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Abstract

This paper outlines a proof-theoretic approach to developing correct and terminating monadic

parsers1. Using modified realizability, we extract formally verified and terminating programs

from formal proofs. By extracting both primitive parsers and parser combinators, it is ensured

that all complex parsers built from these are also correct, complete and terminating for any

input. We demonstrate the viability of our approach by means of two case studies: we extract

(1) a small arithmetic calculator and (2) a non-deterministic natural language parser. The work

is being carried out in the interactive proof system Minlog.

Keywords: program extraction, verification, monads, parsing algorithms, natural
language processing, termination, left recursion.

1 Introduction

Parsing plays a significant role in many different contexts, each of which can present
its own unique problems. Despite differences, however, there are three key properties
that all parsers should ideally have. Firstly, they should be correct, i.e., they should
only parse input strings that are valid in accordance with the grammar and output only
valid results. Secondly, they should be complete, i.e., they should recognize and parse
all such input strings and, if a grammar is ambiguous, they should parse these valid
strings in all possible ways. Thirdly, parsers should terminate with any input. The
importance of termination is demonstrated by the well-known left-recursion problem
[11].

In this paper we focus on monadic parsers, which allow us to generate parse trees as
“side-effects” in pure functional programming languages such as Haskell. Another ad-
vantage is that monadic parser combinators naturally accommodate non-determinism
and ambiguous input by returning one or more parse results in a list. Monadic parsers
can be directly implemented in Haskell. This is the approach taken in much of the
literature (see [13], [27], [28]). Testing these parsers could check (to a degree) that they
work as expected. A more rigorous approach would be to verify them by formalizing
the implementations and proving that they work as expected. A third option, and

1An earlier version of this work has been presented at Natural Language and Computer Science,
NLCS’14 [3], and at Proof, Structure and Computation, PSC 2014. The research was partly funded by
the EU project Correctness by Construction, CORCON, 2014-2017, IRSES 612638.
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the one followed and promoted here, is to extract sound parsers directly from formal
proofs. Starting from a set-theoretic specification of basic monadic parsers and parser
combinators, we prove that certain termination-preserving properties hold not only
for the basic parsers, but also when they are combined. We extract monadic parsing
algorithms from these proofs – using a modified realizability interpretation (see Sec-
tion 5.2) – in the interactive proof system Minlog [19]. An important point is that in
the mathematical development we can work in a representation-free way with abstract
mathematical objects. For example, in the Minlog formalization we are free to iden-
tify sets with boolean functions, as is common in classical mathematics. The long-term
goal is to apply this method to parsing natural languages specifically. An overall first
case study in this direction is carried out in section 8 where we extract parser programs
from (left recursive) natural language grammars.

2 Related work

In the following we discuss some related work concerned with the development of for-
mally verified monadic parsers, and comment on its relation to our own. We then
outline some work on left-recursion and natural language parsing which relates to Sec-
tion 8.

Since Moggi’s seminal paper [20], monads have become a standard method for cap-
turing side-effects when using pure functional programming languages like Haskell (see
[27], [13]). Schröder and Mossakowski have used HasCasl (a higher-order specification
and programming language based on Casl) to formally verify arbitrary monadic pro-
grams. To guarantee partial correctness, a Hoare calculus was used [23], whilst total
correctness and termination were proven using dynamic logic [22].

Danielsson [9] defines a monadic parser combinator library that has been formally
verified in Agda. Because Agda is a total language, parsers defined using this library
are automatically guaranteed to terminate with any finite input string, without manual
verification. What distinguishes Danielsson’s work from earlier work on termination is
that he allows certain forms of left-recursion. Specifically, he uses a mixture of induc-
tion (for the choice combinator) and guarded coinduction (for the bind combinator).
Like others cited by Danielsson (e.g., [25]), Danielsson uses the property of input strings
getting smaller (i.e., parsers not accepting empty string) when he defines total parser
combinators. He refers to parsers with this property as “nullable”. In our paper, we
call them “hungry”. Like Danielsson, we can also guarantee the correctness and ter-
mination of parsers written in Minlog without a posteriori formal verification. What
differentiates our work from [9] is that we extract complete and terminating monadic
parsers directly from proofs.

Koprowski and Binsztok [15] extract recursive descent parsers in Coq. Their parsers
are generated automatically from Parsing Expression Grammars (PEGs), which are ex-
tended with type information for meaningful parsing (to form XPEGs). In contrast to
some other grammars (e.g., Context Free Grammars), PEGs are unambiguous. This
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is because all parsers generated from them are greedy – i.e., consume as much input
as possible – and use prioritised choice – i.e., if A succeeds, don’t try B. This makes
them unsuitable for some natural language parsing tasks, because natural language is
inherently ambiguous. To guarantee the total completeness of a PEG, the grammars
are written without left-recursion (direct or indirect). In contrast to [15], we allow
non-deterministic parsers and extract monadic operators that can be applied to vari-
ous grammars.

In relation to existing research on left-recursive monadic parsing for natural lan-
guage, the following two implementations are of interest. Frost et al [10] use counters
to constrain the number of times a left-recursive rule calls itself. They also use a tech-
nique called memoization, in which a table is used to keep track of which parsers have
already been applied at each index of the segmented input string. This is done to
prevent rework, which increases the efficiency of the algorithm. They implement their
parsers directly in Haskell.

In [17], Lickman formally verifies another technique for implementing monadic com-
binator parsers that can handle left-recursion in arbitrary context-free grammars. This
research is based on an unpublished idea of Wadler’s. Lickman defines a least fixed
point function fixP in Haskell, and proves that (fixP h) is productive for any con-
tinuous function h:Parser a -> Parser a. By applying the fixP function to
the right-hand side of left-recursive grammar rules, the resulting parsers terminate.
Instead of carrying out formal verification, we will be extracting a natural language
parser program directly from proofs.

3 The parsing problem

Throughout this paper, we differentiate between three types of “parsers”. At the logical
level, we define parsers as parser relations or parser specifications (which we call parsers
for short). Intuitively, a parser relation P of type A consists of all pairs (s, a) ∈
(Str, A) such that a complete parse of s with P yields the parse result a. Secondly,
we assign to a parser relation P a parsing function [P ] that assigns to each string the
set of partial parsing results with unconsumed rest strings (see Section 3.1). Thirdly,
a parser program is the executable, proof-extracted program for a specified parser
relation/parsing function (see Section 3.2).

We use sets to formalize parser relations and parsing functions. Let P(X) denote
the classical powerset of X (i.e. the set of all subsets of X including ∅ and X). Let
P<ω(X) ⊆ P(X) denote its finite subsets. For the purposes of program extraction, it is
most convenient to define P<ω(X) as an inductively defined subset of P(X):

(F1) ∅ ∈ P<ω(X)

(F2) If S ∈ P<ω(X) and x ∈ X,
then {x} ∪ S ∈ P<ω(X)

The set of all parsers of type A is defined as

3



Program Extraction Applied to Monadic Parsing U. Berger, A. Jones, and M. Seisenberger

P(Str×A)

where Str is the set of strings, and strings are considered as lists of characters (Char∗).
Adopting Haskell-style syntax, we use [] to denote the empty list and c : cs to denote
a non-empty list with head c and tail cs. We write [x0, x1, . . . , xn] for x0 : (x1 : . . . :
(xn : []) . . .). The concatenation of two lists s and t is denoted by s++ t. The length of
a list s is written |s|.

Later on, we will make use of the standard symbol for the monadic bind (>>= )
and the Haskell do-notation (as explained in [12]).

3.1 Formalizing the Parsing Problem

For any parser P ⊆ Str×A the parsing problem can be stated as follows: given a string
s ∈ Str, find all a such that (s, a) ∈ P .

