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Abstract 

The clause 6.1 of the ISO9001:2015 quality standard requires organisations to take specific 

actions to determine and address risks and opportunities in order to minimize undesired 

effects in the process and achieve process improvement. This paper proposes a new quality 

correlation algorithm to optimise tolerance limits of process variables across multiple 

processes. The algorithm uses reduced p-dimensional principal component scores to 

determine optimal tolerance limits and also embeds ISO9001:2015’s risk based thinking 

approach. The corresponding factor and response variable pairs are chosen by analysing the 

mixed data set formulation proposed by Giannetti etl al. (2014) and co-linearity index 

algorithm proposed by Ransing et al. (2013).  

The goal of this tolerance limit optimisation problem is to make several small changes to the 

process in order to reduce undesired process variation. The optimal and avoid ranges of 

multiple process parameters are determined by analysing in-process data on categorical as 

well as continuous variables and process responses being transformed using the risk based 

thinking approach.   

The proposed approach has been illustrated by analysing in-process chemistry data for a 

nickel based alloy for manufacturing cast components for an aerospace foundry. It is also 

demonstrated how the approach embeds the risk based thinking into the in-process quality 

improvement process as required by the ISO9001:2015 standard.      

Keywords: 7Epsilon, Six Sigma, No-Fault-Found product failures, in-tolerance faults, in-

process quality improvement, and cause and effect analysis.  

 

1. Introduction 

ISO9001 is probably one of the most widely used quality standard today. Over 1.1 million 

organisations worldwide have been reported as being independently verified and certified as 

users of this standard. The 2015 revision of the ISO9001:2015 quality standard (ISO9001, 

2015) is seen as a major change to its 2008 version. It has an overall focus on ‘risk based 

A quality correlation algorithm for tolerance synthesis and optimization in manufactur-
ing operations



  

thinking’ so that industries are able to prevent undesirable outcomes in their processes. It 

defines risk as ‘an effect of uncertainty’. In the context of this research, the definition is 

interpreted as follows: ‘risk is an effect of uncertainty on an expected result’. Expected 

results or results to be achieved are set by objectives and are intended process outputs. The 

word ‘effect’ is further qualified as ‘deviation from the expected’ and ‘uncertainty’ implies 

‘deficiency of information related to the knowledge’.   

Hence, any observed and unexplained deviation from expected results is inferred as a 

manifestation of deficiency of knowledge about the process. The ‘7Epsilon for 

ISO9001:2015’ training course (Ransing and Ransing, 2015) defines risk as ‘the effect of 

deficiency of knowledge (or uncertainty) that manifests itself as deviation(s) from desired 

process response values (or expected results)’. It quantifies the effect or the deviation from 

the desired response values with a penalty value. A zero penalty value is assigned for desired 

response values and 100 penalty value is denotes unacceptable process response (Ransing et 

al. 2013). Penalty values are scaled between zero and 100 for the remaining (or intermediate) 

process response values. In other words, it attempts to quantify the effect of uncertainty using 

penalty values.  In a process based approach advocated by the ISO 9000 family of standards, 

the deficiency of knowledge relates to uncertainty on whether there exist any regions of 

values for process inputs that are likely to produce expected process outputs (results).  In this 

context the process of evaluating tolerance limits in order to discover optimal regions of 

process values from in-process data is referred to as ‘tolerance limit optimization’.   As 

shown in Fig. 10 and discussed later in the paper, the optimal tolerance limits are discovered 

by analysing the process variance on mixed data sets. A tolerance limit for a process variable 

(factor or process input) is assumed to be robust if neither optimal nor avoid region is 

discovered. 

1.1 Literature Review 

A variety of data mining methods for clustering, classification, prediction and optimisation 

are reported in the literature. Early studies proposed Bayesian and Neural Network based 

models (Lewis & Ransing, 1997, Ransing & Lewis 1997). Recently, Koksal et al. (2011) 

have presented a detailed review of traditional data mining techniques for quality 

improvement in manufacturing industry. Colledani et al. (2014) have reviewed around 326 

publications on manufacturing systems for production quality. However, both reviews have 

not discussed the in-process quality improvement solutions for analysing unexplained 



  

variation among production batches. The most relevant discussion in the review by Colledani 

et al. (2014) is on the multi-stage quality correlation analysis, Stream of Variations Analysis 

(SOVA) (Ceglarek et al. 2004) and No-Fault-Found product failures in service (Prakash et al. 

(2009). The quality correlation concept assumes that the quality of the product is dependent 

on the quality of the output at specific upstream processes. The similarity between the 

proposed approach and the SOVA is that both approaches associate product quality to the 

covariance of process variables and are used for making process adjustments that prevent 

products from falling into in-tolerance fault regions.  However, the SOVA method is 

designed for multistage assembly process relating key product and control characteristics 

represented in CAD/CAM models with information about process layout and sequence of 

operations. The proposed approach is designed for a production environment where the 

unexplained variation in quality among product batches needs to be associated with the 

corresponding process variability.    

