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ABSTRACT 

  Superalloys are widely used in a variety of applications including 

aerospace and land based gas turbine engines and nuclear power plants.  

The aerospace industry has experienced hydrogen embrittlement problems for many 

years. Hydrogen embrittlement is a delayed failure mechanism related to loss of 

ductility due to the presence of hydrogen in the material. Hydrogen embrittlement of 

the nickel-iron based superalloy 718 has been investigated using slow strain rate tests 

for pre-charged material and also in-situ hydrogen charging during testing. 

Fractography analyses have been carried using scanning electron microscopy, electron 

back-scattering diffraction and orientation image microscopy concentrating on the 

influence of microstructural features and associated micro-mechanisms leading to 

hydrogen induced cracking and embrittlement. It was observed that hydrogen induced 

transgranular cracking initiates at micro-voids in the crystal lattice. Similar behaviour 

has been observed in multi-scale finite element chemo-mechanical numerical 

simulations. In contrast, hydrogen induced localized slip intergranular cracking was 

associated with the formation of micro-voids in intergranular regions. The effects of 

grain boundary and triple junction character on intergranular hydrogen embrittlement 

were also investigated. It was observed that low end high angle misorientations 

(LHAM), 15°<θ≤35°, and critical high angle misorientations (CHAM), 35° < θ ≤ 50°, 

are preferential sites for hydrogen induced cracking. In contrast, few or no hydrogen 

induced cracks were observed at low angle misorientations (LAM), 0°≤ θ≤15°, high 

end high angle misorientations (HHAM), 50°<θ≤55°, or special GB misorientations 

(SGB), θ>55°. Finally, the use of grain boundary engineering techniques to increase 

the resistance of super alloy 718 to hydrogen induced cracking and embrittlement is 

discussed. 

Keywords: Aerospace Materials; Corrosion ; Hydrogen embrittlement; Grain boundaries; 

Microstructures; Crack mechanics; Electron microscopy; Multiscale modelling and Experimentation; 



1. Introduction 

Superalloys are widely used in a variety of applications including aerospace and 

land based gas turbine engines, nuclear power plants and chemical plants. This group 

of materials possess a range of superior properties in elevated temperature 

applications which are difficult to obtain from other groups of materials (Francis and 

Furrer, 2014). Their main advantage is retention of strength at high temperatures 

(typically ≥ 500°C) coupled with adequate ductility. Despite their advantages these 

alloys are know to be susceptible to degradation caused by the ingress of hydrogen 

which causes the material to become brittle. The aerospace industry has experienced 

hydrogen embrittlement problems for many years (Hicks and Alstetter, 1992, Lynch, 

2003, Xu et al., 1994). Hydrogen embrittlement is a delayed failure mechanism 

related to loss of ductility due to the presence of hydrogen in the material.  Hydrogen 

may enter the material during manufacturing processes such as welding or 

electroplating where this is usually termed ‘internal hydrogen embrittlement’. 

Hydrogen may also enter the material from the surrounding environment during 

service exposure and this is known as ‘environmental hydrogen embrittlement’ 

(Fontana et al., 1986, Martin et al., 2012, Diard et al., 2005, Barbe et al., 2001). 

Hydrogen is a common fuel in rocket engines and these rocket engines are made of 

polycrystalline Nickel and Nickel based super alloys 718 especially in combustion 

chambers. It is well known that hydrogen causes embrittlement in many 

polycrystalline materials, including high nickel content polycrystalline alloys, and 

catastrophic failure can occur in hydrogen fuel rocket engine components (Jothi 2015, 

Reese  2014, Jothi et. al. 2015h, 2015g and 2016).  

Alloy 718 is a multi-component alloy containing several alloying elements and is 

commonly used in the aerospace industry (Preli and Furrer, 2014, Byun and Farrell, 

2003, Liu et al., 2002, Mankins and Lamb, 1990). In the aerospace sector Alloy 718 is 

used in large static casings, as well as in rotating disks used in aero engines, Figure 1. 

Alloy 718 possesses a complex microstructure which is known to be susceptible to 

hydrogen embrittlement which can lead to delayed failure.  

In terms of microstructure it is known that grain boundaries play a pivotal role in 

hydrogen induced cracking and embrittlement in polycrystalline metallic materials, 

including superalloy Alloy718, (Pumphrey, 1976, Randle, 1996, Davies and Randle, 

2001, Lejcek et al., 2010, Priester, 2012, Seita et al., 2015, Jothi et al., 2014a, 2014b, 



2015b, 2015f). Also, intergranular regions represent preferential sites for crack 

nucleation and propagation in intergranular hydrogen induced cracking and 

intergranular hydrogen embrittlement (Kebir and Szummer, 2002, Martin et al., 2012, 

Jothi et al., 2015a-f, Bechtle et al., 2009). Triple junctions may also play a significant 

role in the intergranular hydrogen induced cracking in polycrystalline materials. 

Compatibility stresses at triple junctions may act as preferential sites for cavitation 

leading to crack nucleation and propagation (Jothi et al., 2015c-d). 

Researchers have investigated the metallurgical nature of grain boundaries and 

intergranular regions in an attempt to correlate microstructural features with an alloy’s 

susceptibility to hydrogen embrittlement and cracking. It has been reported previously 

that the grain boundary character distribution (GBCD) based on coincidence site 

lattice (CSL) shows that high angle grain boundaries (HAGBs) act as preferential sites 

for crack nucleation in polycrystalline materials (Kobayashi et al., 2008, Randle, 

1996). Other general reported observations (Lehockey and Palumbo, 1997, Crawford 

and Was, 1992, Arafin and Szpunar, 2009, Randle, 2004, Seita et al., 2015, Song and 

Curtin, 2013, Lim et al., 1990) include:  

(i) Cracks never nucleate at low angle grain boundary (LAGBs). 

(ii) Coherent (Σ3) twin boundaries act as potential sites for crack nucleation. 

(iii) Twin boundaries provide improved resistance to intergranular cracking in 

FCC and BCC polycrystalline materials.  

The importance of grain boundaries has led to grain boundary engineering 

methodologies being applied to nickel based super alloys to enhance resistance to 

fracture (Palumbo and Aust, 1990, Palumbo et al., 1991, Lin et al., 1995, Cheung and 

Erb, 1994, Kobayashi et al., 2012, Krupp et al., 2003). However, there is still work to 

be done to fully investigate the connection between intergranular hydrogen induced 

crack nucleation/propagation and grain boundary and triple junction character. It is 

also important to investigate the interaction of hydrogen with slip systems in 

intergranular regions. Despite many studies on hydrogen embrittlement in superalloy 

Alloy718, very little information is reported on the relationships between the 

following: 

 Micro-mechanisms of hydrogen induced slip localization, intergranular 

micro-void formation and intergranular hydrogen cracking/embrittlement. 