In the partial parsing problem, we only require an initial segment of s to be parsed:
given a string s ∈ Str, find all pairs (a, r) such that s is equal to s′++ r and (s′, a) ∈ P for
some string s′. This partial parsing problem can be represented by a parsing function
[P ] : Str→ P(A× Str), defined by

[P ](s) := {(a, r)|∃s′.s = s′ ++ r ∧ (s′, a) ∈ P} (1)

i.e., the input string s is partially parsed into a result a and the remaining unparsed
string r.

Usually one is interested in parsers with parsing functions that always yield a finite
set of results. We call such parsers finitely branching :

FBA(P ) :≡ ∀s ∈ Str [P ](s) ∈ P<ω(A× Str) (2)

3.2 Extracting Parsing Programs

The reason why we are interested in finitely branching parsers is that, from a con-
structive proof that a parser P is finitely branching, we can extract a program p that
implements the parsing function [P ]. Using Haskell notation, p will have the type:

p :: String -> [(a, String)]

where a is the (unspecified) type of representations of parsing results for P and the
square-bracketed type [(a,String)] is the type of finite lists of pairs. Note that the
type of p is the type of monadic parsers in [13]. Due to the way in which finite sets
have been inductively defined, the set of results is represented by a finite list of results
at the program level. A more detailed explanation of this process of representation
– which is technically called realizability – will be given in Section 5. Essentially, we
extract monadic parsers in the form of [13], with the additional benefit of providing a
formal proof of correctness, completeness and termination. Instead of building complex
parsers from simple ones at the program level, we do so at the proof level.
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4 Monadic parsers and their properties

In this section we introduce some basic parsers and parser combinators at the set-
theoretic level, and prove that they are finitely branching. We end the chapter by
establishing that parsers naturally carry the structure of a monad.

4.1 Basic parsers

We define the return operator, which maps x : A to the parser that consumes no input
and returns x, as well as two basic monadic parsers: the failure parser, which fails with
any input, and the item parser, which parses one “unit” of input.

return : A→ P(Str×A)
return x = {([], x)}

fail : P(Str×A)
fail = ∅

item : P(Str× Char)
item = {([c], c)|c ∈ Char}

The corresponding parsing functions can be easily calculated:

[return] : A→ Str→ P(A× Str)
[return](x)(s) = {(x, s)}

[fail] : Str→ P(A× Str)
[fail](s) = ∅

[item] : Str→ P(Char× Str)
[item]([]) = ∅
[item](c : cs) = {(c, cs)}

We now turn our attention to the fundamental monadic combinators, which enable
non-deterministic and sequential parsers to be built from simple ones in a modular
fashion.

4.2 Union

The union of two parsers P and Q with the same type corresponds to the choice between
two parsers:

P ∪Q = {(s, a)|(s, a) ∈ P ∨ (s, a) ∈ Q}

5



Program Extraction Applied to Monadic Parsing U. Berger, A. Jones, and M. Seisenberger

The corresponding parsing function is the point-wise union of the parsing functions P
and Q:

[P ∪Q](s) = [P ](s) ∪ [Q](s)

4.3 Composition

The composition or sequencing of two parsers can be defined as follows. Suppose that
parser P is of type A, and that Qa is a family of parsers of type B, parametrized over
a value of type A. Their composition results in a parser of type B, called the monadic
bind of P and Q.

P >>=Q = {(s++ r, b)|∃a . (s, a) ∈ P ∧ (r, b) ∈ Qa}

The corresponding parsing function is:

[P >>=Q](s) = {(b, t)|∃a, r.(a, r) ∈ [P ](s) ∧ (b, t) ∈ [Qa](r)}

4.4 The basic parsers and parser combinators are finitely branching

In this section, we prove that the basic parsers and parser combinators are finitely
branching. Due to the formalization of parsers as sets, the finitely branching property
can be proven very simply using some of the basic properties of finite sets. These
properties are given in Lemma 1. The proofs in this section are given in such detail as
to allow a direct formalization in the Minlog proof system. The source files can be
found in [2].

Lemma 1.

(a) The union of two finite sets S and T is finite.

Proof. By induction on the finiteness of S. Base Case: T is the empty set.
S ∪ ∅ ≡ S. S is finite, therefore so is S ∪ T . Step Case: Assume S ∪ T is
finite. Show that ({x} ∪ S) ∪ T is finite. Since union is associative, this can be
rewritten as {x} ∪ (S ∪ T ). By the induction hypothesis, S ∪ T is finite. By F2,
the union of this set and {x} is also finite.

(b) The union of a finite family of finite sets is finite. More precisely, if S is a finite
set and Tx is a finite set for each x ∈ S, the union of these sets – denoted

⋃
x∈S

Tx

– is also finite.

Proof. By induction on S. Base Case: S is the empty set. It follows that
⋃
x∈∅

Tx ≡

∅, which is finite by F1. Step Case: Assume that
⋃
x∈S

Tx is finite. Show that⋃
x∈({x′}∪S)

Tx is finite. This set is equivalent to Tx′ ∪ (
⋃
x∈S

Tx). By Lemma 1 (a),
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this union set is finite if its two subsets are.
⋃
x∈S

Tx is finite by the induction

hypothesis. The finiteness of Tx′ follows by assumption.

(c) Singleton sets are finite.

Proof. This follows directly from the inductive definition of finite sets. By F1, we
know that the empty set is finite. A singleton set {x} is equivalent to {x}∪ ∅. By
F2, this is finite.

We are now able to show that the parsers and parser combinators we defined earlier
are finitely branching.

Lemma 2. The basic parser relations are finitely branching.

(a) ∀x ∈ A FBA(return x).

Proof. Using (2), this can be rewritten as:

∀x, s [return x](s) ∈ P<ω(A× Str)

For any x and s, this is the singleton set {(x, s)}, which is finite by Lemma
1 (c).

(b) FBA(fail).

Proof. [fail](s) = ∅ which is finite.

(c) FBChar(item).

Proof. Using (2), this is equivalent to:

∀s [item](s) ∈ P<ω(Char× Str)

Proof by cases on the input string s. Case 1: s is the empty string. The resulting
set for this parsing function is the empty set, which is finite by F1. Case 2: s is
a composed string c : cs, which results in the singleton set {(c, cs)}. This is finite
by Lemma 1 (c).

Lemma 3. Parsers built using union (the monadic choice combinator) and composition
(the monadic bind combinator) are finitely branching.

(a) FBA(Q)→ FBA(P )→ FBA(P ∪Q)

Proof. Using (2), this can be rewritten as:

∀s([Q](s) ∈ P<ω(A×Str)∧ [P ](s) ∈ P<ω(A×Str))→ ∀s [P ∪Q](s) ∈ P<ω(A×Str)

Using the definition of [P ∪Q] in Section 4.2, this becomes an instantiated version
of Lemma 1 (a), where S is the set [P ](s) and T is the set [Q](s).

7
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(b) FBA(P )→ ∀a ∈ A FBB(Qa)→ FBB(P >>=Q)

Proof. As before, we can use (2) to rewrite the proof goal as:

∀s [P ](s) ∈ P<ω(A× Str)→ ∀a, s [Qa](s) ∈ P<ω(B × Str)→
∀s [P >>=Q](s) ∈ P<ω(B × Str)

We then prove the goal as follows. Assume ∀s [P ](s) ∈ P<ω(A×Str) and ∀a, s [Qa](s) ∈
P<ω(B × Str). Instantiate Lemma 1 (b) with [P ](s) and λ(a, r)[Qa](r). This re-
duces the proof goal to showing that the set of parsing results [P ](s) is finite,
and that for any (a, r) ∈ [P ](s) the set [Qa](r) is finite, which both follow by
assumption.

For the inductive proofs in Sections 7 and 8, we will use a bounded version of Lemma
3 (b) that requires the finiteness property of Qa only for strings s′ with |s′| + k ≤ |s|
provided P is k-hungry in the sense defined below.

