 · (ΣD0
+ ∇0ϕ) + Σd · FxD0] dV − Πext(x, ϕ)} .

(33)

Notice that a systematic presentation of these (31)-(33) and other mixed
variational principles has been already detailed in [1]. They all rely on the
consideration of convex multi-variable constitutive models, which guarantees
the existence of Legendre transformations between the various energy density
functionals. For completeness, all of these relationships are presented in
Appendix B.

4. Finite Element discretisation

4.1. General remarks

The implementation of the variational principles described in the previous
section is based on a finite element partition (tesselation) of the domain V
(representing an electro active polymer in its initial configuration) into a set
of elements. Inside each element the problem variables can be interpolated
in terms of a set of nodal shape functions as,

x =
nx
∑

a=1

xaN
x

a ; F =

nF
∑

a=1

F aN
F

a ; ...; D0 =

nD0
∑

a=1

D0aN
D0

a ; ... (34)

where a denotes the nodes used in the interpolation of the above variables
and n(•) denotes the number of nodes associated to the variable (•). In
general, different interpolations are used to describe different variables. The
same interpolation space is used for work conjugate pairs; that is, NF

a =
NΣF

a , ND0

a = NΣD0

a etc. All the variables and their virtual and incremental
variations {x, δu,u}, {F , δF ,∆F }, {D0, δD0,∆D0} etc. are interpolated
using the same interpolation spaces (Galerkin-type discretisation).
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The variational framework associated to the variational principles ΠW

and ΠΦ in (31) and (33), respectively, can be implemented using a variety of
finite element spaces. Of course, not all choices will lead to effective or valid
finite element formulations. In particular, the Ladyz̆enskaja-Babus̆ka-Brezzi
[46, 66] (LBB) condition must be satisfied. Alternatively, the LBB condition
can be circumvented by resorting to stabilised formulations [35, 36, 67, 68].

Mixed formulations might result in expensive computations due to the
large number of additional variables involved. However, careful analysis of
the continuity required for each of the variables, shows that only displace-
ments and electric potential need to be continuous across elements. Stress,
strain and electric variables can actually be discretised independently on each
element of the mesh. Crucially, a static condensation procedure of the resid-
uals and stiffness matrices associated to those variables for which continuity
across elements is not required leads to a computationally comparable cost
with respect to displacement-potential formulations [24].

A plausible choice [22, 24] for the interpolation functions of the different
variables involved in the variational principle ΠW (31) considers a quadratic
tetrahedron element for the geometry and electric potential discretisation,
piecewise linear element by element interpolations for {F ,ΣF }, {H ,ΣH},
{d,Σd} and D0 and piecewise constant interpolation for {J,ΣJ}.

Similarly, a quadratic tetrahedron element for the geometry and electric
potential discretisation, piecewise linear interpolations for {F ,ΣF }, {H ,ΣH},
{D0,ΣD0

} and d and a piecewise constant interpolation for {J,ΣJ} is used
for the formulation associated to the variational principle ΠΦ (33).

In what follows, for a variational principle ΠU formulated in terms of
the variables U , for which virtual and incremental variations are denoted as
δU and ∆U , respectively, a k−iterative Newton-Raphson process is usually
established by solving a linearised system of equations for the increment ∆U

as

D2ΠU(Uk)[δU ; ∆U ] = −DΠU(Uk)[δU ]; Uk+1 = Uk + ∆U . (35)

Finite element discretisation of above system (35) results in the well
known residual vector RU and tangent stiffness matrix KUU .

4.2. Finite Element semi-discretisation of the variational principle ΠW

For notational convenience, the following set q of variables is introduced

q = {x, ϕ,Y ,ΣY ,D0}, (36)
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where the sets Y and ΣY are

Y = {F ,H , J,d}; ΣY = {ΣF ,ΣH ,ΣJ ,Σd}. (37)

Virtual and incremental variations of the elements in the sets Y and ΣY
in above equation (37) are denoted as

δY = {δF , δH , δJ, δΣD0
}; δΣY = {δΣF , δΣH , δΣJ , δΣd};

∆Y = {∆F ,∆H ,∆J,∆Σd}; ∆ΣY = {∆ΣF ,∆ΣH ,∆ΣJ ,∆Σd}.
(38)

The discrete stationary conditions of the variational principle ΠW (31)
with respect to virtual changes in the geometry and in the electric potential
(i.e. equilibrium and Gauss law) are

DΠW [δu] =
nx
∑

a=1

Ra
x
· δua; Ra

x
=

∫

V

P W ∇0N
x

a dV −
∫

V

f 0N
x

a dV −
∫

∂tV

t0N
x

a dA;

DΠW [δϕ] =

nϕ
∑

a=1

Ra
ϕ · δϕa; Ra

ϕ =

∫

V

D0 ·∇0N
ϕ
a dV −

∫

V

ρ0N
ϕ
a dV −

∫

∂ωV

ω0N
ϕ
a dA,

(39)
where the first Piola-Kirchhoff stress tensor P W is evaluated as

P W = ΣF + ΣH Fx + ΣJHx + Σd ⊗D0. (40)

The discrete stationary conditions of the variational principle ΠW (31)
with respect to virtual changes of the elements of the set Y and D0 (i.e.
constitutive and Faraday laws) is

DΠW [δY , δD0] =

nF
∑

a=1

Ra
F

: δF a +

nH
∑

a=1

Ra
H

: δHa +

nJ
∑

a=1

Ra
JδJ

a

+

nd
∑

a=1

Ra
d
· δda +

nD0
∑

a=1

Ra
D0
· δDa

0,

(41)
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where the different residuals emerging in above equation (41) are

Ra
F

=

∫

V

(

∂W

∂F
−ΣF

)

NF

a dV ; Ra
H

=

∫

V

(

∂W

∂H
−ΣH

)

NH

a dV ;

Ra
J =

∫

V

(

∂W

∂J
− ΣJ

)

NJ
a dV ; Ra

d
=

∫

V

(

∂W

∂d
−Σd

)

Nd

a dV ;

Ra
D0

=

∫

V

(

∂W

∂D0

+ ∇0ϕ+ Fx
TΣd

)

Nd

a dV .

(42)
The discrete stationary conditions with respect to the elements of the set

ΣY (37) (i.e. compatibility) yields

DΠW [δΣY ] =

nΣF
∑

a=1

Ra
ΣF

: δΣF
a +

nΣH
∑

a=1

Ra
ΣH

: δΣH
a +

nΣJ
∑

a=1

Ra
ΣJ
δΣa

J

+

nΣd
∑

a=1

Ra
Σd
· δΣd

a,

(43)

where the residuals in above equation (43) are

Ra
ΣF

=

∫

V

(Fx − F )NF

a dV ; Ra
ΣH

=

∫

V

(Hx −H)NH

a dV ;

Ra
ΣJ

=

∫

V

(Jx − J)NJ
a dV ; Ra

Σd
=

∫

V

(FxD0 − d)Nd

a dV .

(44)

The stiffness matrices arising from the variational principle ΠW (31) (be-
fore static condensation is carried out) (31) emerge as

D2ΠW [δq; ∆q] =













δu
δφ
δY
δΣY

δD0













T 











Kxx 0 0 KxΣY
KxD0

0 0 0 0 KϕD0

0 0 KYY KYΣY
KYD0

KΣYx 0 KΣYY 0 KΣYD0

KD0x
KD0ϕ KD0Y KD0ΣY

KD0D0

























u

∆φ

∆Y

∆ΣY

∆D0













,

(45)
Notice that since the above formulation emerges from a variational prin-

ciple, namely ΠW in (31), the resulting global stiffness matrix is symmetric.
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Hence, the following relations will be satisfied: KΣYx = KT
xΣY

, KΣD0
x =

KT
xΣD0

, etc. The expressions for the non-zero blocks in the stiffness matrix

defined in equation (45) are presented below.
The procedure to obtain the stiffness matrix contribution Kab

xx
has been

already presented in Reference [24] in the context of nonlinear elasticity

[

Kab
xx

]

ij
= Eijk

[

kab
xx

]

k
; kab

xx
=

∫

V

(ΣH + ΣJF x) (∇0N
x

a ×∇0N
x

b ) dV .