Striker and Lanza (2014) define a robust process as a process that is resilient to either 

disturbances or differing conditions. They have used the same interpretation of risk as given 

by the ISO 9000 standard that it is the effect of uncertainty on objectives. They have also 

advocated relating risk to process robustness. The disturbance is set to have negative 

influence on at least one of the three dimensions: cost, time and quality.   According to 

authors the existing risks are the disturbances that the production system is exposed to and 

the robustness of the production system is increased by reducing the influence of the existing 

disturbances. The authors argue that an optimal solution should correspond to a production 

system configuration that includes all machinery, equipment, staff and organisational 

processes. However, the paper does not propose a methodology for addressing process 

improvement opportunities and risks. 

The novelty and originality of this research lies in the following: 

 Definition and quantification of undesired process outputs (Ransing et al. 2013) 

and its relation to ISO9001:2015’s risk based thinking. 

 Extension of the mixed data formulation for co-linearity indices and data pre-

treatment methods proposed by Giannetti et. al. (2014) to calculate the 

corresponding lower dimensional principal component scores. 

 Propose a new methodology based on using the lower dimensional principal 

component scores to determine potential optimal and avoid regions as well as 

process interactions. These regions are not constrained to the pre-determined 



  

quartile limits as previously suggested (Ransing et al. 2013, Giannetti et al. 2014) 

and can be considered as opportunities for process improvement as defined in 

clause 6.1 of ISO9001:2015 quality standard.  

In this paper the proposed algorithm is presented with reference to a foundry case study. 

Section 2 gives background information on the foundry case study and relates the previous 

work to the problem under discussion. The main algorithm for discovering optimal tolerance 

limits for one or more process factors is described in Section 3. The results on a foundry in-

process quality improvement case study are discussed in Section 4. Finally the paper is 

concluded in Section 5. 

2. Background information 

Foundry or metal casting process is a complex process with many sub-processes such as 

pattern making, mould and core making, melting and pouring process etc. For an investment 

casting process, the mould (or shell) making process may have further sub-processes such as 

coating and drying processes. Investment casting foundries produce very complex shaped and 

alloyed components such as turbine blades. Sometimes, it takes months to produce a turbine 

blade from the initial wax processing stage to the final casting. A typical continual process 

improvement study may have over 60-70 measurable process inputs that govern the quality of 

the final turbine blade.  

On average precision foundries lose 3-5% of their revenue in rejected or reworked castings. 

In a foundry environment such a process is referred to as a stable process. Many foundries 

have a higher internal rejection rate. The challenge for foundry process engineers is to be able 

to make small adjustments to several process parameters (e.g. slight adjustments to the 

tolerance limits of various parameters such as alloy compositions at various states of melting 

and pouring process, pouring temperature, moulding parameters etc.). Undertaking one 

change at a time is not sufficient. Even for experts, it is not easy to choose the top 3-4 critical 

process variables that can be shown as being responsible for causing a 3-5% rejection rate. 

The proposed formulation is applicable for similar industrial conditions. A sample in-process 

data on production batches is shown in Table 1 and explained in the next subsection.  

 

 

 



  

2.1 Risks, penalty values and bubble diagrams: a foundry case study 

The continual process improvement example presented in an earlier publication (Ransing et 

al. 2013) is used here to illustrate how the penalty matrix approach offers a natural way of 

quantifying changes in risk as defined by the ISO 9001:2015 standard and the opportunities 

for creating additional knowledge resulting from the deficiency of knowledge (or uncertainty) 

that creates the risk.  

An investment casting foundry manufacturing nickel based super alloy castings has 

variability in castings rejected due to shrinkage related defects per melt (i.e. casting produced 

per fixed amount of molten metal). Chemical composition readings and other processing 

parameters were noted and are shown in Table 1.  This section highlights similarity between 

the risk based thinking and the penalty matrix approach.  

 

 

 

 

 

 

 

 

The risk based approach requires organizations to categorise process outputs as acceptable 

and unacceptable outputs. This is best done by studying the variation in process outputs 

plotted as a scatter diagram Fig. 1. Note that the number of castings produced for the same 

product from each melt are grouped and characterized as a production batch. The percentage 

of castings rejected in each batch is shown in Fig. 1. Majority of casting batches had zero 

percentage rejections. However, some batches had unexplained deviation from expected 

results of zero percentage rejections. This deviation is interpreted as an effect of the possible 

deficiency of process knowledge (or uncertainty). The deficiency in the process knowledge is 

linked to tolerance limit optimization where the hypothesis is the existence of optimal regions 

Table 1 Sample in-process data relating percentage of casting rejected due to shrinkage related defects per 
melt (process output). The corresponding process inputs on chemical composition for the nickel based 

alloy are shown. Two process inputs Niobium and Tungsten are discussed further in the text  



  

within the tolerance limit (or minimum and maximum values) observed for process inputs for 

all values of process outputs. Few examples of potential hypotheses that suggest deficiency of 

process knowledge are given below. These examples are illustrated with respect to the 

tolerance limit of process parameter %Niobium (Fig. 2). Few examples of uncertainty are: 

a. Should the target value of %Niobium be 0.75, 0.8 or 0.85?
1
  

b. Is the range robust? Or should it be changed?  

c. Should the lower or upper limit be changed simultaneously or individually? 

d. In terms of quartiles, is the top 25%, top 50%, bottom 50%, bottom 25% or 

middle 50% quartile any better than the current range?  

e. Is there any other optimal or avoid range within observed values? 