A parser relation P ∈ P(Str × A) is k-hungry if for all (t, a) ∈ P the length of t
is at least k. A family of parser relations Q : A → P(Str × B) is called k-hungry if
Qa is k-hungry for all a ∈ A. We call a parser P k-hungry at s (HungryA(P, k, s))
if the property above holds for all (t, a) ∈ P such that t is an initial segment of s.
Equivalently, HungryA(P, k) := ∀sHungryA(P, k, s) where

HungryA(P, k, s) := ∀a, r . (a, r) ∈ [P ](s)→ |r|+ k ≤ |s| (3)

Lemma 4. If [P ](s) is finite, P is k-hungry at s and [Qa](s′) is finite for all a, s′ with
|s′|+ k ≤ |s|, then [P >>=Q](s) is finite.

Proof. As in Lemma 3, this is an instance of 1 (b).

Lemma 5. (a) ∀P, sHungryA(P, 0, s)

Proof. Assume P ,s. Using (3), this can be rewritten as:

∀a, r.(a, r) ∈ [P ](s)→ |r| ≤ |s|

By (1), we know that the set [P ](s) consists of all (a, r) such that

∃s′.s = s′ ++ r ∧ (s′, a) ∈ P

It follows that |r| ≤ |s|

(b) ∀P, s, k, l.HungryA(P, k, s) ∧ l ≤ k → HungryA(P, l, s)

Proof. Immediate, by monotonicity of addition.

(c) ∀P,Q, s, k.HungryA(P, k, s) ∧HungryA(Q, k, s)→ HungryA(P ∪Q, k, s)
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Proof. Immediate, since [P ∪Q](s) = [P ](s) ∪ [Q](s).

(d)

∀P,Q, s, k, l .HungryA(P, k, s) ∧ (∀a, r.(a, r) ∈ [P ](s)→ HungryB(Qa, l, r))

→ HungryB(P >>=Q, k + l, s)

Proof. By definition, [P >>=Q](s) is the set of all (b, t) such that

∃a, r.(a, r) ∈ [P ](s) ∧ (b, t) ∈ [Qa](r)

By assumption, we know that

∀a, r (a, r) ∈ [P ](s)→ |r|+ k ≤ |s|

and

∀b, t (b, t) ∈ [Qa](r)→ |t|+ l ≤ |r|

Since we know that |t| + l ≤ |r|, it follows that (|t| + l) + k ≤ |s| for any (b, t) in
the goal set.

4.5 The parser monad

The operations return and >>= endow the type of parsers P(Str × A), viewed as a
functor of the result type A, with the structure of a monad in the category of sets and
functions, considering P(·) as a (co-variant) functor. Monads were first connected with
computation by [20] and are now widely used in programming. The type of parsing
functions, Str → P(A × Str), viewed again as a functor of A, is a monad as well. Its
structure maps are [return] (as defined in Section 4.1) and [>>=] where

(F [>>=]G)(s) = {(b, t)|∃a, r.(a, r) ∈ F (s) ∧ (b, t) ∈ Ga(r)}

Hence [return(x)] = [return](x) and [P >>=Q] = [P ] [>>=] [Q] (where [Q]a := [Qa]),
which means that the map P 7→ [P ], sending a parser (relation) to its parsing function
is a monad homomorphism. The monad of parsing functions, Str→ P(A× Str), looks
similar to the Haskell type of parsers, Str → [(A,Str)] in [13], but is in fact quite
different. This is due to the use of the full set-theoretic function space and powerset,
as opposed to Haskell’s computable functions and lists. In the following we will write
return and >>= (instead of [return] and [>>=]) for the structure maps of the parsing
function monad Str→ P(A× Str).

The monadic structure allows us to use the popular “do-notation”:

do { a← P ; Qa } stands for P >>=λa .Qa

do {P ; Q } stands for P >>Q

where P >>Q stands for P >>=λa .Q (a not in Q). These definitions will be used for
both the parser and the parsing function monad.

9
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5 Formalization and program extraction in Minlog

We pause the mathematical development of monadic parsers to give some background
information about the Minlog system and explain the formalization and program ex-
traction process by means of the parsers we have seen so far. The development of
monadic parsers will be resumed in Section 6. Minlog ([19], [1]) is a proof system
based on a first order natural deduction calculus. It is interactive, using a backwards
reasoning style. Minlog implements Heyting Arithmetic in finite types enriched with
free predicate variables, program constants (denoting computable functionals) with
term-rewriting rules, inductive data types (freely generated algebras), and inductively
and coinductively defined predicates. It is not a type-theoretic system, but keeps for-
mulas and proofs separate from types and terms and has a simple domain-theoretic
semantics: the partial continuous functionals. Minlog has an elaborate module for
program extraction, which will be described in more detail in Section 5.2. The theo-
retical background of Minlog is explained in [24].

5.1 Formalization

In the following, we discuss some relevant aspects of the formalization in Minlog.
So far, the development of the theory has been independent from the representation of
sets. We have decided to treat sets as boolean functions in Minlog, since this is closest
to standard mathematical practice. A set of elements of type α therefore has the type
α → Boole. If S is a set and a is an element of type α, S a represents the statement
a ∈ S. In our example, α will be instantiated by the type A× Str, i.e., pairs of parsing
results and strings.

It is worth noting that, by using boolean functions and the existential quantifier
in our formalization, we make our proofs non-constructive. This is due to the fact
that the universal and existential quantifiers become boolean functionals that perform
the uncomputable tests as to whether a given boolean function (with possibly infinite
domain) is constant true, or not constant false, respectively. However, as we only com-
pute not with the extracted programs but the proofs themselves this is not an issue.
The realizability interpretation used in the Minlog system lets us use such aspects of
classical logic in proofs whilst still extracting constructive programs.

We define the empty set (Em) and the operations insertion (Ins) for inserting an
element into a set and (Un) for computing the union of two sets as program constants
in Minlog with appropriate term-rewriting rules.

With these constants, we can define an inductive predicate Fin:alpha=>boole
(where alpha is a type variable), containing all finite sets (cf. P<ω(X) in Section 3).
Fin has two closure axioms: one for the base case of the empty set (F1), and one for the
step case of a finite set with an additional inserted element (F2). In Minlog, we give
names to these closure axioms: InitFin and GenFin. Reverting to the set-theoretic
syntax, these axioms are:

10
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InitFin: ∅ ∈ P<ω(X)
GenFin: ∀S.S ∈ P<ω(X)→ ∀x ∈ X.{x} ∪ S ∈ P<ω(X)

In Minlog, this inductive definition reads as follows:

(add-ids
(list (list "Fin" (make-arity (py "alpha=>boole")) "list"))
’("Fin (Em alpha)" "InitFin")
’("allnc S (Fin S -> all x Fin ((Ins alpha) x S))" "GenFin")

Here x is a variable of type alpha, S is a variable of type alpha=>boole, and allnc
is a “non-computational” quantifier (explained below).

As an example we now discuss the proof of Lemma 3 (a), which essentially states
that the union of two finitely branching parsing functions is also finitely branching. In
Minlog syntax, we write our initial goal as:

(set-goal (pf "allnc qfun (all st Fin (qfun st) ->
allnc pfun (all st Fin (pfun st) ->

all st Fin ((Un alpha@@list char) (pfun st) (qfun st)))")))

where pfun and qfun have the type Str→ P(A× Str), or, in Minlog syntax:

list char => (alpha@@list char)=>boole

and st is of type Str (list char). We then proceed by instantiating the proof of
Lemma 1 (a), where S and T become the sets of parsing results for [P ](s) and [Q](s)
respectively. Once the proof is finished, we can save this lemma in Minlog with the
command:

(save "FinLemma3a")

Noteworthy in this example is the use of the quantifier allnc in the goal and the
inductive definition, which is logically equivalent to the all quantifier. It may be
used if the quantified variable does not occur freely in any term in the proof at a
computationally relevant position (i.e., in particular not in the introduction rule for the
existential quantifier, or the elimination rule for the all quantifier). In the programs
we extract the input string st is computationally relevant, hence the use of the all
quantifier for this variable.