(46)
The stiffness matrix contribution Kab

xΣY
arising from the linearisation of

Ra
x

with respect to incremental changes of the elements in the set Σab
Y is

defined as
Kab

xΣY
=

[

Kab
xΣF

Kab
xΣH

Kab
xΣJ

Kab
xΣd

]

, (47)

where the individual stiffness matrices in (47) are defined as

Kab
xΣF

=

∫

V

(I ⊗∇0N
x

a )NF

b dV ;
[

Kab
xΣH

]

ijI
= Eijk





∫

V

(F x ∇0N
x

a )NH

b dV





kI

;

Kab
xΣJ

=

∫

V

NJ
b Hx∇0N

x

a dV ; Kab
xΣd

=

∫

V

(D0 ·∇0N
x

a )Nd

b I dV .

(48)
The stiffness matrix contribution Kab

xD0
is obtained as

Kab
xD0

=

∫

V

(Σd ⊗∇0N
x

a )ND0

b dV . (49)

The only stiffness matrix contribution emerging from the linearisation of
the residual Ra

ϕ, namely Kab
ϕD0

is obtained as

Kab
ϕD0

=

∫

V

Nϕ
a N

D0

b I dV . (50)

The stiffness matrix contribution of the diagonal block KYY adopts the
following expression

Kab
YY =

∫

V









NF

a N
F

b WFF NF

a N
H

b WFH NF

a N
J
b WFJ NF

a N
d

b WFd

NH

a NF

b WHF NH

a NH

b WHH NH

a NJ
b WHJ NH

a Nd

b WFd

NJ
a N

F

b WJF NJ
a N

H

b WJH NJ
a N

J
b WJJ NJ

a N
d

b WJd

Nd

aN
F

b WdF Nd

aN
H

b WdH Nd

aN
J
b WdJ Nd

aN
d

b Wdd









dV ,

(51)
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where the Hessian operator [HW ] has been defined in equation (19). The
stiffness matrix contribution Kab

YΣY
emerging from the linearisation of the

residual Ra
Y with respect to incremental changes in the elements of the set

ΣY is

Kab
YΣY

= −
∫

V









NF

a N
F

b I 0 0 0

0 NH

a NH

b I 0 0

0 0 NJ
a N

J
b 0

0 0 0 Nd

aN
d

b I









dV , (52)

where I denotes the components of the fourth order identity tensor, defined
as IiIjJ = δijδIJ . The stiffness matrix contribution associated to the residual
Ra
Y , namely Kab

YD0
is defined as

Kab
YD0

=

∫

V

[

NF

a N
D0

b WFD0
NH

a ND0

b WHD0
NJ

a N
D0

b WJD0
Nd

aN
D0

b WdD0

]

dV .

(53)
The stiffness matrix contribution Kab

ΣYD0
resulting from the linearisation

of the residual Ra
ΣY

with respect to incremental changes in D0 is defined as

Kab
ΣYD0

=
[

0 0 0 Kab
ΣdD0

]

, Kab
ΣdD0

=

∫

V

Nd

aN
D0

b Fx dV . (54)

Finally, the block Kab
D0D0

is obtained from

Kab
D0D0

=

∫

V

ND0

a ND0

b WD0D0
dV . (55)

4.2.1. Static condensation

This process will be illustrated for the particular formulation associated to
the variational principle ΠW (31). Similar procedure can be applied to the
formulation associated to the variational principle ΠΦ (33). The algebraic
system of equations obtained locally at a particular element e (see equation
(45)) is written as

Ke
local∆q

e = R̃local, (56)

with

R̃local =
[

Re
x

Re
ϕ Re

Y Re
ΣY

Re
D0

]T
; ∆qe =

[

ue ∆ϕe ∆Ye ∆Σe
Y ∆De

0

]T
,

(57)

20



and where the local stiffness matrix Ke
local is defined as,

Ke
local =













Ke
xx

0 0 Ke
xΣY

Ke
xD0

0 0 0 0 Ke
ϕD0

0 0 Ke
YY Ke

YΣY
Ke
YD0

Ke
ΣYx

0 Ke
ΣYY

0 Ke
ΣYD0

Ke
D0x

Ke
D0ϕ Ke

D0Y
Ke

D0ΣY
Ke

D0D0













. (58)

Notice that the superscript e in equations (56) and (58) has been used to
denote the local (element) character of the variables involved. The fourth,
fifth and third (in this order) equations (forth, fifth and third rows) in above
(56) enables the local variables ∆Ye, ∆De

0 and ∆Σe
Y to be expressed as

∆Ye = −
[

Ke
ΣYY

]−1 (
Re

ΣY
+ Ke

ΣYx
ue + Ke

ΣYD0
∆De

0

)

; (59a)

∆De
0 = −

[

Ke
D0D0

]−1 (
Re

D0
+ Ke

D0x
ue + Ke

D0ϕ∆ϕe + Ke
D0Y

∆Ye + Ke
D0ΣY

∆Σe
Y

)

;

(59b)

∆Σe
Y = −

[

Ke
YΣY

]−1 (
Re
Y + Ke

YY∆Ye + Ke
YD0

∆De
0

)

. (59c)

Substitution of ∆Ye (59a) into the expression for ∆De
0 in (59b) and

subsequent substitution of these two into the expression for ∆Σe
Y in (59c)

enables the local variable ∆Σe
Y to be expressed in terms of the geometry and

electric potential as

∆Σe
Y = R̄

e

ΣY
+ M e

ΣYx
ue + M e

ΣYϕ∆φ
e, (60)

where R̄
e

ΣY
, M e

ΣYx
and M e

ΣYϕ will be defined in equation (C.1). Using this
expression for ∆Σe

Y , the fifth equation in (56) enables the local variable ∆De
0

to be expressed as

∆De
0 = R̄

e

D0
+ M̄

e

D0x
ue + M̄

e

D0ϕ∆φ
e, (61)

where the auxiliary residuals and matrices R̄
e

D0
, M̄

e

D0x
and M̄

e

D0ϕ will be
defined in equation (C.1). Finally, the third equation in (56) enables the
local variable ∆Ye to be expressed as

∆Ye = R̄
e

Y + M̄
e

Yxu
e + M̄

e

Yϕ∆φ
e, (62)

where the auxiliary residuals and matrices R̄
e

Y , M̄
e

Yx and M̄
e

Yϕ will be de-
fined in equation (C.1). All in all, the new expressions for the incremental
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local variables ∆Σe
Y , ∆De

0 and ∆Ye in terms ue and ∆φ
e enable the local

algebraic system of equations in (56) to be formulated exclusively in terms
of the unknowns ue and ∆φ

e as

[

K̄
e

xx
K̄

e

xϕ

K̄
e

ϕx K̄
e

ϕϕ

] [

ue

∆φ
e

]

=

[

R̄
e

x

R̄
e

ϕ

]

, (63)

where the modified residuals (63) are expressed as

R̄
e

x
= Rx

e + Ke
xΣY

R̄
e

ΣY
+ Ke

xD0

¯̄Re
D0

; R̄
e

ϕ = Re
ϕ + Ke

ϕD0
. (64)

Finally, the modified stiffness matrices in (63) are expressed as

K̄
e

xx
= Ke

xx
+ Ke

xΣY
M e

ΣYx
+ Ke

xD0
M̄

e

D0x
;

K̄
e

xϕ = Ke
xΣY

M e
ΣYϕ + Ke

xD0
M̄D0ϕ;

K̄e
ϕϕ = Ke

ϕD0
M̄

e

D0ϕ.

