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Abstract 

The propagation of thermal uncertainty in composite structures has significant computational 

challenges. This paper presents the thermal, ply-level and material uncertainty propagation in 

frequency responses of laminated composite plates by employing surrogate model which is 

capable of dealing with both correlated and uncorrelated input parameters. The present 

approach introduces the generalized high dimensional model representation (GHDMR) 

wherein diffeomorphic modulation under observable response preserving homotopy (D-

MORPH) regression is utilized to ensure the hierarchical orthogonality of high dimensional 

model representation component functions. The stochastic range of thermal field includes 

elevated temperatures up to 375K and sub-zero temperatures up to cryogenic range of 125K. 

Statistical analysis of the first three natural frequencies is presented to illustrate the results 

and its performance. 

Keywords: A. Laminates; B. Vibration; C. Computational modelling; C. Statistical 

properties/methods; Thermal uncertainty 

1. Introduction 

    Composite materials are being increasingly utilized in aerospace applications due to high 

strength, stiffness, light weight and tailorable properties. They may be exposed to variation in 

environmental (hot or cold) conditions during the service life such as aircraft wing made of 

composite materials experiences a wide range of temperature variation from take-off to level-
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flight depending on altitude of flight. The stochasticity in frequency responses due to thermal 

effects on composites is an important criterion for overall design. In specific applications, the 

thermal effect acts as a fundamental factor for design consideration. These changes of 

thermal environments produce uncertain responses in the laminated composite structures. 

Hence the thermal condition has significant effect on the frequency characteristics and 

performance of composites. The natural frequency of composite structure under different 

thermo-mechanical loading conditions relies on its system parameters. The uncertainties of 

input parameters such as temperature, ply orientation angle and material properties lead to the 

uncertainties in the natural frequency of the composite structures. The stochasticity in the 

system’s input parameters are considered in the analysis (for both individual and combined 

variation of inputs) so that the anticipated response can be turned out to be safe for the 

structure. Such engineering problems need to efficiently establish the correlation between 

high dimensional input parameters and interested output quantities. These structures can be 

characterized by probabilistic model using the small set of input data obtained from 

laboratory/field test or numerical simulation.  

The free vibration of laminated plates with effect of environment has been considered 

earlier by Whitney and Ashton [1]. The effect of environments on the material properties of 

composites was studied by many researchers, for example, Strife and Prewo [2] and Bowles 

and Tompkins [3] and Seng et al. [4]. Ample published work is found on deterministic 

buckling analysis in conjunction to thermal and hygrothermal behavior [5-12]. The concept 

of random vibration is exhaustively utilised in many engineering application [13-15]. Most of 

the literatures are deterministic in nature, which lacks in portraying the probable deviation 

caused by random input parameters. Due to presence of large number of inter-dependent 

factors in production of composites, the system input parameters are generally random in 

nature. The allowable responses for conventional material is expected to be close to their 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

mean values as fewer parameters are involved in their production process while in contrast 

for composites, a range of random fluctuation in system parameter may occur due to large 

number of system properties. Even after ensuring the effective quality control of production 

process in sensitive applications, the allowable responses are normally found to scatter 

widely with respect to the mean values. The knowledge of input variabilities and 

corresponding range of stochastic responses may serve to control the purposes of lightweight 

design, which is one of the important characteristics for composites. Therefore the efficient 

computational modelling and analysis is needed considering randomness in material 

properties and ply orientation angle including the effect of thermal uncertainty to ensure 

optimization, operational safety and reliability. Such issues can be addressed by employing 

probabilistic method, which quantifies the uncertainties in frequency responses.  