5.2 Program extraction

Through the Curry-Howard correspondence, we can associate formulas in intuitionistic
logic with data types. For instance, the conjunction of two formulas corresponds to the
Cartesian product of two data types; implication corresponds to the type of functions.
Furthermore, we can represent natural deduction proofs as terms written in the simply
typed lambda calculus. From these proof terms we extract the programs, essentially
by removing the computationally irrelevant parts.

11
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To extract programs from proofs, the system uses a modified realizability interpre-
tation (see [16], [24] for details). This interpretation translates formulas and logical
rules into types and operations respectively. There are two sources of constructive
content in Minlog proofs: ∀∃-formulas and inductive definitions. In the following, we
briefly explain how to realize inductive definitions.

At the program level, the inductively defined predicate Fin corresponds to the al-
gebra list. The elements of this algebra are terms built from two constructors, which
correspond to the closure axioms of the inductive definition. In this case, InitFin
is realized by the constructor called cInitFin of type (list alpha). GenFin is
realized by the constructor:

cGenFin: (list alpha) => alpha => (list alpha)

It is worth noting that this corresponds to the standard cons constructor for lists, but
with the order of the arguments reversed. In general, any proof that a parsing function
is finitely branching yields, via program extraction, a program that lists all of the finitely
many parsing results.

Finally, the induction principle for the inductive definition corresponds to recursion
on the program level.

5.3 Extracted program for the union of two parsers

From an inductive proof that the union of two finitely branching parsers is finite, we can
automatically extract a recursive program in Minlog using the following command:

(define choice (rename-variables
(proof-to-extracted-term
(theorem-name-to-proof "FinLemma3a"))))

where choice is a name we have chosen for the program. To print the extracted
program, we use:

(pp choice)

The output is shown below:

[qfunr,pfunr,st]
(cFinLemma1a alpha@@list char)(qfunr st)
(pfunr st)

Here, the corner brackets denote lambda abstraction. On the proof level, the parsing
functions pfun and qfun had the type

list char => (alpha@@list char)=>boole

On the program level, the first two input arguments are realizers for these parsing
functions with the type

list char => list(alpha@@list char)

12



Program Extraction Applied to Monadic Parsing U. Berger, A. Jones, and M. Seisenberger

i.e., the type of parser programs shown in Section 3.2.
The program choice takes a string as its third input argument. It then takes the

Minlog term for Lemma 1 (a) (instantiated with type (A×Str)) and applies it to the
sets (qfunr st) and (pfunr st) of that type.

cFinLemmala defines the following program:

[r1,r2]
(Rec list alpha=>list alpha)r2 r1
([r3,r4,x]

(CGenFin alpha)x::r4)

where r2 and r1 are variables of type (list alpha) representing the finiteness of
the sets S and T. The program runs by recursion on the finiteness of S, i.e., recursion
on lists. In the base case, when S is empty, the finiteness of the union follows from the
finiteness of T (hence r1 will be returned). In the step case, where S equals Ins x
S’, CGenFin produces a realizer for the finiteness of Un (Ins x S’)T using r4 and
x. Essentially, the program implements the concatenation of lists.

Note that the sets S and T themselves do not appear in this program. This is due
to our use of the non-computational quantifier allnc in the proof.

Programs have also been extracted from Minlog proofs of Lemmas 1 (b) and 1 (c)
(see [2]). cFinLemma1c maps any element x to a singleton list [x]. cFinLemma1b
behaves like the concat function in Haskell, which concatenates the elements of a list
of lists into a single list.

5.4 Soundness of the extracted program

Minlog will automatically generate a soundness proof stating the correctness of the
extracted program. In the case discussed in the previous section, it makes use of an
inductively defined predicate FinMR with two arguments (a term r and a set S) stating
that r is a realizer for the finiteness of S which means that r is a finite listing of the
elements of S (possibly with repetitions). The soundness theorem then states that if
we have realizers for the finiteness of S and T , then the extracted program applied to
these realizers realizes that the union of S and T is finite. In mathematical notation
this statement reads as follows, where p is the extracted program, S and T are sets of
type α and r1 and r2 are realizers:

∀T, r1 (FinMR r1 T → ∀S, r2 (FinMR r2 S → FinMR (p r1 r2)(S ∪ T )))

5.5 Example run of an extracted parser combinator

Now we illustrate how the previous proofs can be used to extract correct and termi-
nating parser programs using combinators.

In Section 4.2, we formalized the parser combinator for choice in terms of set union.
In Section 5.3, we extracted the choice combinator from an instantiated proof that the

13
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union of two finitely branching sets is finite. To extract parser programs that use the
choice combinator in Minlog, we just need to instantiate pfunr and qfunr with con-
crete parsers, i.e., with proofs that the parser relations corresponding to these parser
programs (pfun and qfun) are finitely branching.

As an example of this, we will extract a program that combines the item parser and
the return operator. Extracting such a program is straightforward. After proving that
both parsing functions are finitely branching, we use these proofs with FinLemma3a
to prove:

∀c.FBChar(item ∪ return c)

In accordance with Section 3.1, a parser is finitely branching if its parsing function
yields a finite set of results with any input string s. At the proof level, this follows
from the finite union proof and the finiteness of the individual parsers. At the program
level, it is realized by a concatenated list of parsing results.

The extracted program takes a (return) character ‘c‘ and a string st as input. It
can be run in Minlogas follows. With the argument string "aba" and character ‘c‘,
the program yields a list with two elements: (‘a‘,"ba") from the item parser and
(‘c‘,"aba") from the return function. In Minlog, this is displayed as:

(a@b::a:)::(c@a::b::a:):

where :: is the cons operator for lists and @ is used for pair terms.
As a second example run, the empty string could be given as input. The item parser

would fail, so the result from the return function would be returned as a singleton list:

(c@(Nil char)):

where (Nil char) is the empty list of type Char.
Similarly to the parsers and parser combinators item, return and choice featuring

in the example above, we carried out formalization and extraction for the bind parser
combinator and the recursive iteration combinator. In the following section, these steps
will not be shown in full detail. Instead, we will focus on the theory and proofs used
for extracting recursive programs.

6 Recursive monadic parser combinators

We now return to the mathematical development and look at recursive parsers. Nearly
all non-trivial parsers use some form of recursion. In our setting recursive parsers are
relations that are defined inductively. As an example we consider finite iterations of
a parser. For a parser P ∈ P(Str × A) we define the parser many(P ) ∈ P(Str × A∗)
inductively as follows:

• ([], []) ∈ many(P )

• If (s, a) ∈ P and (t, as) ∈ many(P ), then (s++ t, a : as) ∈ many(P ).

14
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Equivalently, many(P ) can be defined as the least solution of the equation

many(P ) = {([]; [])} ∪ (P >>= λa.many(P ) >>= λas.return(a : as))

or, using do-notation,

many(P ) = {([]; [])} ∪ do { a← P ; as← many(P ); return(a : as) }

In general, many(P ) need not be finitely branching, even if P is. For example, if
P = return 0 = {([], 0)}, then many(P ) = {([], 0n)|n ∈ N}, which is not finitely
branching. However, if we exclude parsers accepting the empty string, then the operator
many preserves the finite branching property.