(65)

The expressions for all the auxiliary residuals and stiffness matrices in
equations (64) and (65) are presented in equation (C.1).

4.3. Finite Element semi-discretisation of the variational principle ΠΦ

For notational convenience, the following set of variables p is introduced

p = {x, ϕ,D,ΣD,Σd}, (66)

with
D = {F ,H , J,ΣD0

}; ΣD = {ΣF ,ΣH ,ΣJ ,D0}. (67)

Virtual and incremental variations of the set p are denoted as

δp = {δu, δϕ, δD, δΣD, δΣd}; ∆p = {u,∆ϕ,∆D,∆ΣD,∆Σd}, (68)

where the virtual and incremental variations of the elements in the sets D
and ΣD in above equation (68) are denoted as

δD = {δF , δH , δJ, δΣD0
}; δΣD = {δΣF , δΣH , δΣJ , δD0};

∆D = {∆F ,∆H ,∆J,∆ΣD0
}; ∆ΣD = {∆ΣF ,∆ΣH ,∆ΣJ ,∆D0}.

(69)
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The discrete stationary conditions of the variational principle ΠΦ in (33)
with respect to virtual changes of the geometry and with respect to virtual
changes of the electric potential are

DΠΦ [δu] =
∑

a

Ra
x
· δua; DΠΦ [δϕ] =

∑

a

Ra
ϕ · δϕa, (70)

where the expressions for Ra
x

and Ra
ϕ in (70) are identical for those in (39).

The discrete stationary conditions with respect to the elements in the set D
(67) and Σd (i.e. constitutive laws) are

DΠΦ[δD, δΣd] =

nF
∑

a=1

Ra
F

: δF a +

nH
∑

a=1

Ra
H

: δHa +

nJ
∑

a=1

Ra
JδJ

a

+

nΣD0
∑

a=1

Ra
ΣD0

· δΣa
D0

+

nΣd
∑

a=1

Ra
Σd
· δΣa

d
,

(71)

where the residuals in above equation (71) are

Ra
F

=

∫

V

(

∂Φ

∂F
−ΣF

)

NF

a dV ; Ra
H

=

∫

V

(

∂Φ

∂H
−ΣH

)

NH

a dV ;

Ra
J =

∫

V

(

∂Φ

∂J
− ΣJ

)

NJ
a dV ; Ra

ΣD0
=

∫

V

(

∂Φ

∂ΣD0

+ D0

)

ND0

a dV ;

Ra
Σd

=

∫

V

(

∂Φ

∂Σd

− FxD0

)

Nd

a dV .

(72)
The discrete stationary conditions with respect to the elements of the set

ΣD (67) yield (i.e. compatibility and Faraday laws)

DΠΦ[δΣD] =

nΣF
∑

a=1

Ra
ΣF

: δΣF
a +

nΣH
∑

a=1

Ra
ΣH

: δΣH
a +

nΣJ
∑

a=1

Ra
ΣJ
δΣa

J

+

nD0
∑

a=1

Ra
D0
· δDa

0,

(73)
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where the residuals in above equation (73) are

Ra
ΣF

=

∫

V

(Fx − F )NF

a dV ; Ra
ΣH

=

∫

V

(Hx −H)NH

a dV ;

Ra
ΣJ

=

∫

V

(Jx − J)NJ
a dV ; Ra

D0
=

∫

V

(

ΣD0
+ F T

x
Σd + ∇0ϕ

)

ND0

a dV .

(74)
The stiffness matrix contribution arising for the variational principle ΠΦ

(33) before static condensation is carried out emerge as

D2ΠΦ [δp; ∆p] =













δu
δφ
δD
δΣD

δΣd













T 











Kxx 0 0 KxΣD
KxΣd

0 0 KϕD 0 0

0 KDϕ KDD KDΣD
KDΣd

KΣDx 0 KΣDD 0 KΣDΣd

KΣdx
0 KΣdD KΣdΣD

KΣdΣd

























u

∆φ

∆D

∆ΣD

∆Σd













,

(75)
The objective of the following derivations is to present the expressions for
non-zero blocks of the stiffness matrix in above equation (75). The stiffness
matrix contribution Kab

xx
is obtained exactly as in equation (46). The stiff-

ness matrix contribution Kab
xΣD

, emerging from the linearisation of Ra
x

with
respect to incremental changes in the set ΣD, can be further decomposed into
each of the contributions of the elements of the set ΣD as

Kab
xΣD

=
[

Kab
xΣF

Kab
xΣH

Kab
xΣJ

Kab
xD0

]

, (76)

where each of the individual contribution in (76) is obtained as

Kab
xΣF

=

∫

V

(I ⊗∇0N
x

a )NF

b dV ;
[

Kab
xΣH

]

ijI
=Eijk





∫

V

(F x ∇0N
x

a )NH

b dV





kI

;

Kab
xΣJ

=

∫

V

NJ
b Hx∇0N

x

a dV ; Kab
xD0

=

∫

V

(Σd ⊗∇0N
x

a )ND0

b dV .

(77)
The stiffness matrix contribution Kab

xΣd
yields

Kab
xΣd

=

∫

V

(D0 ·∇0N
x

a )Nd

b I dV . (78)
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The stiffness matrix contribution obtained from the linearisation of Ra
ϕ

with respect to incremental changes in the elements of the set D is

Kab
ϕD =

[

0 0 0 Kab
ϕD0

]

; Kab
ϕD0

=

∫

V

Nϕ
a N

D0

b I dV . (79)

The stiffness matrix contribution of the diagonal block Kab
DD results in

Kab
DD =

∫

V









NF

a N
F

b ΦFF NF

a N
H

b ΦFH NF

a N
J
b ΦFJ NF

a N
D0

b ΦFΣD0

NH

a NF

b ΦHF NH

a NH

b ΦHH NH

a NJ
b HJ NH

a ND0

b ΦFΣD0

NJ
a N

F

b ΦJF NJ
a N

H

b ΦJH NJ
a N

J
b ΦJJ NJ

a N
D0

b ΦJΣD0

ND0

a NF

b ΦΣD0F
ND0

a NH

b ΦΣD0H
ND0

a NJ
b ΦΣD0J ND0

a ND0

b ΦΣD0ΣD0









dV ,

(80)
where the Hessian operator HΦ has been defined in equation (28). In the
case in which an explicit representation of the extended Helmholtz’s energy
functional Φ(F ,H , J,ΣD0

,Σd) is not available Appendix B shows the re-
lationship between the components of the Hessian operator HΦ in terms of
the components of the Hessian operator HW . The stiffness matrix contribu-
tion Kab

DΣD
arising from the linearisation of Ra

D with respect to incremental
changes in the elements of the set ΣD is defined as

Kab
DΣD

= −
∫

V









NF

a N
F

b I 0 0 0

0 NH

a NH

b I 0 0

0 0 NJ
a N

J
b 0

0 0 0 −ND0

a ND0

b I









dV . (81)

Finally, the expression for the matrix Kab
DΣd

emerges as

Kab
DΣd

=

∫

V

[

NF

a N
d

b ΦFΣd
NH

a Nd

b ΦHΣd
NJ

a N
d

b ΦJΣd
ND0

a Nd

b ΦΣD0Σd

]

dV .

(82)
The stiffness matrix contribution Kab

ΣDΣd
yields

Kab
ΣDΣd

=
[

0 0 0 Kab
D0Σd

]

; Kab
D0Σd

=

∫

V

ND0

a Nd

b F T
x
dV . (83)

The last stiffness matrix involved in the variational principle ΠΦ (33),
namely, Kab

ΣdΣd
is obtained as

Kab
ΣdΣd

=

∫

V

ND0

a NΣd

b ΦΣdΣd
dV . (84)
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5. Examples

The objective of this section is to present a series of numerical examples
in order to prove the robustness, accuracy and applicability of the compu-
tational framework presented above. Numerical results dealing with both
displacement-potential based and mixed formulations will be displayed.