The novelty of the present study includes the stochastic analysis of natural frequencies 

for laminated composite plates subjected to uncertain thermo-mechanical loading. A 

surrogate model is employed by using the generalized high dimensional model representation 

(GHDMR) approach wherein D-MORPH (Diffeomorphic Modulation under Observable 

Response Preserving Homotopy) regression is employed to ensure the hierarchical 

orthogonality of HDMR component functions [16]. Random sampling high dimensional 

model representation (RS-HDMR) was employed for uncertainty quantification of natural 

frequency in composite plates considering three input parameters namely fibre-orientation 

angle, elastic modulus and mass density [17], wherein the input parameters are independent 

to each other. In contrast, investigation is also carried out with a new element for laminated 

composite plates [18] while stochastic modeling of unidirectional composites is studied 

considering delamination [19]. In the present study, the sources of uncertainty for natural 

frequency are considered as layer wise variation of material properties, ply orientation angle 

and temperature. Material properties of fibre reinforced composites are temperature 
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dependent. Due to this reason, the input parameters become co-related to each other in case 

of layer wise combined variation of material properties, ply orientation angle and 

temperature. The co-related input parameters cannot be mapped for the corresponding output 

response using conventional high dimensional model representation (HDMR) approach 

(different variants of HDMR can be found in available literature such as Cut-HDMR [20], 

RS-HDMR [21], mp-Cut-HDMR [22], Multicut-HDMR [23], lp-RS-HDMR [24] depending 

primarily on sampling scheme [16]. The present GHDMR can efficiently take care of both 

independent as well as co-related input parameters under a relaxed vanishing condition. The 

extended bases are used as basis functions to approximated HDMR component functions and 

D-MORPH regression is used to determine the coefficients in the GHDMR algorithm. The 

application of GHDMR is the first attempt of its kind in realm of laminated composites to 

take into account the effect of both non-correlated and/or correlated input parameters. In the 

present study, a random variable approach is employed in conjunction to finite element 

formulation to figure out the random eigenvalue problem. The numerical results are shown 

for first three natural frequencies with individual and combined layerwise variation of the 

stochastic input parameters. The present probabilistic approach is validated with Monte Carlo 

simulation wherein a small random variation is considered as tolerance zone. 

2. Governing equations 

    Consider a laminated composite cantilever plate as furnished in Figure 1(a,b) with 

thickness ‘t’  consisting of n number of thin lamina, the stress strain relations in the presence 

of temperature can be represented as [25] 
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where, xσ , yσ , xyτ , xzτ , yzτ  are normal and shear stresses; o
xε , o

yε , o
xyγ , o

xzγ , o
yzγ  are normal 

and shear strains. The Txe , T
ye , T

xye values are the thermal strain components due to 

temperature in x - y reference axes, which are derived from the corresponding values in the 

fiber axes after applying the transformations expressed as 
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where, )~(ω  indicates the randomness of the corresponding variables and 1α , 2α  are the 

thermal expansion coefficients of lamina in longitudinal and lateral directions and their 

values are considered as 6103.0 ×− /K and 6101.28 × /K, respectively. 

)~()~()~( ωωω∆ oTTT −= , where )~(ωoT  is the reference variable temperature in Kelvin. T is 

exposed random temperature in Kelvin. Here, )~(ωθ  denotes the random ply orientation angle 

of the lamina with reference to x -axis. The non-mechanical in-plane stress and moment 

resultants due to thermal environment are expressed as 
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The force and moment resultants are modified to include the thermal field by the constitutive 

equations [26, 27] for the composite plate are given by 

 )}~({})]{~([)}~({ ωεωω tFDF −=  (6) 
 

where 

T
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The non-mechanical loads due to uncertain thermal condition  
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The stiffness coefficients are defined as [28] 
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where scfα is the shear correction factor and is assumed as 5/6. )]~([ ωijQ  in above equation 

(11) and (12) is defined as 
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where ijQ are the in-plane element of the stiffness matrix. From Hamilton’s principle [29], the 

dynamic equilibrium equation (for free vibration) can be expressed as [30, 31]  

 0}{)]~([}{)]~([ =+ eeee KM δωδω &&  (15) 

 

where )~(ωeM and )~(ωeK are element mass and stiffness matrices, respectively. Here 

)]~([)]~([)]~([ ωωω geoelae KKK +=  as the sum of element elastic stiffness matrix )]~([ ωelaK and 

geometric stiffness matrix )]~([ ωgeoK . After assembling all the element matrices and the force 

vectors with respect to the common global coordinates, the resulting equilibrium equation is 

formulated. Considering randomness of input parameters like temperature, ply-orientation 

angle, elastic modulus etc., the equation of motion of free vibration system after of 

assembling with n  degrees of freedom can expressed as 

 0}{)]~([][)]~([ =+ δωδω KM &&  (16) 

 
where }{δ  denotes the vector of generalized coordinates. The governing equations are derived 

based on Mindlin’s Theory [32] incorporating rotary inertia, transverse shear deformation. 