Clearly many(P ) is only 0-hungry, but its variant

many1(P ) := do { a← P ; as← many(P ) ; return(a : as) }

is k-hungry, provided that P is k-hungry (and finitely branching).
Our definition of many corresponds to the standard Haskell implementation of the

many combinator (see [13]). We can prove the following in Minlog:

∀P.FBA(P )→ ∀k, sHungryA(P, k, s)→ FBA∗(many(P ))

Instead of proving this, however, it will be more useful to work with a generalization
of the many operator2 with an arbitrary result type B:

manyGenA,B : P(Str×A)→ (A→ B → B)→ B → P(Str×B)

manyGenA,B P op b := (return b) ∪ do { a← P ; manyGenA,B P op (op a b) } (4)

In addition to a parser P ∈ P(Str × A), this operator also takes an arbitrary function
op : A → B → B as a parameter. This is applied in place of the (:) function used
in the standard many combinator. Hence many is a special case of this more general
operator. Because the return type is not necessarily A∗, the base case is not neces-
sarily the set {([], [])}. To incorporate the base case result for any type B, it must be
given to the combinator as a third parameter argument b. In Sections 7 and 8, we will
see examples of how the generalized many combinator can be used to extract a recur-
sively defined calculator program (Section 7) and a non-deterministic natural language
grammar (Section 8). In the lemma below we use the abbreviation

FBA(P, n) := ∀s . |s| ≤ n→ [P ](s) ∈ P<ω(A× Str)

Lemma 6. If P is a parser relation which is finitely branching for strings of length
≤ n and k-hungry where k > 0, then for any operator op and starting value b the parser
relation manyGenA,B P op b is finitely branching for strings of length ≤ n, formally:

∀P, n .FBA(P, n)→ ∀k . 0 < k → HungryA(P, k)→ ∀op, b .FBB(manyGenA,B P op b, n)

2This was motivated by the chainl combinator in [13]
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Proof. Using (2) and (3) and swapping the universal quantifiers ∀b and ∀s in the con-
clusion, this can be unfolded as:

∀P, n . (∀s . |s| ≤ n→ [P ](s) ∈ P<ω(A× Str))→
∀k . 0 < k → (∀s, a, r . (a, r) ∈ [P ](s)→ |r|+ k ≤ |s|)→
∀op, s, b . |s| ≤ n→ [manyGenA,B P op b](s) ∈ P<ω(B × Str)

Assume that [P ](s) is finite for all s with |s| ≤ n and that P is k-hungry where k > 0.
Fix an operator op. Show ∀s, b.|s| ≤ n → [manyGenA,B P op b](s) ∈ P<ω(B × Str) by
induction on the length of s. Hence, we assume as induction hypothesis

∀s′.|s′| < |s| → ∀b . |s′| ≤ n→ [manyGenA,B P op b](s′) ∈ P<ω(B × Str)

and |s| ≤ n and have to show [manyGenA,B P op b](s) ∈ P<ω(B×Str). By (4), the new
goal can be rewritten as

[return b](s) ∪ (do { a← [P ]; [manyGenA,B P op (op a b)] })(s) ∈ P<ω(B × Str)

By Lemma 3 (a), the proof that this union is finite reduces to showing that the two
component sets are finite. [return b](s) is finite by Lemma 2 (a). By Lemma 4, the
proof that

(do { a← [P ]; [manyGenA,B P op (op a b)] })(s)
is finite reduces to a proof that [P ](s) is finite and that, for all elements (a, r) ∈ [P ](s)
such that |r| + k ≤ |s|, [manyGenA,B P op (op a b)](r) is also finite. The finiteness of
[P ](s) follows by assumption. Since P is more than 0-hungry for any (a, r) ∈ [P ](s),
the string r must be shorter than s (since |r| + k ≤ |s|). Therefore, by the induction
hypothesis (used with b = op a b), [manyGenA,B P op (op a b)](r) is finite.

The following program was extracted from this proof in Minlog. Here general
recursion, GRecGuard, corresponds to the use of induction on the length of the string.
Note that the variables P, n, k are non-computational and do not show up in the pro-
gram. In the following btlist is a variable for type list(beta@@list char), and
manypfunr is of type list char=>beta=>list(beta@@list char). The pro-
gram is similar to Haskell’s foldr (fold-right); it repeatedly applies the parser P and
combines the results using the operator op with the starting value b in a right-associative
way.

[op,pfunr,st]
(GRecGuard list char beta=>list(beta@@list char))([st0]Lh st0)st
([st0,manypfunr,b]

([btlistˆ]btlistˆ)
((cFinLemmaFoura beta)st0((cFinLemmaTwoa beta)b st0)
((cFinLemmaFourb alpha beta)st0

(pfunr st0)([a,st1]manypfunr st1(op a b)))))
True
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7 Case Study: Extracting a calculator

As an example, we use the generalized many parser combinator to extract a calculator
program. This is a slightly simplified version of an example in [13]. To make it easier
to follow, we have restricted the operators to addition and multiplication. As in [13],
however, the approach can be applied to the non-associative operations subtraction and
division. Details are provided in the source files [2].

In Backus Naur Form (BNF), the grammar for our parser is represented as follows.

expr :: = expr ’ + ’ term | term
term :: = term ’ ∗ ’ factor | factor

factor :: = digit | ’(’ expr ’)’

digit :: = ’1’ | ’2’ | ’3’ | ’4’

This grammar can be directly interpreted as a simultaneous inductive definition of
parser relations by using the choice combinator in place of vertical bars and the bind
combinator for sequencing.

expr = do { e← expr; addP; t← term; return(e+ t) } ∪ term

term = do { t← term; mulP; n← factor; return(t ∗ n) } ∪ factor

factor = do { d← digit; return d } ∪ do { leftP; e← expr; rightP; return e }

Here addP, mulP and digit are the parser relations for the characters ’+’ and ’*’ and
the integers 1–4 respectively. I.e.,

addP : = {([’+’], ())}
mulP : = {([’*’], ())}
digit : = {(’1’, 1), (’2’, 2), (’3’, 3), (’4’, 4)}

where () represents the dummy value. leftP and rightP are the parser relations for
parsing the characters ’(’ and ’)’ respectively.

leftP : = {([’(’], ())}
rightP : = {([’)’], ())}

For simplicity, we assume that the input doesn’t contain space characters, although
space robustness could be added easily. We also output the numerical value of the
parsed strings and not their syntax trees (as is done in [13]).

Note that despite the “left-recursiveness” of the parsers expr and term they are
well-defined relations (because the recursive calls occur at positive positions). This
would not be the case if the definitions were interpreted as Haskell programs (replacing
union by concatenation) since these would not terminate.
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One can prove that the parser relations expr and term are finitely branching. First
one defines for a set X ∈ P(Nat × Str) and number d, X≥d := {(n, r) ∈ X | |r| ≥ d},
and then shows that the sets [expr](s), [term](s), [factor](s) are finite by induction
on s using a side induction on |s| − d to prove that the sets [expr](s)≥d, [term](s)≥d,
[factor](s)≥d are finite (the side induction is needed to cope with left-recursion). Since
this can be proven constructively, one could extract parser programs. However, these
would be rather inefficient. In order to obtain reasonably efficient programs we follow
the standard rewriting method (see [21], [17]), which works as follows.

Take a left-recursive rule of the form

A ::= A α1 | ... |A αr | β1 | ... |βs

where A is a non-terminal in the grammar and for 1 ≤ i ≤ r (1 ≤ i ≤ s) each αi

(βi) is a sequence of terminals and non-terminals. In addition, the βi do not start
with the symbol A. Remove the left-recursive clauses from the rule for A, and add the
non-terminal category A′ to the end of each β-sequence:

A ::= β1 A
′ |... βs A′

where A′ is either empty (ε) or an α-sequence followed by A′:

A′ ::= α1 A
′ | ... | αr A

′ | ε

With this approach one obtains a grammar that is weakly equivalent to the original
one. Weakly equivalent grammars can be used to recognise and parse the same set
of sentences as their left-recursive counterparts, but will not generate the same set of
derivation trees in all cases.