Three formulations have been compared, corresponding to: i) displacement-
potential based formulation, hereby denoted as DPF [40]; ii) an eleven field
{p,D,ΣD,Σd} (66)-(67) formulation associated to the variational principle
ΠΦ (33) and described in Section (4.3), hereby denoted as MΦF and iii),
an eleven field {q,W ,ΣW ,D0} (36)-(37) formulation associated to the vari-
ational principle ΠW (31) and described in Section (4.2), hereby denoted as
MWF.

All of the numerical results in which mixed formulations have been used
correspond to the following selection of functional spaces: continuous quadratic
interpolation of the displacement field (geometry) x and the electric poten-
tial field φ, piecewise linear interpolation of the conjugate pairs {F ,ΣF },
{H ,ΣH}, {D0,ΣD0

} and {d,Σd}, and piecewise constant interpolation of
the Jacobian J and its associated stress conjugate ΣJ . With these functional
spaces, the two mixed formulations MΦF and MWF will render identical
results.

5.1. Three dimensional patch test

This first numerical example includes a standard three dimensional patch
test in order to asses the correctness of the computational implementation.
This problem has already been presented in References [22, 24] in the context
of elasticity. The constitutive model used in this case is that introduced in
Reference [1], suitable to describe the behaviour of electrostrictive dielectric
elastomers. The internal energy associated to this model is defined as

Wel =µ1IIF + µ2IIH +
1

2Jε1

IId + µe

(

II2
F

+
2

µeεe

IIF IId +
1

µ2
eε

2
e

II2
d

)

+
1

2ε2

IID0
− 2(µ1 + 2µ2 + 6µe) ln J +

λ

2
(J − 1)2,

(85)
where II(•) is the second invariant of the entity (•), µ1, µ2, µe and λ are elas-
tic parameters (N/m2) and ε1 and εe, electric parameters with units (N/V 2).
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The constitutive model defined in above equation (85), and also those em-
ployed in forthcoming sections, are based on a convex multi-variable combi-
nation of invariants of the set {F ,H , J,D0,d}. Although not as direct as the
rest of the terms in above equation (85), the third and fourth terms (i.e. as-
sociated to the material parameters ε1 and µe, respectively) can be obtained
as convex combinations of the pairs {J,d} and {F ,d}, respectively. There-
fore, positive definiteness of the Hessian operator [HW ] (19) is automatically
satisfied for this constitutive model [1].

Particularisation of the expressions for the elasticity tensor C and the
dielectric tensor θ in equations (A.1) and (A.5) to the reference configuration,
namely F = H = I, J = 1 and d = D0 = 0, enables the material parameters
in (85) to be related to the classical Lamé parameters and the dielectric
permittivity of the material in the reference configuration, namely µ, λ̂ and
ε as

2µ1 + 4µ2 + 12µe =µ; λ+ 8µe + 4µ2 = λ̂;
ε1

1 + c1 + 12c2
= εrε0 = ε,

(86)
where ε0 is the electric permittivity of the vacuum, with ε0 ≈ 8.854 ×
10−12N/V 2 and with

c1 =
ε1

ε2

; c2 =
ε1

εe

, (87)

The material properties in the reference configuration are chosen as µ =
105 (Pa), λ̂ = 1.094 × 106 (Pa) and ε = 4.68ε0, which are compatible with
a Poisson ratio of ν = 0.4582 in the reference configuration. The material
parameters, corresponding with this definition in the reference configuration,
can thus be obtained and are presented in Table 2.

µ1 (Pa) µ2 (Pa) µe (Pa) λ (Pa) ε1 (N/V 2) c1 c2

0.225µ 0.5µ1 0.0083µ 106 4.68ε0 0 1
232.84

Table 2: Material properties for example 5.1.

A homogeneous electric field is defined in the OX3 direction, applied to
a cubic shape domain of side L, as depicted in Figure 2. To achieve this
distribution of electric field, non-zero normal (electric) Dirichlet boundary
conditions are applied on the boundary faces perpendicular to the OX3 axis
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(a) (b) (c)

Figure 2: Three dimensional patch test. (a) View of half undistorted mesh in
the reference configuration. (b) View of half distorted mesh in the reference
configuration. (c) Example of deformed geometry after applying a voltage
difference of ∆ϕ = 30MV in the OX3 direction for the constitutive model
defined in (85).

and zero (electric) Neumann boundary conditions are defined everywhere
else. Moreover, zero (mechanical) normal Dirichlet boundary conditions are
defined on three faces perpendicular to the OX1, OX2 and OX3 directions
and zero (mechanical) Neumann boundary conditions are applied everywhere
else.

The domain is discretised using two different meshes of (2 × 2 × 2) × 6
tetrahedral elements. First, a structured mesh is shown in Figure 2(a) and
second, a distorted mesh is shown in Figure 2(b), where the interior node is
displaced randomly. The objective of this example is to demonstrate that
the same homogeneous solution is obtained for both meshes. As expected,
hence passing the patch test, for the two mixed formulations defined, namely
MWF and MΦF, the results are identical for both meshes. A homogeneous
deformation gradient tensor and a Lagrangian electric field for both meshes
is obtained as

F =





1.15598 0 0
0 1.15598 0
0 0 0.749559



 ; E0 =





0
0
30



 (MV/m). (88)

For completeness, the quadratic convergence of the Newton-Raphson al-
gorithm is displayed in Figure 3.
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Figure 3: Three dimensional patch test: quadratic convergence of the
Newton-Raphson linearisation procedure.

5.2. Convergence of the proposed formulation

The objective of this example is to demonstrate the p-order of accuracy
of the different mixed formulations, as a function of the chosen finite element
approximation spaces. The constitutive model considered is based on the
following convex multi-variable expansion

Wsimple = µ1IIF +µ2IIH−2 (µ1 + 2µ2) ln J+
λ

2
(J − 1)2+

1

2ε1

IId+
1

2ε2

IID0
.

(89)
The material parameters in (89) are presented in Table 3. In order to

µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V 2) ε2 (N/V 2)
1 1

2
1 4 4

Table 3: Material properties for example 5.2.

study the p-order of convergence of the new mixed Finite Element formula-
tions, the analysis of an ad-hoc test problem is carried out. The problem is
constructed so that smoothness of the solution is guaranteed. For that pur-
pose, the following simple exact fields associated to the deformed or Eulerian
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configuration x and the electric potential ϕ are considered

xexact = X +





AX3
1

BX3
1

CX3
1



 ; ϕexact = ϕ0X
3
1 , (90)

where the superscript in (90) is used to emphasise the exact smooth solution
with A = 0.1, B = 0.2, C = 0.3 and ϕ0 = 104. The deformation gradient
tensor and the Lagrangian electric field are obtained via equations (1) and
(7a), respectively, leading to

F exact =





1 + 3AX2
1 0 0

0 1 + 3BX2
2 0

0 0 1 + 3CX2
3



 ; Eexact
0 = −





3ϕ0X
2
1

0
0



 .

(91)
The remaining variables defining multi-variable convexity, namely {H , J,D0,d}

need to be obtained for the smooth displacement and electric potential fields
in equation (90). Particularisation of equation (2) for the smooth fields in
equations (90) enables Hexact and Jexact to be obtained as

Hexact =
1

2
F exact F exact; Jexact =

1

3
Hexact : F exact. (92)

Particularisation of equation (13) to the constitutive model in equation
(89) leads to

1

ε2

Dexact
0 +

1

ε1

(

F exact
)T

dexact = Eexact
0 . (93)

Making use of the relationship dexact = F exactDexact
0 in (93) results in the

final expression of the Lagrangian electric displacement field Dexact
0 as

(

1

ε2

I +
1

ε1

Cexact

)

Dexact
0 = Eexact

0 ⇒Dexact
0 =

(

1

ε2

I +
1

ε1

Cexact

)−1

Eexact
0 .