The random natural frequencies [ωn )~(ω ] can be calculated employing standard eigenvalue 

problem [33] and by solving the QR iteration algorithm. In the present study, an eight noded 
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isoparametric quadratic element with five degrees of freedom at each node (three translations 

and two rotations) is considered for finite element formulation with respect to laminated 

composite cantilever plate wherein the shape functions (Ni) are as follows  

          Ni = (1 + ξ ξ i ) (1 + ς ς i ) (ξ ξ i  +  ς ςi  – 1) / 4     (for i = 1, 2, 3, 4) (17) 

               Ni = (1 – ξ 2 ) (1 + ς ς i ) / 2                                               (for i = 5, 7) (18) 

               Ni = (1 – ς2 ) (1 + ξ ξ i ) / 2                                              (for i = 6, 8) (19) 

where ς and ξ are the local natural coordinates of the element. The element stiffness matrix is 

given by 
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where, [B] is the strain displacement matrix and )]~([ ωD  is the random stress-strain matrix.  

The strain displacement matrix,  [B]=[[ B1], [B2], . . . . . . . . .[B8]]  
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The element mass matrix is obtained from the Integral 
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where, [N] is the shape function matrix and )]~([ ωρ  is the random inertia matrix. The 

derivatives of the shape function, Ni with respect to x, y are expressed in term of their 

derivatives with respect to ξ and ς  by the following relationship 
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3. Formulation of GHDMR 

    The general high dimensional model representation (GHDMR) is important because in real 

practical applications, the variables are often correlated, for example, the cases wherein the 

input variables have some relations between them. Here relation can be deterministic or 

stochastic.  For instance, large values of certain input variables may imply large or small 

values of some other stochastic input variables.  Such relation may be controlled by some 

known or unknown distributions. These correlations are implicitly contained in the collected 

samples in practice. The GHDMR can construct a proper model for prediction of the random 

output (say natural frequency) in the stochastic domain. The present approach can treat both 

independent and correlated input variables, and includes independent input variables as a 

special case. The role of D-MORPH is to ensure the component functions’ orthogonality in 

hierarchical manner. The present technique decomposes the function )(Sλ with component 

functions by input parameters, ),...,,( 21 kkSSSS = . As the input parameters are independent 

in nature, the component functions are specifically projected by vanishing condition. Hence, 

it has limitation for general formulation. In contrast, a novel numerical analysis with 

component functions is portrayed in the problem of present context wherein a unified 

framework for general HDMR dealing with both correlated and independent variables are 

established. For different input parameters, the output is calculated as [16] 
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1 1
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where 0λ (zeroth order component function) represents the mean value. )( ii Sλ and 

),( jiij SSλ  denote the first and second order component functions, respectively while 

).,....,,( 21.......12 kkkk SSSλ  indicates the residual contribution by input parameters.  The subset 

},....,2,1{ kku ⊆ denotes the subset where kku ⊆  for simplicity and empty set, u∈Γ . As 

per Hooker’s definition, the correlated variables are expressed as, 

 

∫ ∑ 
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 ∫ =∈∀⊆∀ − 0)()(,, uiuu dSdSSwSuikku λ  (27) 

 
and 

 ∫ =〉〈=∀⊂∀ 0)(,)()()()(:, vvuuvvuuv SgSdSSwSgSguv λλ  (28) 

 

The function )(Sλ can be obtained from sample data by experiments or by modelling. To 

minimise the computational cost, the reduction of the squared error can be realised easily. 

Assuming H in Hilbert space is expanded on the basis {h1, h2, . . . , hkk}, the bigger subspace 

H (⊃H ) is expanded by extended basis {h1, h2, . . . , hkk, hkk+1, . . . , hm}. Then H can be 

decomposed as 

 ⊥⊕= HHH  (29) 
 

where ⊥H  denotes the complement subspace (orthogonal) of H [34] within H . In the past 

work [35-37], the component functions are calculated from basis functions. The component 

functions of Second order HDMR expansion are estimated from basis functions }{ϕ  as [21] 
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i.e., the basis functions of ),( jiij SSλ  contain all the basis functions used in )( ii Sλ and )( jj Sλ .  