Using this method, the left-recursive BNF grammar for arithmetic expressions can
be rewritten as follows.

expr :: = term expr′

expr′ :: = ’ + ’ term expr′ | ’ε’

term :: = factor term′

term′ :: = ’ ∗ ’ factor term′ | ’ε’

factor :: = digit | ’(’ expr ’)’

digit :: = ’1’ | ’2’ | ’3’ | ’4’

Interpreting ’ε’ as the empty list, expr′ essentially parses lists of (values of) terms
interspersed with the symbol ’+’. The resulting list of values is then used by expr,
together with (the value of) a leading term, to compute the final result, which is the
sum of all these values. Following the approach in [13] we will accomplish this whole task
in one go by using the manyGen combinator (which replaces the combinator chainl
in [13]). We define the following parsers for this purpose:

addTermP, mulFactorP : P(Str×Nat)
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addTermP = do { addP; term }
mulFactorP = do {mulP; factor }

Using these parsers with the generalized many combinator, we can directly “implement”
the modified parts of the BNF grammar shown above, i.e., expr′ and term′. By binding
the resulting parsers to term and factor respectively, we get a direct representation of
the modified grammar as parser relations:

expr : P(Str×Nat)
expr := do {n← term; manyGenNat,Nat addTermP (+) n }

term : P(Str×Nat)
term := do {n← factor; manyGenNat,Nat mulFactorP (∗) n }

factor : P(Str×Nat)
factor := digit ∪ do { leftP; expr; rightP }

To prove that [term](s) is finite for any string s, we use instantiated proofs of
Lemmas 4, 5 and 6. The only remaining work is to prove that the component parsers
are finitely branching. At the lowest level, this reduces to simple proofs that the ba-
sic parsers digit, mulP, addP, leftP and rightP are finitely branching. The modified
parser definitions are correct since they define the same parsing functions as in [13].
This can be shown using similar inductions to those described above, but we omit the
proof since we do not wish to extract a program from it. However, correctness relies
on the fact that these parsers are deterministic, i.e., all result sets are either empty or
singletons. Otherwise, one might miss out some results (that this can indeed happen
will be demonstrated in the second case study (see Section 8)).

We can extract a precedence-preserving arithmetic calculator from a proof that the
expression parsing function is finitely branching and hungry for any input string by
induction on the length of the input. To do this, we use the following lemmas. The
complete proofs can be found in [2].

Lemma 7. All the parser relations shown above are 1-hungry.

Proof. The proof is very easy in most cases. As an example, we give details of the proof
that the parser relation factor is hungry. We show

∀sHungryNat(factor, 1, s)

by induction on |s|. Assume as induction hypothesis

∀s′.|s′| < |s| → HungryNat(factor, 1, s′)

Using the definition of expr and Lemma 5 (c), we need to prove

HungryNat(digit, 1, st) ∧HungryNat((do { leftP; expr; rightP }), 1, st)
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Left: Proof omitted here. Right: Proven with Lemma 5 (b) (with k instantiated with
3) and Lemma 5 (d) to prove

i. HungryChar(leftP, 1, st)
Proof omitted here.

ii. ∀c, r.(c, r) ∈ [leftP](s)→ HungryNat(expr, 1, r))
With the definition of expr and Lemma 5 (d), this reduces to showing that

HungryNat(term, 1, r)

and

∀n, r′.(n, r′) ∈ [term](r)→
HungryNat((manyGenNat,Nat addTermP (+) n), 0, r′)

The latter follows from Lemma 5 (a)3. The former (with the definition of term
and Lemma 5 (d)) reduces to showing that

HungryNat(factor, 1, r)

and

∀n, r′.(n, r′) ∈ [factor](r)→
HungryNat((manyGenNat,Nat mulFactorP (∗) n), 0, r′)

Again, the latter follows from Lemma 5 (a). To prove HungryNat(factor, 1, r), we
use the induction hypothesis and the fact that |r| < |s|.

iii. ∀n, r′.(n, r′) ∈ [expr](r)→ HungryChar(rightP, 1, r′))
Proof omitted here.

Lemma 8. FBNat(factor)

Proof. Using (2), this can be rewritten as

∀s .[factor](s) ∈ P<ω(Nat× Str)

Proof by induction on |s|. Assume s. Assume

∀s′.|s′| < |s| → [factor](s′) ∈ P<ω(Nat× Str)

Show
[factor](s) ∈ P<ω(Nat× Str)

Unfolding the definition and using Lemma 3 (a), the proof reduces to showing that

3As was noted in Section 6, we can only prove 0-hungriness of the generalized many combinator,
as it is defined as a union with the return parser (which is only 0-hungry).
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i. [digit](s) ∈ P<ω(Nat× Str)
Proof omitted here.

ii. (do { [leftP]; [expr]; [rightP] })(s) ∈ P<ω(Char× Str)

A proof is given by using Lemma 4 (where k is instantiated with 1). [leftP](s) is finite
and 1-hungry. By Lemma 4 (again instantiated with 1), for any (c, r) ∈ [leftP](s)
the set (do { [expr]; [rightP] })(r) is finite if HungryNat(expr, 1, r) (which follows from
Lemma 7) and

[expr](r) ∈ P<ω(Nat× Str)

and
∀n, t.(n, t) ∈ [expr](r)→ [rightP](t) ∈ P<ω(Char× Str)

The latter follows naturally from the definition of rightP. Unfolding [expr] (and its
constituent [term]) in the same way, we eventually prove

[factor](r)

using the induction hypothesis and the fact that |r| < |s|.

Lemma 9. FBNat(term)

Proof. Unfolding the definition, use Lemma 4 (where k is instantiated with 1) and
prove

i.
[factor](s) ∈ P<ω(Nat× Str)

Follows from Lemma 8.

ii.
HungryNat(factor, 1, s)

Follows from Lemma 7.

iii.

∀n, r.|r|+ 1 ≤ |s| →
[manyGenNat,Nat mulFactorP (∗) n](r) ∈ P<ω(Nat× Str)

Assume n, r, and bounded length of r. Prove

[manyGenNat,Nat mulFactorP (∗) n](r) ∈ P<ω(Nat× Str)

using Lemma 6 (where n and k are instantiated with |r| and 1 respectively). Since
[mulFactorP](s) is 1-hungry for any s (by Lemma 7) and 0 < k, all that remains
is to show that

∀t.|t| < |r| → [mulFactorP](t) ∈ P<ω((Nat→ Nat→ Nat)× Str)
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Unfolding the definition, we know that the set [mulP](t) is finite. All that remains
to show is that

∀f, t′.(f, t′) ∈ [mulP](t)→ [factor](t′) ∈ P<ω(Nat× Str)

This follows from Lemma 8.

Proposition 10. FBNat(expr)

Proof. Similar to the proof for Lemma 9, but using [addTermP](t) and [term](t′) (where
the finiteness of the latter follows from Lemma 9).

We have extracted proof terms for Lemmas 8 and 9 in Minlog. Note that the
measure function must be explicitly given to carry out general induction in Minlog.
For Lemmas 7 and 8, this is the length function (Lh):

(gind (pt "[st]Lh st"))

Proposition 10 is proven from the following goal:

(set-goal (pf "all st. Fin(Expr st)"))

The resulting program is shown below.

[st]
([ntlistˆ]ntlistˆ)
((cFinLemmaFourb nat nat)st(cFinTerm st)

([n,st0]
(cFinLemmaSix nat nat)AddOp
([st1]
([manyfnr]

manyfnr st1(cFinAddP st1)
([f,st2]
(cFinLemmaOneb (nat@@list char) (nat@@list char))

(cFinTerm st2)
([nst](cFinLemmaTwoa nat)left nst right nst)))
(cFinLemmaFourb nat=>nat=>nat nat))

st0
n))

Here ntlist has the type list(nat@@list char), i.e., it represents a list of pars-
ing results for the calculator. We also use variables n:nat, nst:(nat@@list char)
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and f:nat=>nat=>nat. The extracted program takes a string as input4. As an ex-
ample, suppose that we give the input string "2*3+4". The output would be:

(10@(Nil char))::(6@+::4:)::(2@*::3::+::4:):

As with the standard many combinator, it returns a list of partial parse results, starting
from the most complete.

In the example shown above, the parser can calculate the result recursively from
left to right. But suppose that we swap the ordering to 4+3*2:

(10@(Nil char))::(7@*::2:)::(4@+::3::*::2:):

As this second output list illustrates, the parser initially calculates 4+3, but then
backtracks to return the correct result calculated from (4 + (expr "3::*::2:")).

