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Abbreviations 1 

CR = Calorie Restriction, DA = Dopamine, GFAP = Glial Fibrillary Acidic Protein, 2 

GHSR1a = Growth Hormone Secretagogue Receptor 1a, GOAT = Ghrelin-O-3 

Acyltransferase, IBA1 = Ionized Calcium Binding Adaptor Molecule 1, MPTP = 1-4 

methyl-4-phenyl-1,2,3,6-tetrahydropyridine, PD = Parkinson’s Disease, PFA = 5 

Paraformaldehyde, SN = Substantia Nigra, TH = Tyrosine Hydroxylase 6 

 7 

 8 
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ABSTRACT 1 

Calorie restriction (CR) is neuroprotective in Parkinson’s disease (PD) although the 2 

mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut 3 

hormone with neuroprotective properties, during CR prevents neurodegeneration in 4 

an MPTP model of PD. CR attenuated the MPTP-induced loss of substantia nigra 5 

(SN) dopamine neurons and striatal dopamine turnover in Ghrelin WT but not KO 6 

mice, demonstrating that ghrelin mediates CR’s neuroprotective effect. CR elevated 7 

phosphorylated AMPK and ACC levels in the SN of WT but not KO mice suggesting 8 

that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin 9 

significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 10 

subunits only in dopamine neurons prevented ghrelin-induced AMPK 11 

phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN 12 

dopamine neurons mediates CR’s neuroprotective effects. We consider targeting 13 

AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without 14 

requiring dietary intervention.  15 

 16 

 17 

  18 
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INTRODUCTION 1 

Parkinson’s Disease (PD) is the second most common neurodegenerative disease 2 

affecting approximately 160 per 100,000 people with an estimated incidence number 3 

of new cases each year of 16-19 per 100,00 according to the World Health 4 

Organization, creating a substantial medical, social and financial burden. The motor 5 

symptoms of PD include rigidity and tremor of the extremities, postural instability and 6 

bradykinesia.  7 

 8 

The BMI of an individual affects PD progression, as obesity causes dopamine 9 

neuronal cell loss in the substantia nigra (SN) in a mouse model of PD (Choi et al., 10 

2005) and midlife obesity and type-2 diabetes is associated with a greater incidence 11 

of PD in humans (Chen et al., 2014b). In contrast to obesity, calorie restriction (CR) 12 

attenuates MPTP-induced neurotoxicity in both mice (Duan and Mattson, 1999) and 13 

non-human primates (Maswood et al., 2004). Indeed, CR in monkeys may delay the 14 

aging process (Colman et al., 2009) and CR in humans has the potential to slow PD 15 

disease progression (Chan et al., 1997), yet the beneficial effects of CR are 16 

dependent on the adherence to strict dietary constraints that are not always practical 17 

and achievable in society. Therefore, it is paramount to identify the key molecular 18 

mechanisms linking CR and neuroprotection to circumvent the need to adhere to 19 

CR.  20 

 21 

Ghrelin is synthesized in the stomach where pro-ghrelin is acylated in the 22 

endoplasmic reticulum by the enzyme Ghrelin O-acyltransferase (GOAT). Acyl 23 

ghrelin is then released into the bloodstream where it crosses the blood-brain barrier 24 

and binds to the ghrelin receptor (Growth Hormone Secretagogue Receptor 1a; 25 
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GHSR1a) in the brain. In addition to its well-known metabolic effects, ghrelin is 1 

neuroprotective in PD as Ghrelin and GHSR KO mice exhibited significantly greater 2 

loss of SN dopaminergic neurons compared to WT controls in an MPTP model of PD 3 

(Andrews et al., 2009). The neuroprotective mechanisms include reducing apoptosis 4 

and suppressing microglial activation and local inflammatory responses in the SN 5 

(Dong et al., 2009; Moon et al., 2009).  Moreover, postprandial ghrelin plasma 6 

ghrelin concentrations are lower in human PD patients (Unger et al., 2011), 7 

suggesting clinical relevance. 8 

 9 

Plasma ghrelin is elevated during periods of negative energy balance, including CR 10 

and previous studies showed that the anxiolytic and anti-depressant effects of CR 11 

require GHSR signaling (Lutter et al., 2008). Ghrelin also prevented an excessive 12 

decline in blood glucose levels during CR (Zhao et al., 2010). These studies provide 13 

biological precedents that the ghrelin system mediates some of the beneficial effects 14 

of CR. Because ghrelin protects against SN dopaminergic cell loss (Jiang et al., 15 

2008; Andrews et al., 2009; Moon et al., 2009), we reasoned that elevated plasma 16 

ghrelin during CR contributes to the neuroprotective effects of CR in PD. Indeed, 17 

cells treated with serum from CR rats show greater survivability, increased 18 

mitochondrial function and mitochondrial biogenesis (Lopez-Lluch et al., 2006), 19 

arguing that a hormonal signal mediates the effects of CR on mitochondrial function 20 

and cell survivability. These findings above led us to hypothesize that increased 21 

plasma ghrelin during CR acts on SN dopamine neurons to restrict SN dopamine 22 

neuronal degeneration in a mouse model of PD.  23 

 24 
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METHODS 1 

Animals 2 

All experiments herein were conducted in accordance with Monash University 3 

Animal Ethics Committee guidelines. Mice were maintained under standard 4 

laboratory conditions with free access to food and water at 21oC with a 12-hour 5 

light/dark cycle unless otherwise stated.  6 

 7 

Experimental protocol 8 

For the first set of experiments, Ghrelin WT/KO mice were individually housed. Male 9 

Ghrelin WT/KO mice (~ 8-10 weeks old) on a C57/Bl6J background were obtained 10 

from Regeneron Pharmaceuticals (Tarrytown, NY) and bred in the Monash Animal 11 

Services facilities. Mice in ad libitum (ad-lib) groups had free access to food, 12 

whereas the remaining mice were calorie-restricted (CR) to 70% of their baseline 13 

food intake. Baseline food intake was calculated by measuring average food intake 14 

over one week prior to the initiation of the restriction period. CR mice had daily blood 15 

glucose and body weight measurements taken and then given access to a previously 16 

calculated and weighed food pellet approximately 1 hour before the initiation of the 17 

dark cycle (1800h) in an attempt to maintain normal physiological feeding times for 18 

the duration of the experiment (27 days).  19 

In the second set of experiments to test the effect of ghrelin administration on 20 

neuronal function in the midbrain, we used group housed male C57/Bl6J mice (8-10 21 

weeks old; Monash Animal Services, Victoria, Australia) that had free access to food 22 

and water. C57/Bl6J mice were randomly allocated to receive saline, a low dose of 23 

ghrelin (5mg/kg) or a high dose of ghrelin (15mg/kg). The mice were injected ip and 24 
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the food removed from the cage, they were subsequently culled 45 minutes later via 1 

decapitation after being deeply anaesthetized, then the brains were dissected and 2 

snap frozen (-70�C) for HPLC and western blot analysis. 3 

In order to generate mice with selective deletion of AMPK β1& β2 only in DAT-4 

expressing dopamine neurons, we crossed Dat-Cre knock-in mice obtained from Jax 5 