The HDMR expansions at sampN  sample points of Scan be represented as a linear algebraic 

equation system 

 RJ ˆ=Γ  (32) 
 
where Γ denotes a matrix ( sampN  × t~ ) whose elements are basis functions at the sampN  

values of S ; J is a vector with t~ dimension of all unknown combination coefficients; R̂  is a 

vector with sampN -dimension wherein l -th element is 0
)( )( λλ −lS . )(lS  denotes the l -th 

sample of S , and 0λ  represents the average value of all )( )(lSλ . The regression equation for 

least squares of the above equation can be expressed as 

 
R

N
J

N
T
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T

samp

ˆ11 ΓΓΓ =  (33) 

 
Due to the use of extended bases, some rows of the above equation are identical and can be 

removed to give an underdetermined algebraic equation system 

 VJA ˆ=  (34) 
 

It has many of solutions for J  composing a manifold tY
~

ℜ∈ . Now the task is to find a 

solution J  from Y  to force the HDMR component functions satisfying the hierarchical 

orthogonal condition. D-MORPH regression provides a solution to ensure additional 

condition of exploration path represented by differential equation  

 
)()()(

)(
lvAAIlv
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+−== χ  (35) 

 
wherein χ  denotes orthogonal projector ensuring 

χχ =2     and        χχ =T  (36) 
   

χχχχ T== 2  (37) 
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The free function vector may be selected to ensure the wide domain for )(lJ  as well as to 

simultaneously reduce the cost ))((lJκ  which can be expressed as 
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The cost function can be expressed in quadratic form as  

 
JBJT

2

1=κ  (40) 

 
where B denotes the positive definite symmetric matrix and ∞J  can be expressed as 

 VAUVUVJ T
rtrt

T
rtt

ˆ)( ~
1

~~
+

−
−

−−∞ =  (41) 

 
where the last columns )~( rt − of U and V are denoted as rtU −~  and rtV −~ which can found by 

decomposition of Bχ  [38] 
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=

00
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χ  (42) 

 
This unique solution ∞J in Y indicates the minimized cost function. D-MORPH regression is 

used to find the J which ensures the HDMR component functions’ orthogonality in 

hierarchical manner. The construction of the corresponding cost function κ  can be found in 

previous literature [16]. 

 

4. Random input representation 

The random input parameters such as ply-orientation angle and temparature in each layer of 

laminate are considered for composite cantilever plates. It is assumed that the distribution of 
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random input parameters exists within a certain band of tolerance with their crisp values. The 

cases wherein the input variables considered in each layer of laminate are as follows: 

(a) Variation of ply-orientation angle only:                    }..............{)~( 321 li θθθθθωθ =  

(b) Variation of longitudinal elastic modulus only:                    }..............{)~( )(1)(1)3(1)2(1)1(11 li EEEEEE =ω
 

(c) Variation of shear modulus only: }......{)~( )(12)(12)3(12)2(12)1(1212 li GGGGGG =ω
 

(d) Variation of temperature only: }..............{)~( )()()3()2()1( li TTTTTT =ω  

(e) Combined variation of ply orientation angle, elastic modulus, shear modulus and 

temperature:     ])...(),...(),...(),...([)]~(,,,[ )()1()(12)1(12)(1)1(11121 llll TTGGEETGE θθωθ =  

where θi, E1(i), G12(i) and T(i) are the ply orientation angle, temperature, respectively and ‘l ’ 

denotes the number of layer in the laminate. In present study, ± 5º variation for ply 

orientation angle, ± 10% volatility in material properties and ± 25K tolerance for 

temperature, respectively are considered from their respective deterministic values. Figure 2 

presents the flowchart of frequency responses using GHDMR with D-MORPH. It is worth 

mentioning that material properties such as 1E and 12G are considered as temperature 

dependant in the present study. Thus in case of the combined variation of ply orientation 

angle, elastic modulus, shear modulus and temperature, correlated input variables are needed 

to be mapped for natural frequencies as discussed in section-1. 