 Micro-mechanisms of micro-void formation in the crystal lattice and 

hydrogen induced transgranular cracking. 

 Grain boundary misorientations, triple junction character and hydrogen 

induced intergranular cracking phenomena. 

In the present study, the main aim is to investigate the points above using slow strain 

rate tests on hydrogen charged Alloy 718 material coupled to scanning electron 

microscopy (SEM), electron back-scattering diffraction (EBSD) and orientation image 

microscopy (OIM) observations of failed material in order to explore ways of 

increasing resistivity to hydrogen induced cracking/embrittlement. 

Ultimately an improved understanding and quantification of these phenomena 

should give rise to improved computational predictive tools for manufacturing 

industry, and this is the spirit in which the current work is presented. As will be 

shown below different types of grain boundaries and combinations of grain 

boundaries behave quite differently during the ingress and accumulation of hydrogen. 

Such behaviour needs to be captured correctly both to improve models and also to be 

able to devise practical methodologies to reduce hydrogen induced failure.  

 

2. Experimental methods: 

2.1 Materials and In-situ hydrogen charged tensile test: 

A wrought sheet of Alloy 718 was prepared by water jet cutting to produce 

specimens with gauge length 10.0 mm, width 3.0 mm and thickness 3.2 mm. The 

specimens were solution heat treated at 954°C for 1 hour and then furnace cooled at a 

rate of 20°C per minute down to 500°C followed by a normal furnace cooling to room 

temperature. Slow strain rate testing (SSRT) along the rolling direction (RD) was 

conducted with two different strain rates of 10
-4 

s
-1

and 10
-3

 s
-1 

at ambient temperature 

(21°C) using an Instron 8511 hydraulic testing machine. SSRTs were conducted both 

in air and also using an in-situ hydrogen charging condition. For one benchmark test, 

no hydrogen charging was carried out and the SSRT was performed in air. For all of 

the other tests hydrogen was first introduced into the specimens prior to testing with 

either 4 or 16 hours of pre-charging (i.e. internal hydrogen embrittlement) and then 

continuous in-situ hydrogen charging was performed during the SSRT (i.e. 

environmental hydrogen embrittlement) using cathodic charging. Details of the in-situ 

charging cell for SSRT can be found elsewhere (Koyama et al., 2014). Cathodic 



charging was performed in a 3% NaCl aqueous solution containing 3.0 g.dm
-3

 of 

ammonium thiocyanate (NH4SCN) at a current density of 10 Am
-2 

using platinum foil 

as a counter-electrode. Total hydrogen charging time is determined by the addition of 

the pre-charging time (4 or 16 hours) to the experimental fracture strain divided by the 

applied strain rate. Hydrogen charging was stopped when the specimen failed. 

Hydrogen charging during tensile testing introduces external hydrogen efficiently into 

the samples via hydrogen transport and stress assisted diffusion. After 4 or 16 hours 

pre-charging it is expected that the internal hydrogen levels will be significant at 

dislocations, defects, grain boundaries and triple junctions (Martin et al., 2012, Lynch, 

2003).   

2.2 Material characterization: 

The materials were characterised using scanning electron microscopy (SEM) 

using secondary electron, back scattering electron and electron backscattering 

diffraction. An Oxford instrument channel 5 HKL system was used for EBSD 

characterization at a 20 kV accelerating voltage with a probe diameter or beam spot 

size of 7 nm. A step size of 0.5 µm and 1.0 µm was used in the EBSD analyses. The 

microstructure observations were conducted one month or longer after the in-situ 

hydrogen charged tensile tests were carried out. The EBSD data was post-processed 

using the HKL Tango mapping software. 

3. Results and discussions 

3.1 Metallographic and EBSD characterization of the undeformed microstructure: 

Figure 2 and 3 shows the microstructure of the undeformed solution heat treated 

Alloy 718. Figures 2 (a) and (b) shows the results of EBSD analysis, crystallographic 

orientation distribution maps of grain structures as inverse pole figure (IPF) and Euler 

angle distribution along the rolling direction (RD) of the undeformed material 

microstructure. Figures 3 (a) and (b) show the Special Coincidence Site Lattice (CSL) 

grain boundaries (i.e. misorientations Σ<29°) of the undeformed microstructure and 

the relative statistics. Table 1 gives the observed percentage values of CSL special 

grain boundaries (SGBs) for the statistical distribution shown in figure 3 (b). This data 

shows that 33.3% of grain boundary lengths are Σ3 SGBs (twin boundaries). 10.32% 



of grain boundary lengths are found to be other SGBs. Thus for the solution hardened 

Alloy 718 a total of 43.62% of grain boundaries are found to be SGBs. 

Figure 3 (c) shows the backscattering electron (BSE) SEM image of the 

undeformed microstructure. The average grain size is 8.17 µm without twin 

boundaries and the distribution of average grain diameter is shown in figure 3 (c). The 

average grain size was evaluated from 1447 grains within an area of 179830 µm
2
. 

This study shows that the microstructure of the material prior to testing is free from 

porosity with relatively homogeneous grain sizes and shapes. 

 

GB Misorientation  

angle(θ°)  
60 36.87 38.94 50.48 61.93 51.68 46.31 

CSL /GB Sigma(Σ) 3 5 9 11 17b 25b 29a 

Percentage (%) 33.3 0.37 1.9 3.3 0.59 0.42 3.74 

Table1: Percentage amounts of Special CSL GBs (<29°) observed in the undeformed solution heat 

treated superalloy alloy 718. 

3.2 Effect of hydrogen on mechanical properties: Results of SSRT tests in air and 

with in-situ hydrogen charging: 

Figure 4 (a) shows the macroscopic engineering stress-strain curves obtained 

from SSRTs conducted in air and under in-situ hydrogen charging. It can be seen that 

there is no significant change in yield strength or 0.2% offset yield strength whether 

samples are tested in air, pre-charged with hydrogen, tested under in-situ hydrogen 

charging or tested at strain rates of 10
-3

 s
-1

 or 10
-4

 s
-1

. 