(94)
where Cexact is the right Cauchy-Green tensor. Once all the elements of
the set Vexact have been determined, it is possible to obtain the set of exact
work conjugates Σexact

V via equation (11). Finally, the associated volumetric
force and electric charge in mechanical and electrical equilibrium with the
exact first Piola Kirchhoff stress tensor P exact and exact Lagrangian elec-
tric displacement field Dexact

0 are determined from equations (9a) and (5a),
respectively as

f 0(x
exact, ϕexact) = −DIVP exact; ρ0(x

exact, ϕexact) = DIVDexact
0 , (95)
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where Dexact
0 has been obtained in (94) and where P exact can be obtained

after application of equation (13).
It is then that the rate of convergence of the different variables {x, ϕ,V ,ΣV}

to their analytical counterparts, namely {xexact, ϕexact,Vexact,Σexact
V } can be

studied. For that purpose, the same geometry as that presented in Section
5.2 is considered and initially discretised with (2 × 2 × 2) × 6 tetrahedral
elements and, subsequently, h-refinement is carried out generating a total of
three discretisations.

The L1 norm of the error for a particular component of the different
variables involved, namely x, F , H , J , D0, d, ΣF , ΣH , ΣJ , ΣD0

and Σd is
investigated for two different choices of interpolation spaces, leading to the
definition of two different Finite Element types. The first element, called
”Element 1”, corresponds to the choice of interpolation spaces described at
the beginning of Section 5, namely, continuous quadratic interpolation of the
displacement field (geometry) x and the electric potential field φ, piecewise
linear interpolation of the conjugate pairs {F ,ΣF }, {H ,ΣH}, {D0,ΣD0

}
and {d,Σd} and piecewise constant interpolation of the Jacobian J and its
associated stress conjugate ΣJ . Alternatively, ”Element 2” is characterised by
the same choice of interpolation spaces for the electric potential (continuous
quadratic interpolation) and for the pairs {F ,ΣF }, {H ,ΣH}, {D0,ΣD0

}
and {d,Σd} (piecewise linear interpolation). The Jacobian and its work
conjugate, namely J,ΣJ are interpolated using piecewise linear interpolation.
Four cubic bubble functions are added at the barycentre of each face of the
tetrahedron and a quartic bubble function is added at the barycentre of the
tetrahedron itself, in analogy with the classical P2+ − P1 Crouzeix-Raviart
element [45], typically used in u − p formulations for incompressible and
nearly incompressible elasticity.

Figure 4 shows the order of accuracy of the different unknown variables for
the mixed formulations (all yielding identical convergence pattern). Figure
4(a) displays the convergence of the variables {x,F ,H , J,D0,d} whereas
Figure 4(c) displays the convergence of the variables {ΣF ,ΣH ,ΣJ ,ΣD0

,Σd}
for ”Element 1”. As expected, the constant interpolation of the Jacobian J
and its work conjugate ΣJ affects the optimal convergence of the different
variables, specially those purely mechanical and the pair {d,Σd}, for which a
decrease of one is observed in the order of convergence. Figure 4(b) displays
the convergence of the variables {x,F ,H , J,D0,d} whereas Figure 4(d) dis-
plays the convergence of the variables {ΣF ,ΣH ,ΣJ ,ΣD0

,Σd} for ”Element
2”. As expected, the convergence observed is p+ 1 in all the variables, since
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the convergence is optimal for this element.

5.3. Comparison of performance between displacement-potential and mixed

formulations

The objective of this example is to compare the solution obtained with the
displacement-potential based formulation DPF against those obtained with
the mixed formulations MΦF and MWF in a bending dominated scenario
and near the verge of incompressibility. A standard benchmark problem typ-
ically used in the computational mechanics community to test formulations
under those specific conditions is the Cook’s membrane problem [22, 24].

The geometry and boundary conditions of the membrane are depicted in
Figure 5. The application of an electric potential in the electrodes leads to
an out of plane bending-type deformation. In fact, although in more realistic
geometrical configurations (the purpose of this example is exclusively to test
the mixed formulations proposed), this type of potential Dirichlet boundary
conditions are used in practical applications where dielectric elastomers and
piezoelectric polymers are utilised as bending actuators.

The constitutive model used is identical to that described in Section 5.1
in equations (85), (86) and (87). The material properties in the reference
configuration are chosen as µ = 105 (Pa), λ̂ = 4.99×107 (Pa) and ε = 4.68ε0,
which are compatible with a Poisson ratio of ν = 0.499 in the reference
configuration. The material parameters of the model, compatible with this
definition in the reference configuration (as explained in Section 5.1), are
chosen according to Table 4.

µ1 (Pa) µ2 (Pa) µe (Pa) λ (Pa) ε1 (N/V 2) c1 c2

0.225µ 0.5µ1 0.0083µ 4.99× 107 1.05ε 0 1
232.84

Table 4: Material properties for example 5.3. Ratios c1 and c2 defined as in
equation (87).

Figures 6(a)-(b) show the contour plot for the hydrostatic pressure p and
for the stress variable ΣF 23 obtained with the MWF formulation. Finally,
Figures 6(c)-(d) display the contour plot for the Eulerian electric field com-
ponent E1 and the Eulerian displacement field component D2 obtained with
the MWF formulation.
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Figure 4: Convergence of the proposed formulation: order of accuracy of
different strain, stress and electric magnitudes for the mixed formulations.
Order of accuracy of the kinematic variables x, F , H and J and electric
variables ϕ, ΣD0

and Σd for (a) Element 1 and (b) Element 2. Order of
accuracy of the kinetic variables ΣF , ΣH and ΣJ and electric variables D0

and d (c) Element 1 and (d) Element 2. Constitutive model defined in (85).
Results obtained with the MΦF formulation.
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Figure 5: Comparison of performance between DPF and MWF formula-
tions. Geometry and boundary conditions.

A detailed comparison between the results provided by the DPF and the
mixed formulations is established in Table 6 for different meshes. For com-
pleteness, Table 5 displays the discretisation details for each of the meshes
employed. Results are presented for stresses, electric displacements and dis-
placements sampled at points A, B and C (XA = [24 52 − 2]T ; XB =
[24 22 − 2]T ; XC = [48 60 − 2]T ). As can be noticed, the DPF imple-
mentation underestimates the displacements obtained with respect to those
for the alternative mixed formulations. As expected, regarding the stresses,
the differences are very significant between both formulations. Whereas the
results for the mixed formulations show a defined convergence pattern, the
results of the DPF do not seem to converge, with clear pressure oscillations
(even with incoherent changes in sign as mesh refinement is carried out).

5.4. Torsional actuator. Fiber reinforced dielectric elastomer

The objective of this example is to observe how the behaviour of a di-
electric elastomer matrix can be modified when fibres are introduced in a
specific direction characterised by the unit normal vector N . The geometry
and boundary conditions for this example are depicted in Figure 7(a), where
the dimensions a, b and c are set to a = 1, b = 2 and c = 10. The actu-
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(a) (b)

(c) (d)

Figure 6: Contour plot of (a) the hydrostatic pressure (N/m2), (b) stress
conjugate variable ΣF 23 (N/m2), (c) the electric field component E1 and
(d) the electric displacement complement D2 for the MWF formulation.
Polyconvex constitutive model in equation (85), with material parameters
defined in Table 4. Electric potential difference ∆ϕ applied between elec-
trodes of 140.49MV . Results shown for a discretisation of (12× 12× 4)× 6
tetrahedral elements (8, 125× 3 and 8, 125 degrees of freedom associated to
the spatial coordinates x and the electric potential, respectively).
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Mesh Elems. Dofs. x Dofs. ϕ Dofs. U Dofs. J,ΣJ

1 1,470 2, 475× 3 2,475 1, 470× 4× 9 1, 470× 1
2 3,600 5, 730× 3 5,730 3, 600× 4× 9 3, 600× 1
3 5,880 9, 251× 3 9,251 5, 880× 4× 9 5, 880× 1