5. Results and Discussion 

     The present study considers four layered graphite-epoxy angle-ply [(θ°/-θ°/θ°/-θ°)]  and 

cross-ply (0°/90°/0°/90°) composite cantilever plates. An eight noded isoparametric plate 

bending element is considered for finite element formulation. Due to paucity of space, only a 

few important representative results are furnished. Table 1 presents the convergence study of 

non-dimensional fundamental natural frequencies of three layered graphite-epoxy untwisted 

composite plates [39]. Table 2 presents the non-dimensional natural frequencies for simply-
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supported graphite-epoxy symmetric cross-ply composite plates [40]. In both the cases, close 

agreement with benchmarking results are obtained at (6 ×  6) mesh size. Material properties 

and their variation with temperature [41] are furnished in Table 3. Considering mean 

temperature T=300K and thickness t=0.004 m, the deterministic values of material properties 

are considered as E1=E2=15.4 GPa, ν=0.43, G12=G13=G23=3.56 GPa, ρ=1660 kg/m3. The 

present GHDMR methodology is employed to find a predictive and representative surrogate 

model relating each natural frequency to a number of input variables. The present surrogate 

models are used to determine the first three natural frequencies corresponding to given values 

of input variables, instead of time-consuming deterministic finite element analysis. The 

probability density function is plotted as the benchmark of bottom line results. Due to paucity 

of space, only a few important representative results are furnished. The variation of 

temerature is scaled in the range with the lower and the upper limit (tolerance limit) as ±25K 

with respective mean values while for ply orientation angle as within ±5º fluctuation (as per 

standard of composite manufacturing industry) with respective deterministic values. Both 

angle-ply and cross-ply composite cantilever plates are considered for the present analysis. 

 

Table 1 Convergence study for non-dimensional fundamental natural frequencies [ω=ωn L
2 

√(ρ/E1t
2)] of three layered (θ°/-θ°/θ°) graphite-epoxy untwisted composite plates, a/b=1, 

b/t=100, considering E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, ν12 = 0.3. 
 
Ply angle, 

θ  
Present FEM 

(4 ×  4) 
Present FEM 

(6 ×  6) 
Present FEM 

(8 ×  8) 
Present FEM 

(10 ×  10) 
Qatu and 

Leissa [39] 
0° 1.0112 1.0133 1.0107 1.004 1.0175 

45° 0.4556 0.4577 0.4553 0.4549 0.4613 

90° 0.2553 0.2567 0.2547 0.2542 0.2590 
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Table 2 Non-dimensional natural frequencies [ω=ωn a2 √(ρ/E2t
2)] for simply-supported 

graphite-epoxy symmetric cross-ply (0°/90°/90°/0°) composite plates considering a/b=1, 
T=325K, a/t=100.  
 
Frequency Present FEM 

(4 ×  4) 
Present FEM 

(6 ×  6) 
Present FEM 

(8 ×  8) 
Present FEM 

(10 ×  10) 
Sai Ram and 
Sinha [40] 

1 8.041 8.061 8.023 8.001 8.088 

2 18.772 19.008 18.684 18.552 19.196 

3 38.701 38.981 38.597 38.443 39.324 

 
 
Table 3 Material properties of glass/epoxy lamina at different temperatures, E1=E2, 
G12=G13=G23, mass density (ρ)=1660 Kg/m3, ν=0.43 [41] 
 

Material 
properties 

(GPa) 

Temperature (K) 

125 150 200 250 300 350 400 

E1 15.4 15.4 15.4 15.4 15.4 14.93 14.7 

G12 3.56 3.56 3.56 3.56 3.56 3.51 3.48 

 
 

Figure 3 presents the scatter plot which establishes the accuracy of present model with 

respect to original finite element model corresponding to random fundamental natural 

frequencies for combined variation of temperature and ply orientation angle. Table 4 presents 

the convergence study of present method compared to direct Monte Carlo simulation (MCS) 

for first three natural frequencies due to individual variation of ply-orientation angle and 

temperature of angle-ply (45°/-45°/45°/-45°) composite cantilever plate while Table 5 

represents the convergence study of the present method with direct MCS for first three 

natural frequencies due to combined variation of temparature, ply-orientation angle, elastic 

modulus and shear modulus of angle-ply (45°/-45°/45°/-45°) composite cantilever plate. 