From figure 4 (a) it can be seen that the measured UTS values for the hydrogen 

charged specimens were significantly lower compared to the uncharged specimen 

tested in air. Ductility was also reduced when decreasing the strain rate from 10
-3

 s
-1 

to 

10
-4

 s
-1 

for the hydrogen charged specimens. In terms of strain, the UTS values 

measured for samples tested with 16 hours hydrogen pre-charging, 4 hours hydrogen 

pre-charging and without any hydrogen charging (tested in air) occurred at 

engineering strains of ~37.5%, ~39% and ~45.5% respectively for a strain rate of 10
-3

 

s
-1

. For a strain rate 10
-4

 s
-1

 the UTS of samples tested with 16 hours and 4 hours of 

hydrogen pre-charging occurred at engineering strains of ~17.5% and ~23% 

respectively. This indicates that the onset of failure (defined here as the point at which 

the specimen passes the UTS) begins at lower strains in the hydrogen charged 

specimens compared to the uncharged specimen. An increase in charging time is 

expected to increase the uptake of hydrogen while decreasing ductility. Also, the 



strain from the UTS to ultimate failure in the uncharged sample tested at strain rate 

10
-3

 s
-1 

is ~6% which is greater than the equivalent strain in the hydrogen charged 

specimen tested at 10
-3

 s
-1

 of ~2%. Figure 4 (b) shows the measured UTS of 

specimens tested with and without hydrogen charging for the two different strain rates 

summarising the effects of the various parameters on hydrogen embrittlement. 

It can be seen that hydrogen charging time, for the same strain rate, did not 

significantly alter measured UTS values. However, the specimens charged for 4 hours 

tested at strain rates of 10
-3

 s
-1

 and 10
-4

 s
-1 

showed a significant drop in UTS for the 

material tested at the lower strain rate. This is attributed to the increase in testing time 

for the strain rate of 10
-4

 s
-1

. This longer time would increase the time for hydrogen 

trapping at dislocations, raise the local stress and then (i) increases local hydrogen 

diffusion further and (ii) lead to increased dislocation movement. This deformation 

also leads to incompatibility stresses along grain boundaries arising from elastic and 

plastic crystal anisotropy as a function of grain boundary misorientations. This 

dilatational mismatch between crystals generates further dislocation motion and also 

increases the mobility and segregation of hydrogen to trap sites (mainly intergranular) 

as previously reported (Wilcox et al., 1965, Mills et al., 1999). Segregation of 

hydrogen atoms occurs preferentially at trap sites along highly stressed tensile regions 

and high stress gradient regions. For longer test durations these hydrogen induced 

effects are more significant leading to greater embrittlement and lower UTS values for 

tests extending over longer times, in this case for 10
-4

 s
-1

.  

The strain to failure is also used to assess the hydrogen embrittlement resistance 

as shown in figure 4 (c). For a strain rate of 10
-3

 s
-1

 the measured failure strains for 

samples tested with 16 hours hydrogen pre-charging, 4 hours hydrogen pre-charging 

and without any hydrogen charging were ~39.5%, ~42% and ~52% respectively. For 

a strain rate of 10
-4

 s
-1

 measured failure strains for samples tested with 16 hours and 4 

hours hydrogen pre-charging were~27.5% and ~21.5% respectively. The increase in 

hydrogen charging time increases the total amount of hydrogen uptake which 

enhances the dislocation mobility. This reduces ductility leads to a more brittle 

failure. While these trends are clear it is acknowledged that a greater number of tests 

would be required to properly quantify experimental scatter. Also, for many industrial 

applications it is likely that strain rates of 10
-4

 s
-1

 are not particularly slow and again 

further tests at lower strain rates would be of greater interest. 



Figure 4 (d) shows the percentage hydrogen embrittlement ratio (HER) of the 

hydrogen charged specimens tested at a strain rate of 10
-3

 s
-1

. The percentage 

hydrogen embrittlement ratio is a measure of the susceptibility of metallic materials to 

hydrogen embrittlement. Lower HER values imply lower susceptibility. The HER 

value (units: %) is calculated using below shown equation (1). 

100












 


air

hydrogenair
HER




                   (1) 

Here εair is the failure strain for a specimen tested in air and εhydrogen is the failure 

strain of a specimen tested under hydrogen charging conditions. The results in figure 

4 (d) show the effect of hydrogen in reducing the ductility of solution heat treated 

superalloy Alloy 718 with the longer charging time resulting in a higher HER. In 

summary, the sample without hydrogen is most ductile and samples charged with 

hydrogen display lower failure strains. 

3.3 SEM Fractography of Alloy 718 failed specimens:  

Figure 5 (a) shows the secondary electron (SE) image obtained from SEM of 

the fractured samples of the uncharged SSRT test conducted in air. One primary crack 

has led to failure and no secondary cracks were observed. Figures 5 (b) and (c) show 

the fractured specimens from SSRT tests with 16 hours hydrogen pre-charging for 

strain rates of 10
-3 

and 10
-4

 s
-1

 respectively. In stark contrast to the uncharged 

specimen there are many secondary surface and subsurface cracks visible in the 

hydrogen charged specimens. The observed secondary cracks are largely 

perpendicular to the loading direction. Local grain boundary cracking has been 

reported to arise perpendicular or at 45° to the loading direction (Masayuki et al., 

2007, Pouillier et al., 2012). Larger secondary cracks are observed on the surface of 

samples tested at strain rate 10
-4

 s
-1

compared to samples tested at strain rate 10
-3

 s
-1

. A 

decrease in strain rate increases the time duration of the test, which will increase the 

amount and depth of hydrogen diffusion into the sample specimen and this 

corresponds to the amount of subsurface cracks observed. 

For the uncharged specimen figures 6 (a) and (b) show the macro-scale cross 

section of the fracture sample and micro-scale fracture surface of the sample 

respectively. Figure 6 (b) shows a typical ductile fracture surface. Figures 6 (c) and 

(d) show the fracture surfaces of the specimens tested with 16 hours hydrogen pre-

charging at the macro and micro scales respectively. The fracture surface shows outer 



regions of brittle fracture and inner regions of ductile fracture. Brittle fracture surfaces 

were observed near the edge of the specimen to a depth of ~1 mm while ductile 

fracture surfaces were observed towards the centre of the specimen. Considering the 

diffusivity of hydrogen in the alloy, there is not enough time for hydrogen to fully 

diffuse to the centre of the specimen. Thus central regions of the specimen are more 

likely to fracture in a ductile mode. The hydrogen induced brittle modes of fracture 

appear to be intergranular supporting the idea that grain boundaries and triple 

junctions are more susceptible to hydrogen induced cracking compared to the grain 

interior lattice. 