Lab [Stock number 006660; B6.SJL-Slc6a3<tm1.1(cre)bkmn>/j] with Ampk beta 1 6 

subunit (β1) and beta 2 subunit (β2) floxed mice (O'Neill et al., 2011). The resultant 7 

offspring (Dat-Cre;Ampk beta 1fl/fl;Ampk beta 2fl/fl designated AMPK KO or Ampk 8 

beta 1fl/fl;Ampk beta 2fl/fl designated AMPK WT) were used as experimental mice. To 9 

validate this model, AMPK WT and KO mice were also bred with cre-dependent 10 

loxSTOPlox tdTOMATO reporter mice Stock number 007908; B6;129S6-11 

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J). The resultant offspring Dat-Cre;tdTomato or 12 

Dat-Cre;Ampk beta 1fl/fl;Ampk beta 2fl/fl;tdTomato mice allow tdTomato visualization 13 

of DAT-expressing neurons that have undergone cre recombination. These mice 14 

were also used for Fluorescence Activated Cell Sorting (FACS). The Dat-15 

Cre;tdTomato were used as AMPK WT mice and Dat-Cre;Ampk beta 1fl/fl;Ampk beta 16 

2fl/fl;tdTomato mice were used as AMPK KO mice. These mice were culled via 17 

inhalation anesthetic and the substantia nigra was collected. The cells were 18 

dissociated using papain (Worthington Kit, LK003150) following kit instructions. After 19 

collection of approximately 5000 tdTomato cells via FACS sorting using the influx v7 20 

Sorter, the RNA was extracted and PCR was run to determine the presence/absence 21 

of AMPKβ1 and 2.      22 

In the third set of experiments to test the effects of ghrelin administration in mice 23 

lacking AMPK activation, we group housed AMPK WT and KO mice (8-10 weeks 24 

old) with free access to water. The mice were administered ghrelin (1mg/kg) or 25 
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Saline daily at the beginning of the light cycle for 14 consecutive days. After 1 

injections the food was subsequently removed for 6 hours to prevent excess 2 

consumption of calories, after this period all mice had free access to food. Previous 3 

studies (Andrews et al., 2009) indicate that if calories are consumed after injection of 4 

acyl-ghrelin there is no neuroprotective effect observed. On days 7 and 8 mice were 5 

injected with Saline or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 6 

30mg/kg). Mice were culled on day 14 and perfused for immunohistochemical 7 

analysis or fresh tissue collection for Western Blot and HPLC analysis.  8 

 9 

MPTP administration 10 

Experimental mice were injected with MPTP (30mg/kg, i.p.) dissolved in saline as 11 

described previously (Andrews et al., 2005) over two consecutive days.  Control 12 

animals received sterile saline using the same timeline. Animals were injected with 13 

MPTP or Saline and perfused 7 days later for immunohistochemical analysis or fresh 14 

tissue collection for HPLC and western blot analysis. 15 

 16 

Immunohistochemistry 17 

Free-floating sections were stained with both Tyrosine Hydroxylase (TH) and Ionized 18 

calcium Binding Adaptor (IBA1) or Glial Fibrillary Acidic Protein (GFAP). All mice 19 

were deeply anesthetized and perfused with 0.05% PBS followed by 4% 20 

Paraformaldehyde (PFA) to fix the tissue. Brains were stored in PFA overnight then 21 

transferred to a 30% sucrose solution. Coronal sections (30 µm thick) of the entire 22 

SN were collected with systematic sampling of every fifth section.  23 

The sections was washed thoroughly in 0.1M PB and then endogenous peroxidase 24 

activity was blocked using 1% H2O2 in 0.1M PB for 15 minutes and washed again. 25 
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The tissue was then transferred to 4% normal horse serum and 0.3% Triton X-100 in 1 

0.1M PB for one hour, followed by a secondary mouse blocking step using AffiniPure 2 

Goat Anti-Mouse IgG (H+L) (1:200, Jackson ImmunoResearch) to prevent non-3 

specific binding of mouse antibodies in mouse tissue. The tissue was then incubated 4 

with the primary antibodies, in this case either anti-TH (mouse, 1:5000, Millipore) and 5 

anti-IBA1(rabbit, 1:1000, Wako) or anti-GFAP (rabbit, 1:1000, DAKO) for 24 hours at 6 

4�C. Following the primary antibody incubation the tissue was washed thoroughly 7 

and incubated in the secondary antibody goat anti-mouse IgG (H+L) Alexa Fluor 488 8 

(1:400, Invitrogen) and goat anti-rabbit IgG (H+L) Alexa Fluor 594 (1:400, Invitrogen) 9 

for fluorescent staining for 90 minutes at room temperature. The tissue was then 10 

thoroughly washed and mounted directly onto slides and coverslipped with anti-fade 11 

mounting media.  12 

 13 

Stereological investigation of cell number and volume. 14 

In order to quantify the number of TH neurons, microglia (IBA1 stain) and astrocytes 15 

(GFAP stain) in the SN we used design-based stereology. Using the 16 

StereoInvestigator software (MicroBrightField, Williston, VT, USA) we analysed both 17 

cell number (using the optical fractionator probe) and cell volume (using the 18 

nucleator probe). To visualise the cells we used a Zeiss microscope with a motorised 19 

stage and a MicroFibre digital camera connected to a computer.  20 

 21 

Analysis of blood chemistry 22 

Trunk blood was collected via decapitation from deeply anaesthetised mice and 23 

collected into EDTA tubes pre-treated with pefabloc (SC Roche Applied Science, 24 
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Mannheim, Germany) to achieve a concentration of 1mg/mL. The blood was then 1 

briefly centrifuged and the plasma was collected and acidified with HCl (final 2 

concentration 0.05N). Plasma ghrelin levels were determined using Active Ghrelin or 3 

Des-acyl Ghrelin Enzyme-Linked Immunoassay Kits (Mitsubishi Chemical Medicine, 4 

Tokyo, Japan). Active and des-acyl ghrelin were measured according to kit 5 

instructions. Plasma Insulin concentration was determined through an in-house 6 

ELISA assay.  7 

 8 

High Performance Liquid Chromatography (HPLC) 9 

We used HPLC to identify, separate and quantify dopamine (DA) and DOPAC 10 

concentrations within samples of striatal tissue. Striatal (both sides) tissue was 11 

rapidly dissected and snap frozen (approximately -70�C). The samples were then 12 

sonicated in 0.4mL cold 0.1M perchloric acid containing internal standard.  Following 13 

centrifugation, DA DOPAC and internal standard in the supernatant were extracted 14 

on alumina at pH 8.4, eluted in 0.1M perchloric acid, separated by reverse-phase 15 

HPLC and detected using electrochemical detection. Both dopamine and DOPAC 16 

concentrations in the striatum were calculated by reference to the internal standard 17 

and external standards.  The protein content of each sample was determined from 18 

the centrifuged pellet by the Lowry method. The concentrations of DA and DOPAC 19 

are expressed as ng/mg of protein present (mean ± SEM) 20 

 21 

Western Blot 22 

Whole tissue samples of the SN and Striatum or SN4741 cells were processed for 23 

western blot analysis. Briefly, tissue was sonicated in RIPA buffer (50mM Tris.HCl, 24 

150mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X 100) containing a 25 
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protease inhibitor (Sigma), then centrifuged (10,000 rpm, 10min, 4�C) to remove cell 1 

debris and the supernatant was collected. For cell culture studies SN4741 cells were 2 

maintained at 37oC in a 5% CO2 humidified environment in Dulbecco’s modified 3 

Eagle medium (DMEM, 41965, life technologies) supplemented with 10% fetal 4 

bovine serum (FBS), 2mM glutamine, 100U/ml penicillin and 0.1mg/ml streptomycin, 5 

0.6% glucose. Once cells had reached approximately 90-100% confluency, cells 6 

were sub-cultured.  7 

SN4741 cells were treated with vehicle (compound diluent), 1µM acyl-ghrelin 8 

(Tocris), 6nM JMV2894 (ghrelin receptor agonist, Aeterna Zentaris) or 0.5µM 9 

oligomycin (Sigma) for 5 minutes. Cells were washed 3 times with ice cold PBS and 10 

lysed in ice cold RIPA lysis buffer (50mM Tris.HCl, pH 7.5 containing 1% NP40, 11 

0.1% SDS, 0.5% sodium deoxycholate and 150mM NaCl) with 1% mammalian 12 

protease (Sigma P8340) and phosphatase inhibitors (Sigma P0044)(Ho et al., 2013). 13 

Cell lysates were incubated at 4oC for 15 min and then centrifuged at 22,000 x g for 14 

10min at 4oC. The supernatant was collected and 1 volume of 2x SDS- PAGE 15 

sample loading buffer (Sigma S3401) was added and left at room temperature for 16 

1h.  17 

 18 

An aliquot was then used to identify the amount of protein present in each sample 19 

using a BCA kit (Pierce, Rockford, IL) according to kit instructions. The samples 20 

concentrations were then standardised and the supernatants were mixed with 21 

Laemmli’s buffer and boiled for 5 minutes. Samples (20µl) were loaded onto 10% 22 

acrylamide gels and separated by SDS polyacrylamide gel electrophoresis. The 23 

separated proteins were then transferred from the gel to the PVDF membrane 24 

(Biorad). The blots were then blocked for 1 hour in Tris-Buffered Saline Solution 25 
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containing 0.1% Tween-20 (TBST) and 5% bovine Serum albumin (BSA). The 1 

membranes were subsequently incubated overnight at 4�C in TBST with 5% BSA 2 

with either of the following antibodies: TH (1:1000, Milipore), Parkin (1:1000, Santa 3 

Cruz), PINK (1:1000, Santa Cruz), LC3B (1:1000, Cell Signaling), pACC (1:1000, 4 

Cell Signaling) or pAMPK (1:1000, Cell Signaling), where AMPKα (1:1000, Cell 5 

Signaling) antibodies, ACC (1:1000, Cell Signaling) and anti-β actin (1:1000, Abcam) 6 

were used as controls. Blots were visualised using the chemiluminescence method 7 

(ECL, Amersham) and levels were detected using ImageLab Software, version 4.1, 8 

Biorad.    9 

 10 

RNA extraction and PCR 11 

After FAC’s sorting cells were stored in Qiazol for RNA extraction. Briefly, chloroform 12 

was added, samples were centrifuged (12,000g, 15min, 4°c) and supernatant was 13 

collected. Isopropanol and glycogen was added and the samples centrifuged 14 

(12,000g, 10 minutes, 4°c). The pellet formed was washed with ethanol (75%) and 15 

vortexed. cDNA was synthesized using the iScript cDNA synthesis kit (number 170-16 

8890; Biorad Laboratories). The cDNA collected was combined with Mastermix and 17 

primers (either AMPKβ1, AMPKβ2 or GHSR) and exposed to a heat block in the 18 

Mastercycler. We used TaqMan Gene Expression Mastermix (Applied Biosystems) 19 

and GHSR primers (GHSR forward: GCTGCTCACCGTGATGGTAT and reverse: 20 

GCTGCTCACCGTGATGGTAT) as our control. A PCR reaction was required to 21 

amplify the AMPKβ1 and AMPKβ2 transcripts from the cDNA. We used nested PCR 22 

to enhance accuracy using two PCR reactions involving outer and inner primers 23 

(AMPKβ1 outer forward: CCACTCCGAAGAGATCAAGG and reverse: 24 

GTGCTGGGTCACAAGAGATG, AMPKβ1 inner forward: 25 
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CACGACCTGGAAGCGAAT and reverse: CATGTAAGGCTCCTGGTGGT and 1 

AMPKβ2 outer forward: GTTATCCGCTGGTCTGAAGG and reverse: 2 

CAGCAGCGTGGTGACATACT and AMPKβ2 inner forward: 3 

GAGCACCAAGATCCCTCTGA and reverse: GGAAGTAAGGCTGGGTCACA). This 4 

process was repeated with inner primers and then visualized in a gel mounting 5 

media (agarose gel) and exposed to electrical current (120V) for 25 minutes. The 6 

results were viewed using gene snap technology. The specificity of the primers was 7 

confirmed using a blast search. Positive control was hypothalamic tissue from 8 

C57BL/6 mice and negative control contained no cDNA.  9 

 10 

Rotarod 11 

Mice were trained prior to testing by being placed on a rotating rod (Ugo Basile Rota-12 

Rod 47600), spinning at 4 rotations per minute (RPM) for 5 minutes. Lane width = 13 

5cm. On training day mice were subjected to incrementally increasing speed over 14 

300 seconds going from 4-40 RPM. Each animal underwent 4 trials. The length of 15 

time that the mice remained on the rod was recorded and analysed.  16 

 17 

  Statistical Analysis 18 

 All data is represented as Mean ± Standard Error of the Mean (SEM). Two-Way 19 

ANOVA with a Bonferroni post hoc test was used to determine statistical significance 20 

between treatment and genotype and One-Way ANOVA with a Tukey post hoc test 21 

was used to determine statistical significance between injection groups. Cell lysate 22 

analysis used a two-tailed Student’s t-test.  p<0.05 was considered statistically 23 

significant.  24 

  25 
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RESULTS  1 

Effect of Calorie restriction on metabolic parameters in Ghrelin WT/KO mice 2 

Calorie Restriction (CR) significantly elevated acylated (Figure 1A) and des-acyl 3 

plasma ghrelin in WT, with no detectable levels in KO mice (Data not shown), 4 

confirming reports that CR increases plasma ghrelin. There were no genotypic 5 

differences in plasma insulin from ad-lib or CR mice, although CR significantly 6 

reduced plasma insulin levels compared to ad-lib mice (significant main effect ad-lib 7 

vs. CR) (Figure 1B&C).  Both body weight and blood glucose measurements 8 

exhibited a significant overall reduction in response to CR (Data not shown).  9 

 10 

Ghrelin restricts MPTP-induced nigrostriatal damage during CR 11 

Tyrosine Hydroxylase (TH) neurons 12 

We used the stereological optical fractionator probe to estimate total TH-positive (i.e. 13 

dopamine) neurons in the substantia nigra (SN). MPTP administration significantly 14 

reduced the number of SN TH neurons in ad-lib and CR Ghrelin WT and KO mice 15 

(Figure 1D). CR partially attenuated SN TH neuronal loss in Ghrelin WT (Figure 1E), 16 

however this protective effect was lost in Ghrelin KO mice (Figure 1F).  17 

 18 

Gliosis 19 

MPTP treatment exhibited a significant elevation in microglia (IBA1+ cells) present in 20 

the SN of both genotypes, although CR did not prevent the MPTP-induced increase 21 

of Ionized calcium binding adaptor 1 (IBA1) cell number in either Ghrelin WT or 22 