Figure 4(a-i) presents the comparative probability density function plot with respect to first 

three natural frequencies due to individual and combined variation of stochastic input 

parameters of angle-ply (45°/-45°/45°/-45°) composite cantilever plate for both MCS as well 

as present method. In present analysis, a sample size of 64 is considered for layerwise 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

individual variation of stochastic input parameters, while due to increment of number of input 

variables for combined random variation, the subsequent sample size of 512 is adopted to 

meet the convergence criteria. Here, although the same sampling size as in direct MCS 

(10,000 samples) is considered, the number of actual FE analysis is much less compared to 

original MCS and is equal to number representative sample required to construct the 

surroagte model. The surrogate model is formed on which the full sample size of direct MCS 

is conducted. Hence, the computational time and effort expressed in terms of FE calculation 

is reduced compared to full scale direct MCS. This provides an efficient affordable way for 

simulating the uncertainties in natural frequency.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

 
Table 4 Convergence study of first three natural frequencies due to individual variation of ply-orientation angle and temparature of angle-ply 
(45°/-45°/45°/-45°) composite cantilever plate considering E1=E2=15.4 GPa, G12=G13=G23=3.56 GPa, ρ=1660 Kg/m3, t=0.004 m, ν=0.43, 
Tmean=300K  
 

Parameter Values 

f1 f2 f3 

MCS 

(10,000) 

Present Method                
(Sample run) 

MCS 

(10,000) 

Present Method                 
(Sample run) 

MCS 

(10,000) 

Present Method                   
(Sample run) 

32 64 128 32 64 128 32 64 128 

)~(ωθ  

Max 34.8601 34.8999 34.8664 34.8783 98.1667 98.4748 98.6176 98.5928 216.7606 217.8250 216.7751 217.1431 

Min 34.2870 34.2531 34.2767 34.2941 84.9534 84.8309 84.8548 84.9552 205.8846 204.4143 205.7557 206.1325 

Mean 34.6546 34.6468 34.6509 34.6561 92.0607 92.0099 92.0172 92.0485 213.6560 213.4836 213.5772 213.6981 

SD 0.1061 0.1095 0.1068 0.1068 2.4501 2.4564 2.4550 2.4673 2.0449 2.1606 2.0635 2.0517 

 

)~(ωT  

Max 34.6904 34.6996 34.6932 34.6922 93.0976 93.1461 93.1307 93.1468 214.4427 214.6334 214.5056 214.4707 

Min 34.4488 34.4591 34.4536 34.4554 88.24453 88.3375 88.3098 88.3482 209.4478 209.5902 209.5364 209.5452 

Mean 34.5872 34.5879 34.5877 34.5872 90.7581 90.7659 90.7653 90.7634 212.3069 212.3222 212.3173 212.3069 

SD 0.0422 0.0428 0.0429 0.04287 0.8561 0.8707 0.8710 0.8686 0.8882 0.9011 0.9034 0.9016 
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Table 5 Convergence study of the present method with direct Monte Carlo simulation (MCS) 
for first three natural frequencies due to combined variation of temparature, ply-orientation 
angle, elastic modulus and shear modulus of angle-ply (45°/-45°/45°/-45°) composite 
cantilever plate  

Frequency Method Sample 
size 

Parameters 

Max Min Mean Standard Deviation 

f1 

MCS 10,000 34.8508 34.2855 34.5996 0.1187 

Present 
method 

32 34.9831 34.0428 34.5836 0.1019 

64 34.9002 34.2454 34.5978 0.0985 

128 35.0770 34.0130 34.6000 0.1403 

256 34.8492 34.2701 34.5999 0.1187 

512 34.8511 34.2638 34.5997 0.1195 

1024 34.8521 34.2628 34.5996 0.1198 

f2 

MCS 10,000 96.4222 84.7779 90.7088 2.4025 

Present 
method 

32 99.0099 79.0589 90.4359 2.0766 

64 96.9819 84.2358 90.6973 1.9971 

128 97.0225 83.4915 90.6970 2.4065 

256 96.3939 84.6852 90.7179 2.4068 

512 96.4816 84.4608 90.7116 2.4215 

1024 96.4883 84.4624 90.7110 2.4225 

f3 

MCS 10,000 216.6953 205.2277 212.2366 2.4307 

Present 
method 

32 219.6954 200.6440 211.9285 2.1035 

64 218.1019 204.7512 212.1888 1.9985 

128 224.9086 197.1597 212.2513 3.3649 

256 216.7612 205.1236 212.2363 2.4305 

512 216.7192 204.7821 212.2321 2.4455 

1024 216.7172 204.7808 212.2319 2.4414 

 
A comparative study on variation of stochastic natural frequencies is carried out for 