If we run the program with the input string "(4+3)*2", however, the expression
inside the brackets is calculated first:

(14@(Nil char))::(7@*::2:):

8 Case Study: Extracting a parser for natural language

In the introduction, we indicated that our long term goal is to apply our method of
extracting monadic parsers to natural language. In this case study, we demonstrate
that our method can also deal with ambiguous Context Free Grammars (CFGs). Addi-
tionally, we show that monadic parser combinators provide an elegant way of capturing
these ambiguities (i.e., by facilitating backtracking and returning all possible parses of
ambiguous input in a list). As in Section 7, we translate left-recursive grammar rules
into weakly equivalent ones that are not left-recursive.

For programming languages, automated parser generators such as Yacc [14] and
Happy [18] provide a convenient and fast means of turning BNF representations of cer-
tain grammars into parser programs. Yacc accepts LALR(1) grammars and produces
shift-reduce bottom-up parsers written in C. The Haskell parser generator Happy ac-
cepts both GLR grammars and attribute grammars, which means that it can handle
ambiguous input. It can also be used to generate top-down monadic parsers. However,
Happy does not accept left-recursive grammar rules or CFGs. This means that neither
of the two parser generators is suitable for some NLP tasks.

Ideally, we would like to use Minlog to extract parsers that correspond directly to
left-recursive grammars such as the following CFG5, where sent, np, vp, pp, det, pnoun,

4To return parse trees instead of calculating values, simply comment out the computation rules for
AddOp and MulOp in the Minlog source file. For the first example shown below, this would return

((AddOp 4(MulOp 2 3))@(Nil char))::((MulOp 2 3)@+::4:)::(2@*::3::+::4:):

5CFG shown in [10], but with conjunctions.
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conj and prep represent the categories for sentences, noun phrases, verb phrases, prepo-
sitional phrases, determiners, proper nouns, conjunctions and prepositions respectively.

Grammar A:

sent :: = np vp | sent pp
np :: = det noun | pnoun | np conj np | np pp
pp :: = prep np

vp :: = verb np

det :: = the

noun :: = cat | telescope | saw

pnoun :: = Annie | Beth

conj :: = and | or

prep :: = with

verb :: = saw

A parser for this grammar should take an input string and attempt to parse it as a
sentence s. Some valid sentences can be parsed in multiple ways (see, e.g., Figure 1), so
all possible parses should be returned as a set of derivation trees (also known as parse
trees). A parser for this grammar should also be able to parse noun phrases that have
a smaller noun phrase as their left-most constituent. Currently, our proof-extracted
implementation does both of these things. However, it skirts the issue of left-recursion
by using the weakly equivalent grammar shown below.

Grammar B:

sent :: = np vp sent′

sent′ :: = pp sent′ | ε
np :: = det noun np′ | pnoun np′

np′ :: = conj np np′ | pp np′ | ’ε’

pp :: = prep np

vp :: = verb np

det :: = the

noun :: = cat | telescope | saw

pnoun :: = Annie | Beth

conj :: = and | or

prep :: = with

verb :: = saw
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For the sake of readability in the formalization stage, we use the following abbrevi-
ations:

npsingular :: = det noun | pnoun
nprec :: = conj np | pp

Our parsers will produce derivation trees as results. These are finite trees whose leaves
carry words from the set

Word := {Annie,Beth, cat, telescope, saw, the,with, and, or}
and whose inner nodes are labelled with names of syntactic categories from the set

Cat := {S,S′,NP,NP′,NPSing,VP,PP}
(where S and S′ stand for sent and sent′). We let Tree denote the set of all derivation
trees. Elements of this set are formally defined by two constructors: one for leaves and
one for branches.

Leaf : Word→ Tree

Branch : Cat→ [Tree]→ Tree

An example of a valid tree for Grammar A is

Branch S[Branch NP [Leaf Beth],

Branch VP [Leaf saw,

Branch NP [Leaf the,Leaf cat]]]

In addition to the two constructors shown above, we need a function for appending
a single tree to a list of trees

cnsTree : Tree→ [Tree]→ [Tree]

The interpretation of Grammar B as a simultaneous inductive definition of parser
relations is straightforward. To shorten the exposition, we skip the lexical analysis
phase and represent the words in the set Word by the arbitrary characters ’A’, ’B’, ’C’,
’L’, ’P’, ’D’, ’M’, ’R’,’O’ in that order.

The primitive parsers detP,nounP,pnounP, prepP, conjP, verbP : P(Str×Tree) are
defined below.

detP : = {([’D’],Leaf the)}
nounP : = {([’C’],Leaf cat), ([’L’],Leaf telescope), ([’P’],Leaf saw)}

pnounP : = {([’A’],Leaf Annie), ([’B’],Leaf Beth)}
prepP : = {([’M’],Leaf with)}
conjP : = {([’R’],Leaf and), ([’O’],Leaf or)}
verbP : = {([’P’],Leaf saw)}
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These primitive parsers form the basis for the following composite parsers.

npsingularP, nprecP,ppP : P(Str× Tree)

npsingularP := do { d← detP; n← nounP; return(Branch NPSing [d, n]) } ∪
do {n← pnounP; return (Branch NPSing [n] ) }

nprecP := do { c← conjP; np← npP; return(Branch NP′ [c, np]) } ∪
do { pp← ppP; return (Branch NP′ [pp] ) }

ppP := do { p← prepP; np← npP;

return(Branch PP [p, np]) }

The parsers above are the building blocks for the recursive parser relation for noun
phrases:

npP : P(Str× Tree)

npP := do {np← npsingularP;

rnp← manyGenTree,[Tree] nprecP cnsTree [];

return(Branch NP (np : rnp)) }

The remaining parser relations for Grammar B are shown below.

vpP, sentrecP, sentP : P(Str× Tree)

vpP := do { v ← verbP; np← npP;

return(Branch VP [v, np]) }

sentrecP := do { trlist← manyGenTree,[Tree] ppP cnsTree [];

return(Branch S′ trlist) }

sentP := do {np← npP; vp← vpP; sp← sentrecP;

return(Branch S [np, vp, sp]) }

These parser relations are motivated by Grammar B as opposed to Grammar A. One
can show that the two grammars are indeed weakly equivalent, but again the proof is
not shown here as we don’t wish to extract a program from the equivalence.

As in Section 7, we use Lemmas 3, 4, 5 and 6 to prove that the parser for sentences
is finitely branching. The full proofs can be found in the Minlog source files [2].
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Lemma 11. Apart from sentrecP, all of the parser relations shown above are 1-hungry.

Proof. As an example, we prove

∀sHungryTree(npsingularP, 1, s)

Using Lemma 5 (c) this reduces to showing that

i.

∀sHungryTree((do { d← detP;

n← nounP;

return(Branch NPSing [d, n]) }), 1, s)

Using Lemma 5 (b) (where k is instantiated with 2), we prove that this parser
is 2-hungry using Lemma 5 (d) twice. As detP is 1-hungry, the proof reduces to
showing that do {n ← nounP; return(Branch NPSing [d, n]) } is 1-hungry. This
follows from the 1-hungriness of nounP and Lemma 5 (a).

ii.

∀sHungryTree((do {n← pnounP;

return (Branch NPSing [n] ) }), 1, s)

This is proven using Lemma 5 (d). pnounP is 1-hungry and

return (Branch NPSing [n] )

is 0-hungry (by Lemma 5 (a)).

Lemma 12. The helper parser relations are finitely branching.

(a) FBTree(npsingularP)

(b) FBTree(npP)

(c) FBTree(vpP)

(d) FBTree(sentrecP)

Proof.

a. Using (2), this can be rewritten as

∀s [npsingularP](s) ∈ P<ω(Tree× Str)

Assume s. Unfolding the definition and using Lemma 3 (a), this reduces to showing
that
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i.