Ghrelin KO mice (Figure 1G & H). Astrocytes, as represented by Glial Fibrillary 23 

Acidic Protein (GFAP) staining, are the most abundant cell type found throughout the 24 
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central nervous system and play a critical role during cellular damage to minimize 1 

overall cell loss (Hailer et al., 2001). Elevated GFAP+ cells in any specified region 2 

indicates greater cellular damage in that area. MPTP treatment initiated a significant 3 

increase in GFAP cells in both Ghrelin WT and KO ad-lib mice compared to saline 4 

controls (Figure 1I & J). CR reduced GFAP expression in the SN of both MPTP-5 

treated ghrelin WT and KO mice relative to MPTP ad-lib mice (Figure 1I & J), This 6 

result indicates that CR restricts GFAP cell expression in the SN, although this does 7 

not appear to be directly mediated by ghrelin. 8 

 9 

TH cell volume 10 

To accurately measure cell volume we used the nucleator stereological probe.  11 

There was a significant main effect for MPTP to reduce average cell volume in 12 

Ghrelin WT but not Ghrelin KO (Figure 2A & B). We performed a cell volume 13 

distribution analysis in order to determine if diet or treatment preferentially affected 14 

neuronal number within a certain volume range. MPTP treatment to CR Ghrelin WT 15 

mice prevented the loss of TH neurons with volumes between 1000-2000um3 16 

compared to ad-lib MPTP-treated Ghrelin WT mice (Figure 2C). Remarkably, no 17 

beneficial effects of CR on TH neuronal cell volume between were observed in 18 

Ghrelin KO mice (Figure 2D). Thus, ghrelin influences both TH cell number and cell 19 

volume distribution during CR.   20 

 21 

HPLC analysis 22 

HPLC analysis of dopamine (DA) in the striatum revealed a significant overall 23 

(p<0.05) reduction with MPTP administration and CR significantly attenuated the loss 24 

of dopamine in WT but not KO mice (Figure 2E & H). MPTP also significantly 25 
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reduced DOPAC in the striatum however there was no effect of diet on DOPAC 1 

levels regardless of genotype (Figure 2F & I). CR also prevented in the increase in 2 

the DOPAC:DA ratio observed after MPTP in ghrelin WT ad-lib but not ghrelin KO 3 

ad-lib mice (Figure 2G & J).  4 

 5 

TH protein expression 6 

Reduced dopamine levels in the striatum indicate impaired dopamine synthesis, 7 

which is controlled by the rate-limiting enzyme TH. In the SN of Ghrelin WT and KO 8 

mice, MPTP administration significantly reduced TH protein expression in both ad-lib 9 

fed and CR mice with no protective effect of CR in either genotype (Figures 3A, 10 

C&D). In the striatum however, CR significantly attenuated the lower TH protein 11 

levels in MPTP-treated ghrelin WT but not ghrelin KO mice (Figure 3B, E&F). These 12 

results highlight that CR has site-specific effects acting to increase TH in the striatum 13 

but not the SN. Together, these results corroborate with the TH neuronal counts, cell 14 

volume analysis and HPLC DA content results indicating that CR has a protective 15 

effect only in Ghrelin WT mice. Overall these results imply that ghrelin is responsible 16 

for these protective effects in a mouse model of PD.     17 

 18 

Ghrelin influences AMPK activation in the striatum 19 

Ghrelin enhances AMPK activity in the hypothalamus (Andrews et al., 2008) and 20 

AMPK also increases mitochondrial biogenesis and function in the periphery 21 

(Bergeron et al., 2001; Horvath et al., 2011). Thus, we reasoned that the 22 

neuroprotective actions of CR induce a ghrelin-dependent increase in AMPK function 23 

in SN TH neurons. We found that both metabolic (CR) and chemical (MPTP) stress 24 

increased AMPK phosphorylation (pAMPK/AMPK ratio) and subsequent Acetyl CoA 25 
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Carboxylase (ACC) in the striatum, but not the SN as seen for TH expression, in 1 

Ghrelin WT but not Ghrelin KO mice (Figure 3G-P). CR in Ghrelin KO MPTP treated 2 

mice significantly reduced AMPK and ACC phosphorylation in the SN compared to 3 

ghrelin KO MPTP ad-lib mice (Figure 3J&N). The maintenance of autophagy is one 4 

downstream effect of AMPK activation (Mihaylova and Shaw, 2011), therefore we 5 

examined LC3 II, the membrane-bound form of autophagosomes (Kimura et al., 6 

2007). We observed significantly reduced LC3 II in the SN of CR Ghrelin WT mice 7 

compared to ad-lib controls (Figure 3S), with a significant overall elevation in 8 

response to MPTP in striatum (Figure 3U). No effect was observed in Ghrelin KO in 9 

the SN (Figure 3T) or Striatum (Figure 3V). The LC3 II results in the SN are inversely 10 

related to SN TH cell counts suggesting there is less autophagosome formation 11 

required in cells with less MPTP-induced degeneration.     12 

PINK1 and Parkin regulate mitophagy and mutations in PINK and Parkin cause early 13 

onset PD, therefore, we also measured the expression of these two proteins in the 14 

SN and striatum from CR and ad-lib Ghrelin WT and KO mice. PINK1 and Parkin 15 

expression showed a significant reduction in protein expression post MPTP 16 

administration in the striatum with no significant effect of CR or genotype (Data not 17 

shown). There was no change in protein levels in response to metabolic state, MPTP 18 

or genotype in the SN (Data not shown).   19 

 20 

Exogenous ghrelin influences the phosphorylation of AMPK and ACC  21 

In order to support the notion that increased endogenous ghrelin is the critical to CR-22 

induced neuroprotection, we examined the effects of exogenous acyl-ghrelin on 23 

AMPK and ACC phosphorylation both in vivo and in vitro. The addition of either acyl-24 
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ghrelin or the ghrelin agonist JMV2894 increased AMPK activation in cultured 1 

dopaminergic cell line SN4741 (Figure 4A-D).   2 

For in vivo studies, we injected acyl-ghrelin ip at 2 different doses (low: 5mg/kg and 3 

high: 15mg/kg). The high dose of acyl-ghrelin significantly increased AMPK and ACC 4 

phosphorylation in the SN (Figure 4E,G&H). However, there was no significant 5 

difference in the striatum in response to either a low or high dose of acyl-ghrelin 6 