angle-ply (45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/90°) composite cantilever plate  due to 

individual variation of elastic modulus, shear modulus as furnished in Figure 5(a-f). From 

Figure 5, it is observed that the mean fundamental natural frequency for angle-ply laminate is 

found to be slightly lower than that of the same for cross-ply laminate while a significant 

higher mean values are obtained at second and third modes for angle-ply compared to cross-

ply. Considering only variation of temperature of angle-ply (45°/-45°/45°/-45°) and cross-ply 

(0°/90°/0°/90°) composite cantilever plate, the probability density function (PDF) with 

respect to first three natural frequencies are plotted in Figure 6(a-f) wherein it is found that as 
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the temperature increases the variabilities of first three natural frequencies of angle-ply 

laminate are increased and the probability density function curves become more steeper as 

the temperature increases. This can be attributted to the fact that due to rise in temeprature 

influences the thermo-mechanical loading due to random variation leading to change in the 

system properties. In contrast, the reverse trend is identified for cross-ply laminated 

composite plates due to reduction effect of 0° and 90° on effective stiffness of the laminate. 

On the other hand, Figure 7(a-c) presents the ply level quantification of uncertainty in first 

three natural frequencies in terms of Probability density function for angle-ply [(θ°/- θ°/ θ°/- 

θ°) where θ=Ply orientation angle] and cross-ply (0°/90°/0°/90°) composite cantilever plate. 

Due to random variation of ply orientation angle, the elastic stiffness of the laminated 

composite plate is found to be varied which in turn influence the frequency responses 

irrespective of laminate configuration. The effect of combined variation of input parameters 

is also carried out in addition to individual variation of inputs in conjunction to stochastic 

natural frequnencies for composite laminated plates as furnished in Figure 8(a-c). The ply 

orientation angle, elastic modulus, shear modulus and temperature of angle-ply (45°/-

45°/45°/-45°) and cross-ply (0°/90°/0°/90°) are considered as random input variables wherein 

the upper and lower bounds of volatility in natural frequencies are found to be wider than that 

of individual variation of inputs irrespective of laminate configuration. This corroborates with 

the fact that the combined effect of random input parameters leads to increase the variation in 

outputs compared to individual cases.  

In the present study, the relative coefficient of variance (RCV) (normalized mean to 

standard deviation ratio) due to variation of temperature is also quantified for each layer for 

angle-ply and cross-ply laminate as furnished in Figure 9(a,b). The two outer-most layers of 

the angle-ply laminate is found to be most sensitive to temperature variation for first three 

modes while the maximum sensitiveness of temperature is observed only at bottom layer of 
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the cross-ply laminate. In contrast, the least sensitivity to temperature variation is identified at 

third intermediate layer for first three modes irrespective of laminate configuration. The 

layerwise ply-level sensitiveness to temperature variation for fundamental mode is studied to 

map the sensitivity of each layer due to the influence of ply orientation angle on variation of 

temperature as furnished in Figure 10(a-d). The least sensitivity is observed at )~(ωθ =45°  for 

outer layers of the angle-ply laminate. 

6. Conclusions 

    This present study illustrates the layer-wise thermal uncertainty propagation with 

laminated composite plates. The ranges of variation in first three natural frequencies are 

analyzed considering both individual and combined stochasticity of input parameters. A 

generalized high dimensional model representation (GHDMR) model in conjunction with 

diffeomorphic modulation under observable response preserving homotopy (D-MORPH) 

regression is employed to map the input parameters (both correlated and uncorrelated) and 

natural frequencies. After utilizing the aforementioned surrogate modelling approach, the 

number of finite element simulations is found to be exorbitently reduced compared to original 

Monte Carlo simulation without compromising the accuracy of results. The computational 

expense is reduced by (1/156) times (individual stochasticity) and (1/19) times (combined 

stochasticity) of original Monte Carlo simulation. It is observed that as the temperature 

increases the variabilities of first three natural frequencies of angle-ply laminate are increased 

and the probability density function become steeper. The two outer-most layers of the angle-

ply laminate is found to be most sensitive to temperature variation for first three modes while 

the maximum sensitivity of temperature is observed at bottom layer of the cross-ply laminate. 