Figures 7 (a), (b) and (c) are a series of fracture surface images at increasing 

magnification. Figure 7 (a) shows both transgranular and intergranular cracking. Most 

of the crack paths observed are intergranular with only very few transgranular cracks. 

Figures 7 (b) and (c) show the hydrogen induced transgranular crack propagation 

path. From a previous multi-scale FE stress assisted hydrogen diffusion numerical 

model (Jothi et al., 2015c,d and f) it was observed that the presence of voids or pores 

in the grain lattice leads to high stress concentrations which act as a driving force for 

the segregation of hydrogen near the edges of these voids, perpendicular to the 

traction direction. This leads to crack initiation at the edges of the void and these 

cracks propagate in a transgranular manner. Such pores in the lattice may arise from 

manufacturing processes or could possibly develop from the accumulation of 

dislocations, hydrogen and vacancies within the lattice associated with applied stress. 

The numerical model mentioned above is a microstructural coupled multi-

scale FE model and multi-scale FE chemo-mechanical analysis of void/pores 

microstructures (Jothi et al., 2015 c, f) . The model incorporates microscale stress-

assisted diffusion of hydrogen with different diffusivities and grain boundary energies 

for different regions of microstructure (grain interiors, different types of grain 

boundary regions, triple junctions). The relative proportions of these regions are also 

adjustable in the model which has been shown to correctly match diffusion 

experiments. In order to investigate the effect of voids on hydrogen induced failure 

mechanisms, multi-scale FE chemo-mechanical stress-assisted hydrogen diffusion 

simulations were carried out on representative microstructural volume elements 

(RMVE). The RMVE model was developed in ABAQUS FE software by 

incorporating the real microstructural master database developed using MATLAB and 

PYTHON coding from the following datasets i.e crystal orientation dataset, grain 



boundary characteristic distribution dataset, misorientations dataset, grain size 

distribution dataset and grain structure extracted from experimental EBSD analysis 

results. The master database developed by processing the machine logged data source 

using ETL (Extraction-transformation-loading) including cleansing, reformatting, and 

integration and finally inserted into data warehouse. This data warehouse will be used 

to incorporate the structured multiscale computational modelling data sources, 

manufacturing process data and also other experimentally collected machine data 

sources from atom probe analysis, detect material testing and material 

characterization, electrochemistry analysis and mechanical testing etc.. This data 

warehouse then will be incorporate with unstructured data including streaming 

manufacturing process real-time sensor data in order to study and investigate the 

structure-property-manufacturing process-application analysis of materials including 

failure analysis and also to develop materials and new alloys based on data science 

data driven approach.  One such example; In EU FP7 “MultiHy” project lots of big 

data sets were collected on AIRBUS Ariane 5 space rocket composition chamber 

materials from various sources from streaming manufacturing machine senor data 

sources such as electroplating, welding, machine logged data source from material 

and microstructural characterizations such as EBSD analysis, SEM images, 

electrochemical and mechanical testing machine data source, and multi-scale 

modelling data sources to predict the failure analysis due to hydrogen embrittlement 

and more details about it can be found elsewhere ( Jothi et. al. 2016, Jothi 2015, Jothi 

et. al. 2015h). Figure 8 (a) and (b) shows the microstructural image developed from 

the experimental EBSD analysis machine logged data sources. Figure 8 (a) shows the 

grain distribution, morphology and crystal orientation. Figure 8 (b) shows the grain 

boundary characteristics distribution and figure 8 (c) shows the colour code of the 

GBCD. Detailed information on the development of ABAQUS real microstructural 

representative multi-scale FE model by incorporating the EBSD machine data source 

including algorithm and procedure are described elsewhere (Jothi et al., 2015f, 

2015d).  

ABAQUS multiscale FE model were developed from the EBSD machine data 

source using MATLAB, PYTHON coding then meshed with fine elements using FE 

code and subsequently, voids were randomly introduced into the grain boundaries on 

this mesh as shown in the figures 8 (d). Multiscale chemo-mechanical simulations for 

bi-crystal and polycrystalline nickel microstructures served as a motivation for this 



study (Jothi et al., 2015d, a, c and 2014a). The simulation procedure consists of an 

initial elastic-plastic stress analysis and then calculated stresses are used in a stress-

dislocation assisted hydrogen diffusion analysis. A brief description of this procedure 

is given here. Detailed information about the numerical implementation of the above 

constitutive approach for multiscale FE can be found elsewhere (Jothi et al., 2015d, a, 

c and 2014a). In the finite element stress-assisted hydrogen diffusion analysis, the 

hydrogen flux vector ( ) consists of flux generated by the hydrogen concentration 

gradient ( ) and the hydrostatic stress gradient ( ) as shown below: 

                                     (2) 

            (3) 

Where R is the gas constant, (T-T0) is absolute temperature, ,  is the 

Laplace operator, α = G, GB, TJ, DI, representing different localized regions in the 

microstructure (G is crystal lattice sites, GB is grain boundary sites, TJ is triple 

junctions, DI is dislocations). The diffusivity of hydrogen depends on the activation 

energy as shown below: 

           (4) 

Where  is the activation energy and the pre-factor is 

              (5) 

Here  is the geometric factor,  is the jump distance,  is the frequency with which 

the solute atom vibrates in the diffusion direction,  is the activation energy for 

diffusion,  is the melting point of the pure metal, , μ is the elastic 

modulus of the pure metal and μ0 is the elastic modulus at zero degrees absolute 

(Harris, 1989, Jothi, 2015). The effective diffusion of hydrogen in the bulk material 

can be calculated using a finite element microstructure homogenization method and 

meso-scale microstructure computational simulation of hydrogen permeation tests 

(Jothi et al., 2014b, 2015f). Other terms are s, the solubility of hydrogen,  is the 

partial molar volume of hydrogen, C is the hydrogen concentration and  is the 

hydrostatic stress given by 

              (6)

  



C/s is the normalized hydrogen concentration which is dependent on the hydrostatic 

stresses as given in the equation below. 

                     (7) 

Where the unstressed state of the normalized concentration under the 

condition of hydrogen-metal equilibrium is . 