(Figure 4F,I&J). This is in contrast to the effect of CR on AMPK activation, as we 7 

observed a significant difference in the striatum but not the SN. 8 

 9 

Injection of ip acyl-ghrelin at a high dose significantly increased TH expression in 10 

both the SN and Striatum (Figure 4K-M). Moreover, ip acyl-ghrelin increased LC3 II 11 

in the SN but not the striatum (Figure 4N-P). There was no change in PINK1 12 

expression in either the SN or the striatum (Data not shown). Parkin expression 13 

remained unchanged in the SN, however, in the striatum there was a significant 14 

increase with a high dose of acyl-ghrelin (Data not shown). These results indicate 15 

that peripheral acyl-ghrelin injection affects AMPK and ACC phosphorylation, as well 16 

as TH, Parkin and LC3 II protein expression in the nigrostriatal system.  17 

 18 

Exogenous ghrelin requires AMPK in dopamine neurons to elicit 19 

neuroprotection   20 

To prove that ghrelin-induced neuroprotection requires AMPK activation in SN 21 

dopamine neurons, we generated a novel mouse line in which AMPK activation was 22 

disabled in dopaminergic neurons. These mice were generated by cross breeding 23 

Dat-Cre mice with Ampk beta 1fl/fl; Ampk beta 2fl/fl mice in order to generate AMPK 24 
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WT and AMPK KO mice. AMPK β1 & β2 are regulatory subunits required for AMPK 1 

activity (O'Neill et al., 2011). To determine the specificity of the knockout, we bred 2 

AMPK WT and KO with Rosa26loxSTOPlox tdTomato reporter mice to generate Dat-3 

Cre;tdTomato and Dat-Cre;Ampk beta 1fl/fl;Ampk beta 2fl/fl;tdTomato. TH and 4 

tdTomato co-expression in the SN was >90% (Figure 5A-C), indicating cre 5 

recombination had occurred in >90% of SN TH neurons. Deletion of AMPKβ1 and 6 

AMPKβ2 in dopamine neurons was confirmed by FACS of tdTomato-labelled 7 

neurons from midbrain dissections from Dat-Cre;tdTomato and Dat-Cre;Ampk beta 8 

1fl/fl;Ampk beta 2fl/fl;tdTomato cells and nested PCR for AMPKβ1 and AMPKβ2 9 

(Figure 5D). Positive bands for both AMPKβ1 and AMPKβ2 were observed in AMPK 10 

WT but not AMPK KO mice (Figure 5D). As a positive control, nested PCR for GHSR 11 

was performed to confirm the presence of the ghrelin receptor in both AMPK WT and 12 

KO mice (Figure 5D).    13 

In order to show that ghrelin elicits neuroprotection in a mouse model of PD, we 14 

chronically administered acyl-ghrelin to DAT AMPK WT & KO mice. In AMPK WT 15 

mice, acyl-ghrelin administration significantly attenuated TH cell loss in MPTP-16 

treated mice (Figure 5E & F). This effect was abolished in the AMPK KO mice 17 

(Figure 5G). Acyl-ghrelin reduced IBA1+ cell number in AMPK WT MPTP treated 18 

(5H), however no significant effect was observed in AMPK KO mice (Figure 5I). A 19 

similar pattern was observed with GFAP cells, in which acyl-ghrelin reduced GFAP 20 

cell number in AMPK WT but not AMPK KO mice (Figure 5J & K). 21 

Despite the attenuated TH cell loss in the acyl ghrelin-treated AMPK WT mice there 22 

was no overall change in cell volume or distribution (Figure 6A-D). HPLC analysis of 23 

dopamine and DOPAC in the striatum revealed that acyl-ghrelin attenuated the 24 
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MPTP-induced loss of dopamine and prevented the MPTP-induced rise in the 1 

DOPAC/dopamine ratio in AMPK WT but not AMPK KO mice (Figure 6E-J). 2 

Changes in motor behaviour were determined using an accelerating Rotarod by 3 

measuring latency to fall. There was no overall change between Saline or Ghrelin 4 

treated AMPK WT and KO mice without MPTP treatment (Figure 6K & L). When 5 

pretreated with saline and given MPTP there was no effect of genotype (Figure 6M) 6 

however, there was a protective effect of ghrelin administration prior to MPTP in 7 

AMPK WT but not KO mice (Figure 6N). Collectively, these experiments highlight 8 

that ghrelin activates AMPK in SN dopamine neurons, restricts dopaminergic cell 9 

loss, maintains striatal dopamine concentrations and promotes locomotor behaviour 10 

after MPTP treatment to provide a neuroprotective effect. 11 

 12 

We previously showed that ip ghrelin can elicit an increase in the pAMPK/AMPK and 13 

pACC/ACC ratio in SN (Figure 4G&H) and that chronic ghrelin treatment to AMPK 14 

WT, but not AMPK KO is neuroprotective in a mouse model of PD. In further support 15 

of this neuroprotection, ghrelin treatment attenuated the MPTP-induced loss of TH in 16 

both the SN and striatum of AMPK WT but not AMPK KO mice (Figure 7A-F). To 17 

determine if chronic ghrelin differentially affected AMPK and subsequent ACC 18 

phosphorylation, we measured the pAMPK/AMPK and pACC/ACC ratio in AMPK WT 19 

and KO mice in response chronic daily ghrelin injections. There was no effect of 20 

chronic ghrelin treatment on the pAMPK/AMPK (Figure 7G, I&J) or the pACC/ACC 21 

ratio (Figure 7M&N) in the SN of either AMPK WT or AMPK KO mice. However, 22 

MPTP treatment elicited an increase in the pAMPK/AMPK (Figure 7H, K&L) and 23 

pACC/ACC ratios (Figure 7O&P) in the striatum of AMPK WT mice, but not AMPK 24 
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KO mice. The mitophagy proteins PINK1 and Parkin (Data not shown) and the 1 

autophagosome marker LC3 II were not significantly different between genotypes 2 

and treatment (Figure 7Q-V).  3 

 4 

 5 

 6 

  7 
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DISCUSSION 1 

Calorie Restriction (CR) protects against a number of pathological conditions 2 

including diabetes, cancer, heart disease and neurodegeneration. In Parkinson’s 3 

Disease (PD) an alternate-day feeding schedule, where rats consumed 30-40% less 4 

calories than ad-libitum controls was neuroprotective post MPTP exposure (Duan 5 

and Mattson, 1999). Mice also elicited a neuroprotective response when alternate 6 

day feeding was begun after exposure to MPTP (Holmer et al., 2005). Primates with 7 

a chronic overall 30% reduction in food intake were also resistant to MPTP induced 8 

neurotoxicity (Maswood et al., 2004). These studies prove that CR is beneficial in PD 9 

however the difficulty to adhere to CR necessitates an alternative method to 10 

recapitulate the neuroprotective benefits of CR whilst bypassing dietary constraints. 11 

Evidence from cells treated with serum from CR rats suggests a hormonal factor 12 

improves mitochondrial function and cell viability (Lopez-Lluch et al., 2006). We 13 

hypothesized that ghrelin may be this hormonal factor, because CR increases 14 

plasma acyl ghrelin (Lutter et al., 2008) and ghrelin restricts degeneration in PD 15 

(Andrews et al., 2009). In this study we show for the first time that ghrelin mediates 16 

the neuroprotective effect of CR in a mouse model of PD by attenuating MPTP-17 

induced loss of TH neurons, TH neuronal volume and dopamine content in the 18 

striatum. Further, we show that AMPK in SN dopamine neurons is a molecular target 19 

for ghrelin’s neuroprotective effects, as deletion of AMPK β1 & β2 subunits 20 

prevented ghrelin-induced neuroprotection. These results suggest that ghrelin, and 21 

its downstream target AMPK, has a potential therapeutic application in the treatment 22 

of PD to mimic the neuroprotective effect of CR without the need for strict dietary 23 

constraints.  24 
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Although this is the first study to show that ghrelin mediates the neuroprotective 1 

effects of CR in a mouse model of PD, it supports an increasing number of 2 

observations that ghrelin restricts the negative consequences of CR or negative 3 

energy balance. For example, ghrelin prevents the excessive decline in blood 4 

glucose during severe CR (Zhao et al., 2010) and the anxiolytic effects of CR require 5 