Table 5: Comparison of performance between DPF and MWF formulations.
Mesh discretisation details. Column 2: number of tetrahedral elements (El-
ems.). Column 3: number of degrees of freedom (Dofs.) associated to the
spatial coordinates x. Colummn 4: number of degrees of freedom (Dofs.)
associated to the electric potential. Column 5: number of degrees of freedom
(Dofs.) associated to the fields U ≡ {F ,H ,D0,ΣF ,ΣH ,ΣD0

,Σd}. Column
6: number of degrees of freedom (Dofs.) associated to the strain/stress fields
J,ΣJ .

ator is completely fixed at the position X3 = 0 (0 ≤ X3 ≤ 10) and a pair
of electrodes is located in X1 = −0.5 and X1 = 0, where −0.5 ≤ X1 ≤ 1.
Moreover, the dielectric elastomer matrix is reinforced with fibres oriented
as in Figure 7(b). For clarity, the vector N in the direction of the fibers
has been parametrised spherically in terms of the angles θ and ψ (refer to
Figure 7(b)). In order to produce intricate deformation patterns, different
arrangements of the fibers are used in the areas defined by the constraint
X2 > 0 and X2 < 0, where −1 ≤ X2 ≤ 1.

In order to account for the fibres in the constitutive model, an additive
decomposition of the internal energy in terms of a purely isotropic component
(associated to the dielectric elastomer matrix) and an anisotropic component
(associated to the fibers) is followed as

Wfibre =Wel +Wani(F ,H , J,N ), (96)

where the convex multi-variable isotropic component Wel has been defined
in equation (85) and with Wani(F ,H , J,N ) defined as,

Wani(F ,H , J,N ) = µ3IIFN + µ3IIHN − 2µ3 ln J. (97)

Notice that the above additive decomposition of the internal energyWfibre

in (96) into its isotropic and anisotropic contributions, namely Wel and Wani
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DPF formulation MWF formulation

Coarse Medium Fine Coarse Medium Fine

σA
xx 1192.87 333.04 118.32 520.28 494.75 412.81
σB

xx 1542.95 1033.10 739.31 415.80 325.46 233.81
σA

yy 1064.70 112.11 -123.94 132.35 157.46 155.31
σB

yy 1569.10 1046.26 734.48 260.29 159.92 87.60
σA

zz 1506.68 821.84 693.71 1199.33 1021.09 874.46
σB

zz 2169.36 1836.70 1570.01 1009.44 778.38 674.34
D0z

A(×10−4) 5.447 5.440 5.438 5.432 5.436 5.439
D0z

B(×10−4) 5.439 5.435 5.434 5.424 5.433 5.438
uC

x 0.455 0.456 0.456 0.455 0.456 0.456
uC

y 0.495 0.498 0.499 0.502 0.503 0.503
uC

z 3.708 3.802 3.843 3.897 3.933 3.948

Table 6: Comparison of performance between DPF and MWF formulations.
Stress components (kPa), electric displacement components (10−4N/mV )
and displacements (m) at points A, B and C. Results obtained using the
DPF formulation (columns 2 to 4) and mixed formulations (columns 5 to
7). Prescribed potential difference ∆ϕ = 62.5MV/m. Coarse, medium and
fine discretisations of (8× 8× 6)×6, (12× 12× 6)×6 and (16× 16× 6)×6
tetrahedral elements, respectively.
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(a) (b)

Figure 7: Torsional actuator. Fiber reinforced dielectric elastomer. (a) Ge-
ometry and boundary conditions. (b) Arrangement of the fibers within the
isotropic matrix. Illustration of spherical parametrisation of the vector N in
the region characterised by X2 > 0.
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guarantees that the stress and the electric displacement field vanish in the ref-
erence configuration. Moreover, provided that µ3 is positive, the anisotropic
component Wani in (97) is convex multi-variable itself. Hence, the resulting
energy functional is convex multi-variable. The following choice of material
parameters is used

µ1 (Pa) µ2 (Pa) µ3 (Pa) µe (Pa) λ (Pa) ε1 (N/V 2) c1 c2
1
20
µ 1

40
µ 1

2.63
µ 1

300
µ 105 1.15ε 0 1.25× 10−2

Table 7: Material properties for example 5.4. Shear modulus in the reference
configuration defined as µ = 105 (Pa). The ratios c1 and c2 in Table 4 are
defined as in equation (87).

Figure 8 shows, for the same value of the applied electric potential, the
deformed shape and the contour plots for the stress conjugate ΣF 11 and the
Eulerian electric field component E1 corresponding to different orientations
of the angles θ and ψ parametrising the unit vector N (see Figure 7(b)).
Finally, Figure 9 shows the contour plot of the hydrostatic pressure p for
different stages of the deformation corresponding to different values of the
prescribed voltage in the electrodes for the particular arrangement of fibers
described in Figure 8(b).

5.5. Twisting of piezoelectric energy harvester

This example includes the twisting of a piezoelectric material whose ge-
ometry is characterised by a length L = 6m and a squared cross sectional
area of side a = 1m. The energy harvester is clamped at its left end and
subjected to a torsion on its right end. The electric potential is fixed to zero
at the plane defined by the constraint X1 = 0. This example is included to
demonstrate the robustness of the mixed formulations in extreme deforma-
tion scenarios. The torsion at the right end is generated through Dirichlet
boundary conditions as follows

(I −EY ⊗EY ) x = θEY ×X, (98)

where EY is the unit vector normal to the cross section in the reference
configuration, X are the initial coordinates, θ is the angle of rotation and x

are the final coordinates. As can be observed, the section is not restricted to
in-plane torsion and zero Neumann boundary conditions are imposed normal
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(a) (b) (c)

(d) (e) (f)

Figure 8: Torsional actuator. Fiber reinforced dielectric elastomer. Contour
plot of hydrostatic pressure p and Eulerian electric field E1 for the following
spherical parametrisation of the vector N in the direction of the fibers: (a) p
and (d) E1 for θ = π/2 and ψ = π/4 in X2 > 0 and θ = −π/2 and ψ = π/4
in X2 < 0, (b) p and (e) E1 for θ = ψ = π/4 in X2 > 0 and θ = 5π/4 and
ψ = π/4 in X2 < 0 and (c) p and (f) E1 for θ = ψ = 0. Results obtained with
the MWF formulation for ∆ϕ = 11.53MV/m. Constitutive model defined
in (96) and (97) with material parameters given in Table 7. Results shown
for a discretisation of (2× 8× 30) × 6 tetrahedral elements (5, 185 × 3 and
5, 185 degrees of freedom associated to the spatial coordinates x and electric
potential, respectively).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Torsional actuator. Fiber reinforced dielectric elastomer. Contour
plot of the hydrostatic pressure p for (a) ∆ϕ = 5.49MV , (b) ∆ϕ = 7.27MV ,
(c) ∆ϕ = 8.43MV , (d) ∆ϕ = 10.01MV , (e) ∆ϕ = 10.43MV , (f)
∆ϕ = 10.71MV , (g) ∆ϕ = 11.07MV , (h) ∆ϕ = 11.48MV and (i)
∆ϕ = 11.67MV . Fibers arrangement: θ = ψ = π/4 in X2 > 0 and θ = 5π/4
and ψ = π/4 in X2 < 0. Results obtained with the mixed formulations.
Constitutive model defined in (96) and (97) with material parameters given
in Table 7. Results shown for a discretisation of (2× 8× 30)× 6 tetrahedral
elements (5, 185 × 3 and 5, 185 degrees of freedom associated to the spatial
coordinates x and electric potential, respectively).
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to the cross sectional area. The same example in the context of pure elasticity
has been presented by the authors in Reference [24].