Then the trap model is incorporated in the stress assisted hydrogen diffusion 

analysis and the details explanation about the trap model can be found elsewhere 

(Jothi et. al., 2015g). A simulation result using this model is shown in figures 8 (e) 

and (f). Figure 8 (e) shows the calculated stress field in a representative 2D micro-

scale region containing pre-existing voids in the microstructure. In this figure tensile 

stresses at void surfaces perpendicular to the loading direction are formed. Figure 8 (f) 

shows the predicted hydrogen segregation occurring preferentially in these same 

regions of tensile stress. Regions under high tensile stress possessing higher hydrogen 

concentrations would represent likely crack initiation sites. Tensile stresses 

developing around voids/pores could act as a mechanism to drive pore growth through 

the crystal lattice forming transgranular cracks and promoting the type of failure 

shown in figures 7 (a), (b) and (c). Furthermore, a recent thermo-mechanically 

coupled-theory predicted a higher lattice hydrogen concentration at crack-tips due to 

the effect of the tensile volumetric strains at the same location (Di Leo and Anand, 

2013). 

 

3.4 Effect of grain boundary misorientation types on hydrogen segregation at grain 

boundaries in IN718 polycrystalline material: 

 

  Figure 9 (a), (b) and (c) shows the EBSD result image of IN718 

microstructure, grain boundary characteristics distribution based on misorientation 

types and real microstructural based representative volume element FE model 

respectively. Chemo-mechanical-dislocation-microstructural multiscale FE model 

developed using real microstructure RVE in the absence of pores were employed to 

investigate the hydrogen induced crack initiation leads to the hydrogen embrittlement 

failure analysis.  Results of stress-dislocation-microstructural assisted hydrogen 

diffusion analysis are shown in figure 9 (d).  This preliminary result shows large 

accumulations of hydrogen along CHAM and LHAM type grain boundaries with less 



accumulation along LAM, HHAM and SGB type grain boundaries. The higher 

hydrostatic stresses developed between neighbouring grains with CHAM and HHAM 

type grain boundaries give rise to higher amounts of hydrogen trapped in these 

regions compared to neighbouring grains with LAM, HHAM and SGB type grain 

boundaries. Greater accumulation of hydrogen at CHAM and LHAM boundaries 

would make these regions more susceptible to crack initiation and propagation 

because they would exceed any given critical hydrogen concentration much earlier 

than LAM, HHAM and SGB type grain boundaries. The elastic single crystal 

properties of superalloy used to each grains are C11=231.2, C12=145.1 and C44=117.2 

(GPa) and the plastic properties are extracted from the stress strain curve shown in 

figure 3(a). The single crystal superalloy elastic values are close to single crystal pure 

nickel anisotropic values (Haldipur et al., 2004, Jothi et al., 2014a, 2015c, 2015d, 

Haldipur, 2006, Leidermark, 2011). The properties of hydrogen diffusion in nickel 

and IN718 can be found elsewhere. (Xu et al., 1994, Jothi et al., 2015d,f, Jebaraj et 

al., 2014).   

Figures 10 (a) and (b) show an intergranular crack propagation path (with slip 

traces, some highlighted with white dotted lines) and the presence of carbides in the 

crack path. The two black arrows in figure 10 (a) show two different slip systems 

acting across a grain boundary very similar to previous observations in pure nickel 

(Martin et al., 2012). Figure 10 (b) shows a magnified view of slip traces on a fracture 

surface on an intergranular crack propagation path. The majority of the crack 

propagates along the intergranular region where hydrogen trapping will be greater 

indicating that the intergranular region and voids are preferential sites for hydrogen 

trapping compared to lattice sites. Intergranular sites provide routes of higher 

hydrogen mobility as they are a lower energy barrier to hydrogen diffusion and would 

possess lower activation energy of hydrogen desorption compared to hydrogen lattice 

sites. Such segregation and trapping of hydrogen along grain boundaries has 

previously been observed using secondary ion mass spectroscopy for hydrogen 

diffusion in pure nickel (Fukushma and Birnbaum, 1984, Ladna and Birnbaum, 1987). 

The slip traces on both sides of two crystals intersecting across grain boundary 

indicates the presence of dislocations that can also act as trapping sites for hydrogen. 

This causes intergranular plasticity leading to intergranular brittle cracking often 

referred to as the hydrogen enhanced localized plasticity (HELP) mechanism of 

hydrogen embrittlement. All these observations indicate that plastic processes due to 



slip localization are an important micro-mechanism of hydrogen induced intergranular 

embrittlement in Alloy 718. Figure 10 (b) also shows the segregation of carbon in the 

intergranular region.  

Segregation of carbon atoms at grain boundaries in alloy 718 were observed in 

atomic scale investigations using atom probe tomography (APT) as shown in figure 

11 (a) (Jothi, 2015e). It has been previously reported that carbon at grain 

boundaries/micro-cracks can combine with hydrogen to form methane and this has 

been included in numerical models (e.g. Schlögl and Giessen, 2001). This enhances 

micro-crack initiation along grain boundaries. Void formation along intergranular 

interfaces can be seen in figure 11 (b). It has also been previously reported that 

segregation of impurity atoms also induces intergranular hydrogen embrittlement in a 

nickel based superalloy (Byun and Farrell, 2003, Ladna and Birnbaum, 1987).  

Figure 11 (c) shows hydrogen assisted crack initiation and a slip band system 

consistent with intergranular strain localization and the HELP mechanism.  The slip 

bands in the intergranular region were enhanced by hydrogen uptakes due to high 

stress concentrations. Intergranular slip takes place at grain boundaries and also by 

gliding on slip planes just below the boundaries, Clusters of hydrogen atoms can form 

in these regions particularly at vacancies. Increasing the density of vacancies 

promotes the formation of micro-voids along the intergranular region. The formation 

of micro-voids increases the internal gas pressure within voids due to the formation of 

molecular hydrogen. High hydrostatic tensile stresses around voids acts as a driving 

force to increase the diffusion of hydrogen towards the void with a higher 

concentration of hydrogen atoms becoming trapped near the micro-void edges 

perpendicular to the loading direction. These pressure stresses depend on the size/area 

of the micro-voids. In this respect Schlögl and Giessen present a multi-scale 

micromechanics modelling for chemico-mechanical damage processes at sub-micron 

scales coupled to macroscopic behaviour via a series of size-scale transitions (Schlögl 

and Giessen, 2001). However, the common assumption in numerical models that grain 

boundaries are all identical could be improved upon given the results described below. 