GHSR signaling (Lutter et al., 2008). A recent study by Macfarlane (McFarlane et al., 6 

2014) shows that adult-ablation of ghrelin secreting cells has no effect on food 7 

intake, body weight and fed blood glucose. Only under CR did these mice show 8 

deficits in blood glucose. Moreover, CR reduces hippocampal cell death in GHSR 9 

WT but not GHSR KO mice (Walker et al., 2015) and CR induces neurogenesis in a 10 

GHSR dependent manner (Hornsby et al., 2016). Collectively, these studies show 11 

that the major function of ghrelin is to act as a feedback signal of CR (negative 12 

energy balance) and maintain physiological and neurological function during this 13 

time.  14 

 15 

Our data show that AMPK in SN dopamine neurons is a molecular target of ghrelin 16 

during CR to maintain neuronal function. Firstly, metabolic stress (CR) and/or toxic 17 

stress (MPTP) promoted AMPK activity in striatal dopamine nerve terminals in 18 

Ghrelin WT but not Ghrelin KO. The ability of MPTP to increase AMPK activity is 19 

supported by previous studies in mice and cells (Choi et al., 2010). AMPK enhances 20 

mitochondrial function and biogenesis (Reznick and Shulman, 2006) as such, we 21 

suggest CR-induced AMPK phosphorylation at the nerve terminal promotes neuronal 22 

energy metabolism and supports ongoing dopaminergic neuronal activity, which is 23 

supported by the reduced striatal DOPAC/dopamine ratio of both CR Ghrelin and 24 

AMPK WT but not their respective KO mice. Moreover, AMPK activity diminishes 25 
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with age (Reznick et al., 2007) consistent with the age-related neurodegeneration 1 

that contributes to the onset of PD. Thus, the ability of CR to maintain AMPK activity 2 

in a ghrelin-dependent manner may restrict age-related decline in the nigrostriatal 3 

system. This possibility is further strengthened by data showing that plasma ghrelin 4 

and ghrelin’s function diminishes with age, an effect that can be reversed with CR 5 

(Englander et al., 2004; Smith et al., 2007; Sun et al., 2007; Yang et al., 2007; 6 

Takeda et al., 2010). Further, PD patients have reduced postprandial plasma ghrelin 7 

levels (Unger et al., 2011).  8 

 9 

In cultured dopaminergic neurons both acyl-ghrelin and a ghrelin agonist elicited a 10 

robust increase in AMPK activation. Acute acyl-ghrelin injection in vivo increased 11 

both AMPK and ACC phosphorylation in the SN but not the striatum. This is the first 12 

in vivo study that shows ghrelin activates AMPK activity in the midbrain, similar to 13 

numerous reports showing ghrelin activates AMPK activity in the hypothalamus 14 

(Andersson et al., 2004; Kola et al., 2005; Andrews et al., 2008). As noted above, 15 

CR drives ghrelin-induced AMPK phosphorylation in the striatum, but not the SN, yet 16 

acute ghrelin injection in vivo increased AMPK phosphorylation in the SN but not the 17 

striatum. We consider this discrepancy may be due to chronically elevated ghrelin 18 

vs. an acute ghrelin injection. Chronically high plasma ghrelin, as seen in CR Ghrelin 19 

WT mice, activates SN dopamine neurons via the GHSR which then facilitates and 20 

propagates AMPK phosphorylation in areas of metabolic need, in this case striatal 21 

nerve terminals in order to prevent degeneration. Although acute injection of ghrelin 22 

increase pAMPK/AMPK ratio in the SN after 45 minutes, this narrow time frame 23 

presumably prevents propagation of AMPK phosphorylation in the striatum. It is 24 
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important to note that the ghrelin receptor, GHSR, is abundantly expressed in the SN 1 

with little or no expression in the striatum (Zigman et al., 2006). 2 

 3 

Importantly, we conclusively demonstrate that AMPK activity in dopamine neurons is 4 

necessary for ghrelin-induced neuroprotection is a mouse model of PD. We 5 

generated a model in which AMPKβ1 and AMPKβ2 were successfully deleted in 6 

DAT expressing neurons.  Deletion of both AMPKβ1 and AMPKβ2 in muscle ablated 7 

AMPK phosphorylation and lead to impaired glucose homeostasis (O'Neill et al., 8 

2011). Using the model we showed that ghrelin prevents nigrostriatal degeneration in 9 

MPTP-treated DAT AMPK WT but not DAT AMPK KO mice, clearly establishing 10 

AMPK as a critical molecular mechanism mediating the neuroprotective effects of 11 

ghrelin on the nigrostriatal system. Our genetic model also deletes AMPKβ1 and 12 

AMPKβ2 in all DAT-cre expressing neurons including populations not associated 13 

with PD, such as the hypothalamic and VTA dopamine neurons. However, MPTP 14 

predominantly affects SN dopamine neurons (Seniuk et al., 1990; Muthane et al., 15 

1994), which strengthens the specific and important neuroprotective actions of 16 

ghrelin on AMPK activity in the SN. We should note that we did not detect a change 17 

in pAMPK/AMPK ratio in the SN or striatum of chronic ghrelin treated AMPK WT or 18 

KO mice, whereas acute ghrelin injection affected the pAMPK/AMPK ratio in the SN. 19 

There are many potential reasons for this including the dosage and time of tissue 20 

collection after last injection. However the most plausible reason is due to the tissue 21 

collection, since we measured pAMPK/AMPK in a dissected piece of tissue, of which 22 

only a small proportion represents SN dopamine neurons. Nevertheless, in response 23 

to MPTP treatment AMPK WT mice produced an increase in pAMPK/AMPK ratio in 24 

the striatum, which was not observed in AMPK KO. In fact the significant main effect 25 
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of MPTP to suppress AMPK phosphorylation, independent from ghrelin treatment, in 1 

both the SN and striatum of AMPK KO illustrates the important role of AMPKβ1 and 2 

AMPKβ2 in SN dopamine neurons to combat cellular stress caused by MPTP. 3 

Moreover, CR Ghrelin KO also did not show a compensatory increase in MPTP-4 

induced AMPK phosphorylation in the striatum, further supporting the idea that 5 

ghrelin targets AMPK in SN dopamine neurons during CR to prevent degeneration. 6 

 7 

Intriguingly, we noted differential effects of CR and ghrelin treatment on gliosis. In 8 

the CR experiment, the microglial response to MPTP was similar in ghrelin WT and 9 

KO mice despite the greater TH cell loss in ghrelin KO mice. This is somewhat 10 

unexpected given microglia become activated to remove neuronal damage by 11 

phagocytosis (Neumann et al., 2009). It is possible that a threshold level of cell loss 12 

elicits the same microglial response, perhaps mediated by the release of caspase 13 

signal (Burguillos et al., 2011). Moreover, GFAP cell number was increased after 14 