(do { d← [detP];

n← [nounP];

[return](Branch NPSing [d, n]) })(s) ∈ P<ω(Tree× Str)

Using Lemmas 4 and 11, this follows from the fact that detP and nounP are
finitely branching, along with Lemma 2 (a).

ii.

(do {n← [pnounP];

[return](Branch NPSing [n] ) })(s) ∈ P<ω(Tree× Str)

Using Lemmas 4 and 11, this follows from the fact that pnounP is finitely
branching, along with Lemma 2 (a).

b. To prove that
∀s [npP](s) ∈ P<ω(Tree× Str)

we carry out induction on |s|. Assume s and

∀s′.|s′| < |s| → [npP](s′) ∈ P<ω(Tree× Str)

Using the definition of npP and Lemma 4 (where k is instantiated with 1), we just
need to show that

i.
[npsingularP](s) ∈ P<ω(Tree× Str)

This follows from Lemma 12 (a).

ii.
HungryTree(npsingularP, 1, s)

This follows from Lemma 11.

iii.

∀tr, r.|r|+ 1 ≤ |s| →
(do { rnp← [manyGenTree,[Tree] nprecP cnsTree [] ];

[return](Branch NP (tr : rnp)) })(r) ∈ P<ω(Tree× Str)

Assume r where |r| + 1 ≤ s, and prove using Lemmas 1 (b) and 6 (where,
for Lemma 6, n and k are |r| and 1). To prove that the parser nprecP
is finitely branching, use the induction hypothesis and the fact that the
string fed to the recursive call is shorter (since ∀sHungryTree(conjP, 1, s) ∧
HungryTree(prepP, 1, s)). The parser nprecP is 1-hungry by Lemma 11.
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c. Using Lemma 4 (b) twice, this follows from the finiteness of [verbP] with any
string s, Lemma 12 (b) and Lemma 2 (a).

d. Using the definition of sentrecP and Lemma 1 (b), we use Lemma 6 to reduce
the goal to showing that ppP is 1-hungry and finitely branching. Unfolding the
definition of ppP, this follows from the hungriness of prepP (by Lemma 11) and
the fact that for any string s

(do { trlist← [manyGenTree,[Tree] ppP cnsTree []];

[return](Branch S′ trlist) })(s) ∈ P<ω(Tree× Str)

Proposition 13. FBTree(sentP)

Proof. To prove

∀s [sentP](s) ∈ P<ω(Tree× Str)

assume s and use Lemma 4 (where k is instantiated with 1). Show

i. FBTree(npP) This follows from Lemma 12 (b).

ii. HungryTree(npP, 1, s) This follows from Lemma 11.

iii.

∀tr, r.|r|+ 1 ≤ |s| →
(do { vp← [vpP];

sp← [sentrecP];

[return](Branch S [np, vp, sp]) })(r) ∈ P<ω(Tree× Str)

Assume r s.t. |r|+1 ≤ |s|. Using Lemma 1 (b), the proof follows from the finiteness
of the set [vpP](r) (by Lemma 12 (c)) and a proof that for all (tr′, t) ∈ [vpP](r)

(do { sp← [sentrecP];

[return](Branch S [np, vp, sp]) })(t) ∈ P<ω(Tree× Str)

This follows from Lemmas 1 (b), 12 (d) and 2 (a).

A monadic parser program for Grammar B can be extracted from a proof with the
following initial goal statement, which corresponds to Proposition 13:

(set-goal (pf "all st Fin(SentP st))

The extracted program is shown below, where trlistr is a variable for lists of parse
results and trst represents a single parse result.
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[st]
([trlistr]trlistr)
((cFinLemmaFourb (rtree word cat)

(rtree word cat))st(cFinNP st)
([tr,st1]
(cFinLemmaOneb (rtree word cat@@list char)

(rtree word cat@@list char))
(cFinVP st1)
([trst]
(cFinLemmaOneb (rtree word cat@@list char)

(rtree word cat@@list char))
(cFinRecSent right trst)
([trst1]

(cFinLemmaTwoa rtree word cat)
((RBranch cat word)Sent(tr::left trst::(left trst1):))
right trst1))))

The program captures ambiguity by returning a list of derivation trees for an input
string. As an example, if we run the program with the input sentence

Annie saw Beth with the telescope

it will return two complete derivation trees. For readability, we give corresponding
diagrams in Figure 1 instead of the Minlog output. By discarding the primed and
empty categories in these derivation trees, we get the valid trees for the original left-
recursive grammar.

We end this section by highlighting a problem with using weakly equivalent gram-
mars for natural language. Whilst the derivations in the example above match those
generated by the left-recursive grammar, this is not always the case (as is noted in [10]).
For example, the noun phrase

Annie or Beth and the telescope

should be parsed in two ways according to Grammar A (see Figure 2). The parsed
syntax matches the semantics intuitively here. In the first tree, we have

Annie or (Beth and the telescope)

In the second tree, we have the alternative interpretation of the phrase as

(Annie or Beth) and the telescope

With the weakly equivalent Grammar B used in our extracted program, we still get
two derivation trees (see Figure 3). The program therefore still captures the ambiguity
of the noun phrase. However, the two trees do not capture the two possible meanings.
In both cases, “Annie” is parsed as a single noun phrase. The two trees then differ in
the way they derive the category np′ from “or Beth and the telescope”:
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Figure 1: Derivation trees for “Annie saw Beth with the telescope” with Grammar B
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Figure 2: Derivation trees for “Annie or Beth and the telescope” with Grammar A

Annie (or Beth (and the telescope))
Annie (or Beth) (and the telescope)

These weakly equivalent derivations for Grammar B do not reflect the semantics of
Grammar A.

Section 8 illustrates the way in which monadic parsers accommodate natural lan-
guage ambiguity. Using the generalized many combinator, we have extracted a program
that generates the expected number of derivation trees for input sentences. To extend
this example further, we would like to extract a parser program whose grammar is
strongly equivalent to the left-recursive Grammar A, i.e., it not only recognizes the
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Figure 3: Derivation trees for “Annie or Beth and the telescope” with Grammar B

same set of sentences, but also generates the same set of parse results. This is part of
the broader goal outlined in the next section.

9 Conclusion

Using Minlog, we are able to extract programs directly from proofs. Instead of im-
plementing parsers and then, in a separate step, verifying that they are correct and
terminating, we only need to concentrate on the proofs and get by a fully automated
process the parser program and its formal correctness proof for free. The Minlog terms

33



Program Extraction Applied to Monadic Parsing U. Berger, A. Jones, and M. Seisenberger

that we have extracted run directly, as was shown in the examples. Alternatively, these
terms can also be (automatically) translated into any higher-order functional program-
ming language, such as Haskell or Scheme.

A fundamental benefit of treating monadic parsers at the proof level is that we can
often work directly with parsers (that is, parser relations) as opposed to their parsing
functions. Parsing functions are more complex objects, and verifying their correctness
at the program level creates unnecessary work. A further advantage is the fact that
for a recursive parser relation to be well-defined it suffices that all recursive calls are
at positive positions. This is not the case for corresponding recursive parser programs
since they may fail to terminate.

To our knowledge, this is the first time that program extraction has been applied
to monadic parsing algorithms. The results in this paper suggest that our approach
has good potential in the areas of parsing and NLP. In the two case studies, we worked
with weakly equivalent versions of left-recursive grammars. Future work will include
overcoming this limitation by working with the original (or strongly equivalent) gram-
mars. Furthermore, one could optimize the data structure extracted from the finiteness
property, as the concatenation of lists is not very efficient.

A proof of correctness, completeness and termination is advantageous in any parsing
context. In terms of potential applications to natural language semantics in particular,
there is a common concern in the literature for modular grammar engineering ([7], [6]),
which is facilitated by monads. There is further potential for overlap in the area of
discourse analysis and semantic inference ([8], [26]).

Minlog Sources

The source files can be found on the Swansea Minlog Repository [2]. The proofs are
divided into several separate files. The first three should be loaded in sequential order.
The case studies are independent of each other.
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