3X

2X

1X

T(0,0,0)

T(1,1,0)

T(1,1,6)

(a) (b)

Figure 10: Twisting of piezoelectric energy harvester. (a) Boundary condi-
tions: clamped left end and twisting rotation applied at the right end. ϕ = 0
in planeX1 = 0. Axes OX1, OX2 and OX3 coincide with ox, oy and oz in (b),
respectively. (b) Example of finite element discretisation: (4× 4× 24) × 6
tetrahedral elements (3, 969× 3 and 3, 969 degrees of freedom associated to
the spatial coordinates x and electric potential, respectively).

The geometry and boundary conditions for the problem are depicted in
Figure 10(a). In this example, a simple convex multi-variable constitutive
model able to generate the direct piezoelectric effect is proposed. In particu-
lar, a transversely isotropic material characterised by a preferred direction N

parallel to the axis OX2 is considered. Notice that the aim of this example
is not to fully characterise this specific material symmetry class. A simple
convex multi-variable constitutive law for transverse isotropy incorporating
piezoelectricity is proposed as,

Wp = µ1IIF + µ2IIH +
1

2Jε1

IId +
1

2ε2

IID0
+ µ3IIv + g(J,D0,N ),

(99)
where the vector v in above equation (99) is defined as,

v =
d√
µ3ε3

+ FN , (100)

where µ3 has units of stress, namely (Pa) and ε3 of electric permittivity,
namely (N/V 2) . The convex function g in above equation (99) has been
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introduced to guarantee that both the stress and the electric field in the
reference configuration vanish. A possible choice of g which satisfies that
condition is,

g(J,D0,N ) = − (2µ1 + 4µ2 + 2µ3) ln J +
λ

2
(J − 1)2− 2

√

µ3

ε3

D0 ·N . (101)

Notice that the proposed constitutive law defined in equations (99) and
(101) is convex multi-variable. The material parameters in above equation
(99) has been chosen according to Table 8.

µ1 (GPa) µ2 (GPa) µ3 (GPa) λ (GPa) ε1 (N/V 2) ε2 (N/V 2) ε3 (N/V 2)
1 1

2
1
2

495 4.68ε0 106ε1 103ε1

Table 8: Material properties for example 5.5.

Notice that now the material parameters in Table 8 are more consistent
with those of piezoelectric polymers. Figures 11(a)-(d) display the contour
plot of the stress component σ12, the stress conjugate ΣF 32, and the compo-
nents of the Eulerian electric displacement field D1 and D3, respectively.

6. Concluding remarks

This paper has presented a new computational framework tailor–made
for the numerical simulation of electro active polymers subjected to extreme
deformations and/or electric fields. In a previous work, Gil and Ortigosa
[1] extended the concept of polyconvexity to the field of nonlinear electro-
elasticity. The new concept of multi-variable convexity enables a new family
of Hu-Washizu mixed variational principles to be defined within the context
of nonlinear electro-elasticity. The internal energy density is defined as a
convex multi-variable function of the deformation gradient F , its adjoint
H , its determinant J , the Lagrangian electric displacement field D0 and an
additional spatial or Eulerian vector d computed as the product between the
deformation gradient tensor and the Lagrangian electric displacement field.
This paper has focussed on the Finite Element discretisation of two types of
mixed variational principles, introduced for the first time in [1].

These types of Finite Element enhanced methodologies are necessary
in scenarios in which the simpler displacement-potential based formulation
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Twisting of piezoelectric energy harvester. Contour plots corre-
sponding to (a) σ12, (b) σ22, (c) p, (d) ΣF 11, (e) ΣH21, (f) ϕ, (g) D2 and (h)
D3. Results obtained with the new mixed formulations. Constitutive model
defined in (99) and (101) with material parameters given Table 8. Results
shown for a discretisation of (4× 4× 24)×6 tetrahedral elements (3, 969×3
and 3, 969 degrees of freedom associated to the spatial coordinates x and
electric potential, respectively).
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yields non-physical results, such as volumetric locking, bending and shear
locking, pressure oscillations and electro-mechanical locking, to name but a
few. The applicability, accuracy and robustness of the new formulation are
demonstrated via a series of challenging numerical examples, including both
isotropic and anisotropic polyconvex constitutive models.

For the two mixed formulations included in this paper, the use of inter-
polation spaces in which the sets {F ,H , J,D0,d} and its dual counterpart
{ΣF ,ΣH ,ΣJ ,ΣD0

,Σd} are described as piecewise discontinuous across ele-
ments enables these fields to be resolved locally, following a standard static
condensation procedure, thus leading to a computational cost comparable to
that of the displacement-potential based approach, yet with far more accu-
racy.

The new framework presented opens very interesting possibilities to sim-
ilar multi-physics problems within the field of smart materials, which are the
current focus of the authors.
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Appendix A. Relationship between the constitutive tensors of the

internal energy in terms of its reduced and extended

representations

As stated in Section 2.5, it might be convenient to resort to a representa-
tion of the internal energy in terms of the set V = {F ,H , J,D0,d}. However,
for material characterisation purposes, it is necessary to obtain the relation-
ship between the components of the Hessian operator [HW ] and those of the
constitutive tensors C, Q and θ (16) resulting from the equivalent reduced
representation of the internal energy e(∇0x,D0). Following Reference [1],
the constitutive tensor C (16) can be obtained in terms of the components
of the Hessian operator [HW ] as

C = WFF + F (WHH F ) +WJJH ⊗H + C1

+ 2(WFH F )sym + 2(WFJ ⊗H)sym + 2(WFd ⊗D0)
sym

+ 2((F WHJ)⊗H)sym + 2((F WHd)⊗D0)
sym

+ 2(H ⊗ (WJd ⊗D0))
sym + A,

(A.1)

where

AiIjJ = EijpEIJP (ΣH + ΣJΣH)pP ; C1,iIjJ = (Wdd)ij D0ID0J . (A.2)

Moreover, for any fourth order tensor T included in equation (A.1), the
symmetrised tensor T sym is defined as T sym

iIjJ = 1
2
(TiIjJ + TiJjI). The third

order constitutive tensor QT (16) is obtained as

QT = WFD0
+ F WHD0

+ H ⊗WJD0
+ QT

1

+ QT
2 + QT

3 + QT
4 + QT

5 + Σd ⊗ I.
(A.3)

where tensors QT
i in above equation (A.3) are

(

QT
1

)

iIJ
= (WdD0

)iJ D0I ; (A.4a)
(

QT
2

)

iIJ
=

(

WFdiIj

)

FjJ ; (A.4b)
(

QT
3

)

iIJ
=(F WHd)iIjFjJ ; (A.4c)

(

QT
4

)

iIJ
=(H ⊗WJd)iIjFjJ ; (A.4d)

(

QT
5

)

iIJ
= (Wdd)ij FjJD0I . (A.4e)

Finally, the second order constitutive tensor θ (16) can be obtained as

θ = WD0D0
+ (WD0d

F + F TWdD0
) + F TWddF . (A.5)
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Appendix B. Relationships between the Hessian operator of the

Helmholtz’s energy functional and that for the in-

ternal energy

When an explicit representation of the Helmholtz’s and extended Helmholtz’s
energy functionals introduced in Section 2.6.1, namely Φ(∇0x,−∇0ϕ) (22)
and Φ(F ,H , J,ΣD0

,Σd) (20c) is not available, their associated Hessian oper-
ators need to be obtained in terms of the components of the Hessian operators
associated to the internal energy function e(∇0x,D0) and its extended repre-
sentation W (F ,H , J,D0,d) respectively, by exploiting the partial Legendre
transforms presented in equations (22) and (20c), respectively.

Starting with a generic partial Legendre transform between two generic
energy functionals, this section shows how to relate the Hessian operators
of Φ(∇0x,−∇0ϕ) and Φ(F ,H , J,ΣD0

,Σd) to those for e(∇0x,D0) and its
extended representation W (F ,H , J,D0,d).