MPTP and suppressed in CR mice regardless of genotype. In primates CR elicited a 15 

protective effect by limiting astrogliosis in the hippocampus (Sridharan et al., 2013).  16 

These results suggest that the effects of CR on gliosis are independent from 17 

changes in plasma ghrelin. However, chronic ghrelin-treatment to AMPK WT and 18 

AMPK KO mice showed that ghrelin reduced microglia and GFAP in AMPK WT but 19 

not AMPK KO mice treated with MPTP. This effect of ghrelin treatment is consistent 20 

with in vitro studies that indicate ghrelin directly inhibits glial activation to diminish the 21 

inflammatory response (Lee and Yune, 2014). Moreover, that lack of an effect in 22 

AMPK KO mice suggests ghrelin acts directly on AMPK in SN dopamine to restrict 23 

microglia and GFAP expression, a hypothesis supported by studies showing that 24 
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AMPK influence gliosis (Lu et al., 2010; Yi et al., 2011; Chen et al., 2014a; Han et 1 

al., 2014; Zhou et al., 2014). 2 

 3 

This is the first study to show the important neuroprotective in vivo actions of AMPK 4 

in dopamine neurons, although a number of studies implicate AMPK as an 5 

intracellular energy sensor promoting neuroprotection in models of PD. For example, 6 

AMPK attenuates mitochondrial and dopaminergic dysfunction in drosophila models 7 

of PD (Ng et al., 2012), and pharmacological activators of AMPK such as 8 

Resveratrol (Jin et al., 2008) and Guanidinopropionic acid (Horvath et al., 2011) 9 

were neuroprotective in vivo. Metformin treatment in cells overexpressing alpha 10 

synuclein, to model PD, also activated AMPK and restricted cell death (Dulovic et al., 11 

2014). However, in vitro studies recently demonstrated that AMPK over-activation 12 

has a detrimental effect and promoted alpha synuclein accumulation and inhibited 13 

neurite growth (Jiang et al., 2013).   14 

 15 

In conclusion, CR is perhaps the most robust and reproducible mechanism to 16 

enhance lifespan and promote healthy aging. The exact mechanism/s that achieve 17 

this are currently unknown, however, several theories include altered stress 18 

response pathways, altered signaling pathways involving SIRT1, FOXO, UCP2 and 19 

AMPK (Andrews, 2010) as well as alterations in metabolic hormones such as ghrelin 20 

and insulin. We consider CR induces a mild stress and encourages compensatory 21 

metabolic changes that favour improved intracellular mitochondrial health. Although 22 

CR promotes metabolic health and reduces neurodegeneration there is a poor 23 

compliance in the general population, as it requires ~20-40% reduced calorie intake 24 

over years in order to achieve maximal benefits. Consequently, there is a need to 25 
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recapitulate these beneficial effects without restricting calorie intake. We have 1 

discovered a novel pathway where circulating ghrelin, which is elevated during CR, 2 

has a protective role in the nigrostriatal system via enhanced AMPK activity. This 3 

ghrelin-induced neuroprotection is dependent on AMPK activity in dopamine 4 

neurons. Future research should focus on exploiting this pathway to determine the in 5 

vivo neuroprotective effects that restrict neurodegeneration without the need to 6 

adhere to strict dietary regimes.   7 

 8 

 9 
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Figure 1. Deletion of Ghrelin negates the protective effect of CR. A, CR significantly 1 

elevates plasma acylated ghrelin. B + C, Overall reduction in plasma insulin levels in 2 

response to CR in both genotypes. D, Representative images showing MPTP 3 

induced TH cell loss in the SN and microglial (IBA) activation. E & F, Stereological 4 

quantification of TH neurons in the SN showing CR has no significant effect in MPTP 5 

treated Ghrelin KO mice (F) but is protective in Ghrelin WT mice (E). G & H, 6 

Stereological quantification of IBA1 microglia in the SN shows elevated levels 7 

following MPTP treatment but no effect of genotype. I & J, Stereological 8 

quantification of GFAP in the SN showing that following MPTP administration GFAP 9 

levels increased to a lesser extent in Ghrelin WT compared to Ghrelin KO mice K, 10 

Representative images showing MPTP induced astrocyte (GFAP) activation in the 11 

SN (TH = green and GFAP =green.  Data are represented as mean ± SEM (n= 6-10, 12 

two-way ANOVA, p<0.05). a, significant compared to saline ad-lib controls, b, 13 

significant compared to MPTP ad-lib controls. Scale bar = 50µm       14 

 15 

Figure 2. Calorie restriction reduces small volume TH cell loss and enhances 16 

dopamine turnover in Ghrelin WT but not KO mice. A, Overall Cell volume for 17 

Ghrelin WT mice showed a significant (p<0.05) effect of MPTP administration but no 18 

effect of genotype or diet. B, Ghrelin KO mice showed no overall effect of diet, 19 

treatment or genotype. The red dotted line represents the average cell volume of 20 

Ghrelin WT MPTP treated mice. When the cells were separated based on number 21 

and volume distribution as shown in C & D, the effect of CR is apparent. C, Ghrelin 22 

WT have a significant (p<0.05) effect between ad-lib and CR cell volume in smaller 23 

(1000-2000 µm³) cells. There was no significant difference in the Ghrelin KO mice 24 

(D). E & H, CR attenuates striatal DA loss in Ghrelin WT but not Ghrelin KO mice 25 
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after MPTP administration. F & I, MPTP reduced DOPAC with no effect of genotype. 1 

G & J, CR reduced the elevation of the DOPAC:DA ratio in MPTP treated mice 2 

compared to ad lib, in Ghrelin WT but not Ghrelin KO mice. a, significant compared 3 

to saline ad-lib controls, b, significant compared to MPTP ad-lib controls.* p<0.05, ** 4 

p<0.01. Data are represented as mean ± SEM (n=6-10, two-way ANOVA, p<0.05).  5 

 6 

Figure 3. The protective effect of CR is concomitant with striatal dopamine and 7 

elevated pAMPK, an effect not observed in Ghrelin KO mice. A & B, Representative 8 

Western Blot images of MPTP induced reduction in TH levels in the SN and 9 

Striatum. C & D, Quantification of TH levels in Ghrelin WT and KO mice showed that 10 

MPTP significantly (p<0.05) reduced TH expression in the SN. E & F, Quantification 11 

of TH levels in the Striatum revealed that MPTP significantly (p<0.05) reduced TH 12 

expression, this effect was rescued in CR Ghrelin WT mice but not in KO mice. G & 13 

H, Representative Western Blot images of pAMPK, AMPK, pACC and ACC levels in 14 

the SN and Striatum after either ad-libitum or CR paradigms followed by MPTP or 15 

saline treatment.  I & M, Quantification of pAMPK/AMPK and pACC/ACC levels in 16 

the SN reveals no effect in Ghrelin WT mice however, in KO mice there was a 17 

significant (p<0.05) reduction between MPTP ad-lib and MPTP CR groups (J & N), 18 

showing that CR KO mice could not adapt appropriately to MPTP-induced cell 19 

degeneration.  K & L, MPTP and CR individually increased striatal pAMPK/AMPK in 20 

Ghrelin WT mice but not in Ghrelin KO mice, as no change from baseline with either 21 