The intergranular trapped hydrogen softens the intergranular region by decreasing the 

cohesive energy between lattice atoms near the grain boundary. This leads to micro-

void expansion and merging together and coarsening of neighbouring micro-voids. 

Recent work has shown that the formation of a gas pressure inside a void leads to a 

bubble growth process and hydrogen induced failure (Fischer and Svoboda, 2014). 



Growth of micro-voids on the slip lines in the intergranular region may initiate cracks 

at triple junctions and/or larger micro-void sites, propagating along intergranular 

regions. This mechanism is illustrated schematically in figures 11 (d) to (i). 

While intergranular failure modes are predominant in this work there are also 

a few transgranular failures observed. To attempt to explain the transgranular failure 

mode and based on the experimental results we propose a mechanism for hydrogen 

induced transgranular cracking based on micro-void crack growth shown 

schematically in figure 12. The edges of deformed micro-voids perpendicular to the 

loading direction in the crystal lattice act as preferential sites for transgranular crack 

initiation. Initially a Stage 1 crack propagates by the formation and coalescence of 

voids. At a certain crack length Stage 2 propagation occurs driven towards 

intergranular regions where the lattice will be more disordered and there will be 

higher concentrations of hydrogen. 

3.5 Micro-scale investigation of hydrogen induced crack nucleation and crack 

propagation paths using SEM-EBSD analysis: 

 

The main aim of this EBSD investigation is to understand relationships 

between grain boundary (GB) misorientation and hydrogen induced intergranular 

crack nucleation and propagation in Alloy 718. In this study, hydrogen induced 

cracking is related to grain boundary character distribution (GBCD) as defined by 

grain boundary misorientation angles (irrespective of axis plane). Five different types 

are defined according to GB misorientation angle below. 

(1) Low angle GB misorientations (LAM)  ( 0° ≤ θ ≤ 15° ) 

(2) Low end High angle GB misorientation (LHAM) ( 15° < θ ≤ 35° ) 

(3) Critical High angle GB misorientation (CHAM) ( 35° < θ ≤ 50° ) 

(4) High end High angle GB misorientation (HHAM)  ( 50° < θ ≤ 55° ) 

(5) Special GB misorientation (SGB) ( 55° < θ ) 

The uncharged and hydrogen charged fractured specimen microstructures on 

the wider face of the gauge length section, parallel to the loading direction, were 

examined as shown in figures 13, 14, 15 and 16. EBSD scans were performed in the 

vicinity of the micro-crack front over areas of 490 × 367 μm
2
 and 153 × 114 μm

2
 on 

uncharged and charged specimens respectively. Figures 13 (a) and (b) show the 

uncharged fractured specimen indicating that preferential crack propagation was 



transgranular and no sub-cracks were observed. A crystallographic orientation map 

and IPF is shown in figure 13 (a). Figure 13 (b) shows the local misorientation map 

(with red regions having high levels of local misorientation and blue regions having 

lower amounts). Local misorientations are higher along the fracture path due to the 

higher local deformation and fracture is mostly transgranular. 

Figure 14 (a) shows hydrogen charged SSRT tested fractured specimen, figure 

14 (b) shows the EBSD map overlaid on the SEM micrograph and figure 14 (c) shows 

the corresponding local misorientation map. Figure 14 (b) shows that preferential 

crack propagation for hydrogen charged SSRT tested specimen was intergranular with 

many macroscopic sub-cracks observed perpendicular to the loading direction with a 

few micro cracks observed parallel to the loading direction. High local 

misorientations are observed in the intergranular cracked region. Considering figures 

14 (a-c) it is clear that grain boundaries and triple junctions have been deformed more 

than the internal crystal lattice. Figure 15 (a) shows the crystallographic orientation 

and IPF image. Intergranular cracks are mostly perpendicular to the loading direction. 

Figure 15 (b) shows a magnified view of a region near a sub-crack with Euler angles. 

Figures 16 (a, b and c) can be used to attempt to understand the effect of grain 

boundary character distribution on intergranular hydrogen embrittlement. These 

results show that the cracks are intergranular with CHAM-type regions observed 

along the crack path. Also, some likely crack nucleation points can be identified at 

triple junctions displaying CHAM-CHAM-SGB and CHAM-CHAM-CHAM 

connectivities. It has previously been observed in experimental studies and numerical 

models that certain types of triple junction are more susceptible to hydrogen 

embrittlement and therefore more likely to provide crack nucleation points (Koyama 

et al., 2013, Jothi et al., 2015c, Chen et al., 2000, Meyers and Chawlu, 2009). 

An attempt was made to quantify the effect of grain boundary misorientation 

character and triple junction character on hydrogen induced intergranular cracking. 

Hydrogen induced intergranular cracks were observed at 103 grain boundaries. 58.3% 

of the grain boundaries within cracks were CHAM, 35% were LHAM, 4.9% were 

HHAM and 1.9% were SGB. This data is summarised in figure 17. Interestingly, no 

intergranular cracks were associated with LAM. Thus LAM, HHAM and SGB are the 

types of GB misorientations where few or no hydrogen induced cracks were observed. 

This is attributed to the lower stress concentrations and lower hydrogen trapping 

characteristics of these types compared to LHAM and CHAM. These results are also 



consistent with previous numerical model findings for a bi-crystal pure nickel 

investigation (Jothi et al., 2014a).  

During testing localized stress concentrations in the microstructure will arise 

due to crystal anisotropy. Tensile stresses are accumulated on CHAM and LHAM 

regions which act as a driving force for hydrogen atoms to form in more concentrated 

clusters preferentially along CHAM and LHAM regions compared to other sites. 

Hydrogen trapping in CHAM and LHAM regions reduces the ductility along these 

grain boundaries due to a reduction in cohesive energy. Once the trapped hydrogen in 

the CHAM and LHAM exceeds a critical value it results in intergranular hydrogen 

embrittlement. This behaviour was previously reported in electrodeposited annealed 

nickel with a combination of multi-scale microstructural modelling and experimental 

observation (Jothi et al., 2015d). In total 93.3% of hydrogen induced intergranular 

cracks were observed in CHAM/LHAM boundaries indicating that these types of 

boundary are the most susceptible sites for hydrogen induced cracking in Alloy 718. 