It is found that stochastic variation of temperature influences the natural frequencies and thus 

it is a crucial design parameter from the operational safety and serviceabilty point of view. 

The numerical results obtained in this study provide a comprehensive idea for design and 
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control of laminated composite structures. The results presented could serve as reference 

solutions to explore more complex systems in future course of research. 
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Fig. 1(a) Laminated composite cantilever plate 

 

 

 

 

Fig. 1(b) Force and moment resultants diagram 
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Fig. 2 Flowchart of frequency responses using GHDMR with D-MORPH 
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Fig. 3 Scatter plot for present surrogate model with respect to original FE model of 
fundamental natural frequencies for combined variation of ply-orientation angle and 
temperature of graphite-epoxy angle-ply (45°/-45°/45°/-45°) composite cantilever plate, 
considering E1=E2=15.4 GPa, G12=G13=G23=3.56 GPa,T=300K,ρ=1660 Kg/m3, t=0.004 m, 
ν=0.43. 
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)~(ωθ  

(Individual) 

 

  

(a) (b) (c) 

)~(ωT  

(Individual) 

 
 

 

(d) (e) (f) 

)]~(,,,[ 121 ωθ GET  

(Combined) 

  
 

(g) (h) (i) 

Fig. 4 (a-i) Probability density function with respect to first three natural frequencies (Hz) due to individual and combined variation of ply 
orientation angle, elastic modulus, shear modulus and temparatureof angle-ply (45°/-45°/45°/-45°) compositecantilever plate at mean 
temperatute (Tmean)=300K 
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Parameter f1 f2 f3 

)~(1 ωE  

(Individual) 

   

 (a) (b) (c) 

    

)~(12 ωG  

(Individual) 

 
 

 

 (d) (e) (f) 

 
Fig. 5(a-f)Probability density function with respect to first three natural frequencies (Hz) due to individual variation of elastic modulus, shear 
modulus of angle-ply (45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/90°) compositecantilever plate at mean temperatute (Tmean)=300K 
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Laminate f1 f2 f3 

Angle-ply 

(45°/-45°/45°/-45°) 

 
  

(a) (b) (c) 

Cross-ply 
(0°/90°/0°/90°) 

 
  

(d) (e) (f) 

 
Fig. 6 (a-f)  Probability density function with respect to first three natural frequencies (Hz) due to individual variation of temparatureof angle-ply 
(45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/90°) compositecantilever plate  
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(a) (b) 

 

(c) 
Fig. 7(a-c)Probability density function with respect to first three natural frequencies (Hz) due to individual variation of ply orientation angleof 
angle-ply [(θ°/- θ°/ θ°/- θ°) where θ=0°,15°,30°,45°,60°,75° and 90°] and cross-ply(0°/90°/0°/90°) compositecantilever plate at mean 
temperatute (Tmean)=300K. 
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Fig. 8(a-c)Probability density function with respect to first three natural frequencies (Hz) due to combined variation of ply orientation angle, 
elastic modulus, shear modulusand temperature of angle-ply (45°/-45°/45°/-45°) and cross-ply(0°/90°/0°/90°) compositecantilever plate at mean 
temperatute (Tmean)=300K 
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Fig. 9(a,b) Relative coefficient of variance (RCV)offirst three natural frequencies due to variation of temperature (layerwise) for angle-ply (45°/-
45°/45°/-45°) and cross-ply(0°/90°/0°/90°) compositecantilever plate at mean temperatute (Tmean)=300K 
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Fig.10(a-d)Relative coefficient of variance (RCV) of fundamental mode due to variation of temperature (layerwise) for angle-ply (θ°/- θ°/ θ°/- 
θ°) (θ =Ply orientation angle) composite cantilever plate at mean temperatute (Tmean)=300K 