MPTP or CR was observed. O & P, MPTP-induced an increase in striatal 22 

pACC/ACC in Ghrelin WT but not Ghrelin KO mice, mimicking the effects seen with 23 

pAMPK/AMPK. Q & R, Representative western blots for LC3 I and LC3 II in the SN 24 

and Striatum of Ghrelin WT and KO mice.  S, LC3 II in the SN is significantly 25 
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reduced in Ghrelin WT mice after MPTP treatment, however this was not observed in 1 

Ghrelin KO mice (T).  U & V, There was no effect of CR on LC3 II in the striatum 2 

from Ghrelin WT and KO mice. However, there was a significant main effect of 3 

MPTP to increase LC3 II in WT but not KO mice. a, significant compared to saline 4 

controls, b, significant compared to a low dose of Ghrelin. * p<0.05, ** p<0.01. Data 5 

are represented as mean ± SEM (n=5-7, one-way ANOVA, p<0.05). 6 

 7 

Figure 4. Exogenous ghrelin elevates TH and AMPK activation A, Representative 8 

Western Blot images of cultured dopaminergic neurons shows an increase in 9 

pAMPK levels in response to acyl ghrelin, JMV2894 (ghrelin agonist) or oligomycin 10 

treatment. Quantification of pAMPK/AMPK levels reveals a significant increase in 11 

response to acyl ghrelin (B), JMV2894 (C) and oligomycin (D) treatment. E & F, 12 

Representative Western Blot images of pAMPK, AMPK, pACC, ACC levels in the SN 13 

and Striatum. G & H, Quantification of the pAMPK/AMPK and pACC/ACC in the SN 14 

(G) in response to a high dose of ghrelin reveals a significant elevation in response 15 

to the high dose of ghrelin. I & J, Quantification of pAMPK/AMPK and pACC/ACC in 16 

the striatum reveals no change between saline ghrelin doses. K, Representative 17 

Western Blot images of TH levels in the SN and Striatum. Quantification of TH levels 18 

in the SN (L) and Striatum (M) show that ip ghrelin significantly increases TH 19 

expression in response to a high dose of ghrelin. Representative Western Blot 20 

images of LC3 II expression in the SN and Striatum (N). Quantification of LC3 II 21 

revealed high dose caused a significant increase in the SN (O) but not the striatum 22 

(P)..a, significant compared to saline/saline controls, b, significant compared to 23 

saline/MPTP controls. Data are represented as mean ± SEM (n=6-8, two-way 24 

ANOVA, p<0.05).  25 
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Figure 5. Ghrelin activates AMPK to elicit neuroprotection in an AMPK-dependent 1 

manner. A, DAT CRE mice crossed with the tdTomato line shows a >90% co-2 

localisation (B) between TH (green) and tdTomato (red) neurons; scale bar = 3 

100µm. C, Representative tiled image showing TH (green) and tdTomato (red) 4 

where each tile represents a 20x image. D, tdTomato labelled TH neurons were 5 

sorted via FACs to show the selective deletion of AMPKβ1 and AMPKβ2 in AMPK 6 

WT but not AMPK KO mice. Product size for AMPKβ1 = 386kb, AMPKβ2 = 395kb. 7 

The ghrelin receptor (GHSR) is unaffected by deletion of AMPKβ1 and AMPKβ2 in 8 

SN TH neurons. E, Representative images showing TH neurons from AMPK WT and 9 

KO mice after chronic ghrelin treatment. F & G, Stereological quantification of TH 10 

neurons from AMPK WT (F) and KO (G) mice shows a protective effect of ghrelin 11 

treatment in WT but not KO mice. H, Stereological quantification of IBA1 microglia in 12 

the SN shows that ghrelin suppresses IBA1 cells relative to saline controls following 13 

MPTP treatment, however this is not observed in AMPK KO mice (I). J & K, 14 

Stereological quantification of GFAP in the SN shows that ghrelin attenuates the 15 

MPTP-induced increase in GFAP cell numbers in AMPK WT (J) but not AMPK KO 16 

(K) mice. L, Representative images showing MPTP induced astrocyte (GFAP) 17 

activation in the SN (TH = green and GFAP = red).  a, significant compared to 18 

saline/saline controls, b, significant compared to saline/MPTP controls. Data are 19 

represented as mean ± SEM (n=6-8, two-way ANOVA, p<0.05). Scale bar = 100 µm. 20 

 21 

Figure 6. Chronic ghrelin injection enhances dopamine turnover and behavioural 22 

outcomes in AMPK WT but not KO mice. A & B, Overall cell volume showing no 23 

reduction in response to genotype or treatment. When cells were separated based 24 

on number and volume distribution as shown in C & D there was no overall effect of 25 
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genotype or treatment. HPLC data show that ghrelin significantly attenuates the 1 

MPTP-induced decrease in striatal dopamine concentration in AMPK WT but not 2 

AMPK KO mice (E & H).  MPTP reduced DOPAC with no effect of genotype (F & I). 3 

Ghrelin treatment significantly attenuates the MPTP-induced increase in the 4 

DOPAC/Dopamine ration in AMPK WT but not AMPK KO mice (G & J). K – N, 5 

Behavioural analysis showing latency to fall on an accelerating rotarod. K & L, no 6 

difference in latency to fall in mice not exposed to MPTP. In mice given MPTP, 7 

latency to fall is not effected by genotype in mice pre-treated with saline (M). 8 

However, in mice pre- treated with ghrelin there is a significant protective effect in 9 

AMPK WT but not KO as evidence by increased latency to fall (N). a, significant 10 

compared to saline/saline controls, b, significant compared to saline/MPTP controls. 11 

Data are represented as mean ± SEM (n=6-12, two-way ANOVA, p<0.05). 12 

 13 

Figure 7.  14 

Chronic ghrelin injections increase nigrostriatal TH expression and AMPK activation 15 

in an AMPK-dependent manner. A & B, representative Western Blot images of the 16 

SN (A) and Striatum (B) showing TH levels. In both the SN and the Striatum there is 17 

a significant protective effect of ghrelin administration on TH levels in AMPK WT 18 

mice (C & E) that is absent in AMPK KO mice (D & F). G & H, Representative 19 

Western Blot images showing pAMPK, AMPK, pACC and ACC levels in the SN (G) 20 

and striatum (H). There was no significant change in the pAMPK/AMPK (I & J) or 21 

pACC/ACC (M & N) ratio in the SN of AMPK WT or AMPK KO mice in response to 22 

MPTP or ghrelin. MPTP-induced an increase in the pAMPK/AMPK and pACC/ACC 23 

ratio AMPK WT mice (K & O) but not AMPK KO mice (L & P). In the Striatum MPTP 24 

induced an increase in the pAMPK/AMPK and pACC/ACC ratio AMPK WT mice (K 25 
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& O) but not AMPK KO mice (L & P). Q & R, Representative Western Blot images of 1 

LC3 II expression in the SN (Q) and Striatum (R). There was no significant effect of 2 

MPTP or ghrelin administration on LC3-II levels in the SN (S & T) or Striatum (U & 3 

V). a, significant compared to saline/saline controls, b, significant compared to 4 

saline/MPTP controls. Data are represented as mean ± SEM (n=6-8, two-way 5 

ANOVA, p<0.05). 6 
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