Hydrogen enhances plastic flow by increasing the dislocation mobility. Dislocation 

mobility will be higher along the intergranular regions due to the increased amount of 

hydrogen segregation, which will increase the plastic flow but at the same time reduce 

the local ductility when compared to the crystal lattice. This will also depend on the 

grain boundary types. For example, in low angle grain boundaries plastic flow is 

relatively slower due to lower dislocation mobility arising from lower amounts of 

hydrogen segregation in these regions compared to higher angle grain boundaries 

where dislocation mobility (and hydrogen segregation) will be higher. These results 

also suggest that LAM, HHAM and SGB grain boundary misorientations are 

effectively more resistant to intergranular hydrogen embrittlement (IHE) with the 

LAM GB misorientation having the greatest resistance in Alloy 718. Based on this 

observation, GB types are now categorised into two types, resistant (R-type) and 

susceptible (S-type), as given below. 

 R-type: IHE-resistant grain boundaries = LAM, HHAM, SGB 

 S-type: IHE-susceptible grain boundaries = LHAM, CHAM 

With this definition triple junction connectivity (TJC) can be classified into four 

different types depending on the possible combinations of R- and S-types at the 

junction. 

1. TJ0 type TJC with zero R-type connectivity = S-S-S 



2. TJ1 type TJC with one R-type connectivity = S-S-R 

3. TJ2 type TJC with two R-type connectivity = S-R-R 

4. TJ3 type TJC with three R-type connectivity = R-R-R 

It has been previously reported that triple junctions play a significant role in hydrogen 

diffusion and hydrogen induced cracking (Jothi et al., 2015c, 2015d, Chen et al., 

2000) and so now we can consider the effect of TJC on hydrogen induced cracking in 

Alloy 718. Figure 18 shows the relationship between hydrogen induced cracking 

(HIC) and TJC. The HIC data were taken from 62 different triple junctions. 51.6% of 

hydrogen induced TJ cracks were detected at TJ0-type triple junctions. 40.3% and 

8.1% of TJ cracks were observed at TJ1-type and TJ2-type TJCs respectively. No 

cracks were observed at TJ3-type triple junctions. This indicates that TJs containing 

the more susceptible GBC connectivities, such as TJ0-type and TJ1-type, are more 

likely sites for hydrogen induced cracking. TJ3-type triple junctions appear to be 

much more resistant to hydrogen induced cracking. Thus hydrogen induced cracking 

at triple junctions strongly depends on nature of the triple junction connectivity. 

3.6 Control of hydrogen induced cracking/ embrittlement by grain boundary 

engineering (GBE): 

Transgranular hydrogen induced cracking can be controlled by reducing the 

formation of micro-voids/pores in the crystal lattice during manufacturing. One way 

of controlling intergranular hydrogen embrittlement is by reducing the segregation of 

carbon atoms along the intergranular region. This can be achieved by adding small 

amounts of elements such as titanium, niobium and vanadium. Reducing the 

segregation of carbon atoms along the intergranular region should enhance the 

ductility and reduce the susceptibility of intergranular hydrogen induced cracking in 

Alloy 718.  

Another possibility is grain boundary engineering. Watanabe introduced the 

concept of grain boundary engineering and design three decades ago to improve the 

ductility of materials (Watanabe, 1984). Grain boundary engineering often involves 

low temperature heat treatment to induce limited grain growth and rearrangement of 

grain boundaries. Palumbo et al. have used grain boundary engineering to improve 

intergranular stress corrosion cracking resistance (Palumbo and Aust , 1990, Palumbo 

et al., 1991, Lin et al., 1995, Lehockey et al., 1999). Qian and Lippold used a GBE 

approach to control heat affected zone liquation cracking in superalloys, including 



Alloy 718, (Qian and Lippold, 2003) and other workers have used grain boundary 

engineering design and control to improve material performance (Thaveeprungsriporn 

et al., 2001, Watanabe, 1993, Palumbo and Aust, 1995, Fionova et al., 1996, Davis et 

al., 2001, Randle and Davies, 2002, Alexandreau et al., 2001, Lee and Richards, 

2003). Collins and Stone describe a computational predictive tool capability which 

was used to optimise the post-forging heat treatment of forged RR1000 nickel-base 

superalloy and improve proof stress (Collins and Stone, 2014). 

The authors are unaware of such treatments being applied specifically to 

improve hydrogen embrittlement susceptibility in alloys. From this paper it seems 

clear which grain boundary misorientations and triple junction types are more or less 

susceptible to hydrogen induced problems. It is suggested that grain boundary 

engineering approaches would be an interesting area for future study for alloy 718 in 

particular to assess the feasibility of increasing the fraction of LAM, HHAM and SGB 

GBs in Alloy 718 using grain boundary engineering techniques in order to increase its 

resistivity to hydrogen embrittlement. The preliminary results in this work would 

suggest that a more detailed SSRT data set combined with a systematic investigation 

of grain boundary engineering treatments could be of significant benefit in this field. 

One problem in this endeavour would be to quantify the hydrogen distribution within 

a material. Unfortunately atom probe tomography is not able to provide such data. 

The use of scanning Kelvin probe force microscopy techniques offers some promise 

and this is work currently in progress. One might also suggest the use of deuterium; 

however the diffusivity of deuterium may well be different from the common 

hydrogen isotope, protium. 

4. Conclusion 

Hydrogen induced intergranular, transgranular cracking and hydrogen induced 

localized intergranular plasticity and the effect of grain boundary character (GBC) and 

triple junction connectivity (TJC) in polycrystalline superalloy 718 were investigated 

using in-situ hydrogen charged slow strain rate tests. It was found that hydrogen 

induced cracking strongly depends on the nature of GBCs and TJCs. The results 

indicate for alloy 718: 

(a) The ultimate tensile strength and tensile ductility are significantly reduced by 

in-situ hydrogen charging during tensile testing.  



(b) Nucleation and growth of micro-voids/pores in the crystal lattice are initiation 

sites for hydrogen induced transgranular cracking. 

(c) Slip localization from micro-voids in intergranular regions leads to hydrogen 

induced intergranular cracking.   

(d) Hydrogen induced cracking was mostly associated with grain boundaries 

having misorientations in the range 15° < θ ≤ 50°. No cracks were observed at 

low angle (0° ≤ θ ≤ 15°) grain boundary misorientations. 