Appendix B.1. Generic transformation between Hessian operators

Let F(A,B) be an energy functional convex in the sets of variables {A,B}.
Convexity of the energy functional enables a new energy functional L(A,ΣB)
depending upon the set of variables A and a set of variables ΣB (work con-
jugate to those contained in the set B) to be defined via the following partial
Legendre transformation,

L(A,ΣB) = −max
B
{ΣB : B − F (A,B)} . (B.1)

Let the first derivatives of the energy functional L(A,ΣB) and the sets of
variables ΣA and ΣB be related as

∂F
∂A = ΣA;

∂F
∂B = ΣB. (B.2)

Combination of equations (B.1) and (B.2) enables the first derivatives of
the energy functional L(A,ΣB) to be obtained as,

∂L
∂A = ΣA;

∂L
∂ΣB

= −B. (B.3)

Let the Hessian operators of both energy functionalsF(A,B) and F(A,B)
be represented as,

[HL] =

[

LAA LAΣB

LΣBA LΣBΣB

]

; [HF ] =

[

FAA FAB
FBA FBB

]

, (B.4)
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with LCD = ∂2L

∂C∂D
. The components of the Hessian operator [HF ] can obtained

in terms of the components of the Hessian operator [HL] in a standard manner
as

LΣBΣB
= − [FBB]−1 ; (B.5a)

LAΣB
= −FABLΣBΣB

; (B.5b)

LAA = FAA −FABLΣBA; , (B.5c)

where LAΣB
= [LΣBA]T .

Appendix B.2. Relation between the Hessian operator of the Helmholtz’s en-

ergy Φ(∇0x,∇0ϕ) and the Hessian operator of the internal

energy e(∇0x,D0)

Let the set of variables A, B, ΣA and ΣB (B.1) be defined as,

A = ∇0x; B = D0;

ΣA = P ; ΣB = −∇0ϕ.
(B.6)

For this particular case, the energy functions L(A,ΣB) and F(A,B) coin-
cide with the Helmholtz’s energy functional Φ(∇0x,−∇0ϕ) and the internal
energy e(∇0x,D0), respectively, namely

L(A,ΣB) = Φ(∇0x,−∇0ϕ); F(A,B) = e(∇0x,D0). (B.7)

For these two energy functionals, the equivalent expression to that in
(B.5a), relating electrical components of the Hessian operators of Φ(∇0x,−∇0ϕ)
and e(∇0x,D0), namely ε (25) and θ (16), respectively is

ε = θ−1. (B.8)

The equivalent expression to equation (B.5b), relating the coupled con-
tributions of both Hessian operators, namely P (25) and Q (16), yields

−PT = QT • ε, (B.9)

where the operation • in above (B.9) indicates the contraction of the last
and first components of the tensors on the left and right hand sides of the
operation symbol •, respectively. Finally, the mechanical component of the
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Hessian operator of the Helmholtz energy, namely C? (16) emerges after
applying equation (B.5a), yielding

C? = C + Q •P , (B.10)

with C defined in (16).

Appendix B.3. Relation between the Hessian operator [HΦ] and the Hessian

operator [HW ]

Let the set of variables A, B, ΣA and ΣB (B.1) be defined as,

A = {F ,H , J}; B = {D0,d};
ΣA = {ΣF ,ΣH ,ΣJ}; ΣB = {ΣD0

,Σd}.
(B.11)

For this particular case, the energy functions L(A,ΣB) and F(A,B) co-
incide with the extended Helmholtz’s energy Φ(F ,H , J,ΣD0

,Σd) and the
internal energy W (F ,H , J,D0,d), respectively, namely

L(A,ΣB) = Φ(F ,H , J,ΣD0
,Σd); F(A,B) = W (F ,H , J,D0,d).

(B.12)
For these two energy functionals, the equivalent expression to that in

(B.5a), relating some of the components of the Hessian operators [HΦ] and
[HW ] reads as

[

ΦΣD0
ΣD0

ΦΣD0
Σd

ΦΣdΣD0
ΦΣdΣd

]

= −
[

WD0D0
WD0d

WdD0
Wdd

]−1

. (B.13)

Analogously, the equivalent expression to equation (B.5b) yields





ΦFΣD0

ΦHΣD0

ΦJΣD0



 = −





WFD0

WHD0

WJD0





[

ΦΣD0
ΣD0

]

;





ΦFΣd

ΦHΣd

ΦJΣd



 = −





WFV

WHV

WJd





[

ΦΣdΣd

]

.

(B.14)
Finally, the remaining components of the Hessian operator [HΦ] emerge
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after applying equation (B.5a), yielding

ΦFF = WFF −
[

WFD0
WFd

]

[

ΦΣD0
F

ΦΣdF

]

; (B.15a)

ΦFH = WFH −
[

WFD0
WFd

]

[

ΦΣD0
H

ΦΣdH

]

; (B.15b)

ΦFJ = WFJ −
[

WFD0
WFd

]

[

ΦΣD0
J

ΦΣdJ

]

; (B.15c)

ΦHH = WHH −
[

WHD0
WHd

]

[

ΦΣD0
H

ΦΣdH

]

; (B.15d)

ΦHJ = WHJ −
[

WHD0
WHd

]

[

ΦΣD0
J

ΦΣdJ

]

; (B.15e)

ΦJJ = WJJ −
[

WJD0
WJd

]

[

ΦΣD0
J

ΦΣdJ

]

. (B.15f)
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Appendix C. Auxiliary residuals and stiffness matrices associated

to static condensation procedure

The auxiliary residuals and stiffness matrices arising in the static conden-
sation procedure for the variational principle ΠW (31) (see equations (60),
(61), (62), (64) and (65)) are

R̄
e

ΣY
= −[M e

3]
−1

(

Re
Y + Ke

YYR̄
e

Y −M e
2M

e
1

(

Re
D0

+ Ke
D0Y

R̄
e

Y

))

; (C.1a)

¯̄Re
D0

= −M e
1

(

Re
D0

+ Ke
D0Y

R̄
e

Y + Ke
D0ΣY

R̄
e

ΣY

)

; (C.1b)

R̄
e

Y = −[Ke
ΣYY

]−1Re
ΣY

; (C.1c)

M e
1 = [Ke

D0D0
−Ke

D0Y

(

[Ke
ΣYY

]−1Ke
ΣYD0

)

]−1; (C.1d)

M e
2 = [Ke

YD0
−Ke

YY

(

[Ke
ΣYY

]−1Ke
ΣYD0

)

]−1; (C.1e)

M e
3 = [Ke

YΣY
−M e

2M
e
1K

e
D0ΣY

]−1; (C.1f)

M e
Yx = −[Ke

ΣYY
]−1Ke

ΣYx
; (C.1g)

M e
ΣYx

= −M e
3

(

Ke
YYM e

Yx −M e
2M

e
1

(

Ke
D0x

+ Ke
D0Y

M e
Yx

))

; (C.1h)

M e
ΣYϕ = M e

3M
e
2M

e
1K

e
D0ϕ; (C.1i)

M̄
e

D0x
= −M e

1

(

Ke
D0ΣY

M e
ΣYx

+ Ke
D0x

+ Ke
D0Y

M e
Yx

)

; (C.1j)

M̄
e

D0ϕ = −M e
1

(

Ke
D0ΣY

M e
ΣYϕ + Ke

D0ϕ

)

; (C.1k)

M̄
e

Yx = M e
Yx − [Ke

ΣYY
]−1Ke

ΣYD0
M̄

e

D0x
; (C.1l)

M̄
e

Yϕ = −[Ke
ΣYY

]−1Ke
ΣYD0

M̄
e

D0ϕ. (C.1m)
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[22] J. Schröder, P. Wriggers, D. Balzani, A new mixed finite element based
on different approximations of the minors of deformation tensors, Com-
puter Methods in Applied Mechanics and Engineering 200 (2011) 3583–
3600.
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