(e) Hydrogen induced intergranular cracks were observed predominantly at TJ0-

type and TJ1-type triple junctions and not observed at all at TJ3-type triple 

junctions. 
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Figure 1. An example of a commercial aero engine with load carrying alloy 718 structures in the rear 

part of the GP7000 engine and the sample specimen used for this investigation.  
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                                                                   (b) 

Figure 2. Microstructure of the undeformed solution heat treated Alloy 718. (Readers are referred to the web 

version on this article for the interpretation of the reference to colour in the figure legend.) (a) IPF figure of the 

undeformed material microstructure and grain morphology and  (b) Crystal orientations in Euler angles. 

 

 

 



 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3. Microstructure of the undeformed solution heat treated Alloy 718. (Readers are referred to the web 

version on this article for the interpretation of the reference to colour in the figure legend.)  (a) Special 

Coincidence site lattice (CSL) grain boundaries (with grain boundary misorientations Σ less than 29°). (b) CSL 

statistics (c.f. Table 1 for corresponding percentages), (c) SEM back scattering electron (BSE) image of the 

undeformed microstructure and (d) grain diameter distribution of the undeformed microstructure. 
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Figure 4. (a) Results of the slow strain rate tests of Alloy 718 uncharged and tested in air and with 4 or 16 hours 

pre-charging and in-situ hydrogen charging during testing for strain rates of 10
-3

 s
-1 

and 10
-4

s
-1

. (b) Variation of 

ultimate tensile strength for different test conditions. (c) Variation of total percentage elongation to fracture for 

different testing conditions. (d) The effect of hydrogen charging time on the hydrogen embrittlement ratio. 
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Figure 5.Scanning electron microscope (SEM) secondary electron (SE) images of fracture surface morphologies 

along the loading direction. (a) Uncharged sample tested in air (No secondary surface cracks were observed). (b) 

and (c) samples tested in the 16 hours pre-charged condition with in-situ hydrogen charging for tests at strain 

rates of 10
-3

 s
-1

and 10
-4

 s
-1 

respectively (Numerous secondary surface cracks were observed). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) and (b) are secondary electron images of the fracture specimen normal to the loading direction of 

the uncharged sample tested in air. (b) A typical ductile fracture mode. (c) and (d) show a fracture specimen 

tested in the hydrogen charging condition normal to the loading direction. (d) A typical brittle fracture mode in 

the hydrogen charged sample displaying intergranular cracking and indicating triple junctions are more 

susceptible to hydrogen induced cracking and appear to be crack initiation points (dotted red circles). 
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Figure 7. SEM fractography images for hydrogen 

charged Alloy 718 material. (a) Intergranular and 

Transgranular cracking. (b) and (c) show magnified 

views of transgranular cracking. 
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Figure8. (a) Microstructural image developed from EBSD machine data source, (b) Grain boundary 

characteristic distribution developed from EBSD machine data source, (c) Real microstructural representative 

finite element model with mesh developed by incorporating the EBSD machine data source, random void on the 

grain boundaries in ABAQUS using MATLAB, PYTHON and FE coding. (d) Multiscale FE stress analysis 

results show the stress distribution (Stress values in N/μm
2
). (e) Multiscale FE stress & dislocation assisted 
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hydrogen diffusion analysis result shows the hydrogen distribution at the micro-level which predicts the 

potential crack initiation sites near void edges perpendicular to the traction direction. 

 

 

 

Figure 9 (a) Shows the EBSD result of IN718 microstructure, (b) shows the grain boundary misorientation 

types (i.e please refer figure 5 (d) for grain boundary misorientation types colour code), (c) shows the 

microscale real microstructural representative volume element FE model developed in ABAQUS and (d) 

Chemo-mechanical-dislocation real microstructural RVE model based computational multiscale simulation 

results shows hydrogen segregation in various types of grain boundary misorientation on the IN718 

microstructure after three different increasing times (i.e from left to right).   

 

 

 

 

 

 

 

 

 

Figure 10 (a) and (b) show fracture surface features: an intergranular crack propagation path, carbides on the 

intergranular crack path and slip traces on surfaces. 
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Figure 11. (a) Segregation of carbon atoms to the grain boundary in Alloy 718 using atom probe tomography. 

(b) Micro crack initiation along a grain boundary. (c) Slip traces and micro voids along grain boundaries. (d) 

Relationship between slip traces (red lines) and intergranular region (black lines). (e) Segregation of hydrogen 

clusters (black open circles) on slip lines. (f) Formation of micro voids (black filled circles) on the hydrogen 

Dimples along slip trace 
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clusters forming at slip band sites. (g) Developing high pressure stresses around void edges (grey circles around 

black filled circles). (h) Trapping of hydrogen (H-symbols) around micro-voids due to tensile stresses and the 

high gradient of pressure perpendicular to the loading direction. (i) Crack initiation at triple junctions and/or 

near larger micro-void edge regions perpendicular to the traction direction propagating by coalescence of micro-

voids along intergranular regions due to the increase in pressure in micro voids. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.Schematic illustration of possible pore/void dependent hydrogen induced transgranular cracking 

mechanism in Alloy 718. (a) Polycrystalline material with micro-pores before transgranular cracking. (b) Stress 

concentration greater perpendicular to the traction direction as opposed to parallel. (c) The tensile stress 

concentrations around deformed pores/voids increases the mobility of hydrogen atoms which become trapped in 

these tensile stress concentration sites. The amount of trapped hydrogen will be greater in near-void regions 

perpendicular to loading direction. (d) Illustrates the proposed model of a transgranular crack initiation site and 

two stage propagation path.    
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Figure13. EBSD results for the uncharged SSRT fractured specimen. (a) Crystallographic orientation and IPF 

information in the loading direction. (b) Local misorientation map and colour contour (red colour regions have 

the largest misorientations and blue colour regions the smallest). 
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Figure 14. (a) Hydrogen charged SSRT tested fractured specimen. (b) EBSD map overlaid on SEM micrograph 

and (c) Local misorientation map and colour contour. 
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Figure15. (a) Crystallographic orientation and IPF information in the loading direction and (b) Closer view near 

crack region and Euler angles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crack propagation through grain boundaries    
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 Figure16. (a) Close view of local misorientation on hydrogen induced crack path, (b) Close up view of grain 

boundary characteristic distribution at a hydrogen induced crack path (c) Grain boundary characteristic 

distribution at a hydrogen induced crack path. 
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Figure17. Relationship between grain boundary characteristics and observed hydrogen induced intergranular 

cracking. 

 

Figure18. Relationship between triple junction characteristics and observed hydrogen induced intergranular 

cracking. 

 