 

 

 

 

 

 

 

 

A process drift for %Niobium is clearly observed in subsequent melts. However, it is noted 

that the Niobium percentage was always maintained within the required process specification. 

Over last twenty years, the first author has worked with numerous foundries across the world 

and it is not uncommon in the foundry world that two process experts from the same foundry 

will fine-tune the process differently. It is often a challenging task for the top management to 

find a common ground. The proposed formulation offers an evidence based solution to 

discover the existence of robust and optimal tolerance limits. Although most of the process 

                                                             
1
 Note that such small adjustments to various process inputs are outside the scope of traditional design of experiments.  A 

typical design of experiment study is more likely to choose a much wider range of % Niobium values e.g. 0%, 0.5%, 0.75% 

and 1%.  

 

Fig. 2 Scatter diagram for factor Niobium. The uncertainty 

or the deficiency of knowledge is the hypothesis that optimal 

regions may exist within the tolerance limits of process 

inputs 

  

  

Fig. 1 Deviation from expected results (or desired response 

values) for the process output casting rejected due to the 

shrinkage defect per melt 

  

  



  

variables are likely to follow a Gaussian distribution, the analysis of in-process foundry data 

has consistently shown an existence of occasional skewed distribution. Giannetti et al. (2014) 

have suggested data pre-treatment method and a median based covariance PCA formulation 

for mixed datasets that increase variance contributions for skewed in-process data. As a 

result, such process variables receive increased weighting and are put under the microscope. 

This technique has also been implemented in the proposed formulation.  

It is hypothesized that the effect of this uncertainty is the resulting deviation from expected 

results. However, if the process engineer believes that the proposed niobium range for his or 

her foundry is robust then there should not be any statistically significant correlation between 

one or more regions of niobium values and shrinkage values. However, care needs to be 

taken as correlation does not always imply causation. The domain knowledge on how various 

chemical elements for nickel based alloys influence shrinkage related defects and 

subsequently mechanical properties is necessary. The numerical simulation software tools 

can also be used to optimize the design and process parameters to achieve the reduction of 

defects (Lewis & Ransing, 2000; Lewis et al., 2004; Pao et al., 2004; Postek et al. 2005). 

The penalty matrix approach has suggested various transformations on raw process input and 

output data (Ransing et al. 2013, Giannetti et al. 2014) in order to balance mixed data sets 

that combine process inputs, continuous and discrete values. This is briefly summarized in 

Section 2.2. 

The changes in the risk are quantified by identifying regions of acceptable and unacceptable 

variations in process outputs in Fig. 1. These regions are associated with a penalty value. The 

acceptable and unacceptable results are given a zero and hundred penalty value respectively 

and a penalty value between zero and hundred is assigned for all process output values 

between the acceptable and unacceptable thresholds Fig. 3. The corresponding penalty values 

are transferred onto factor (process input) scatter diagram as shown in Fig. 2 to transform it to 

a bubble diagram Fig. 4. The penalty values can be further transferred on multiple process 

inputs. An example of interaction with two process inputs (%Niobium and %Tungsten) is 

shown in Fig. 5.  

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is not always practical to visualize in-process data using bubble diagrams as shown in Fig's 

3-5 with overlapping observations and also when number of observations increase. The 

algorithm presented in Section 3 has an ability to discover optimal ranges e.g. an optimal 

range for %Niobium is identified as 0.77-0.865 and shown in Table 6, Section 4.2. Similarly, 

the algorithm also discovered an optimal interaction for %Niobium in range 0.77-0.865 and 

%Tungsten in range 2.413 – 2.594 as shown in Fig. 5. These results are discussed in detail in 

Section 4. 

 
Fig. 4: The corresponding penalty values are transferred on 
all relevant factor (process input) scatter diagrams in order to 
generate hypotheses for taking potential actions as required 
by the clause 6.1 of ISO 9001:2015 
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Fig. 3: The deviation from expected results (or desired 
response values) is penalized. ISO 9001:2015 terms this as 
changes in risks and requires organizations to address risk 

to achieve improvement.    

  

Fig. 5: The penalty values can be further transferred onto values for two or more 

factors (process inputs) to discover hypotheses related to interactions. 

  

  



  

2.2 Data pre-treatment and calculation of co-linearity index in a reduced p-dimensional 

space 

The data pre-treatment transformations are normally performed before undertaking principal 

component analysis (PCA). Data centring by extracting the mean value and standardising to a 

unit standard deviation is a widely used method. Various scaling techniques such as range 

scaling, pareto scaling, log and power transformations, level scaling and max scaling are used 

depending on the goal of a PCA analysis (Bécue-Bertaut & Pagès, 2008; Parente & 

Sutherland, 2013; Van den Berg et al. 2006). It was pointed out by Parente & Sutherland 

(2013) that the scaling can be used to boost the correlation between variables in PCA. In the 

present work, three different pre-treatment methods are used depending on the variable 

classification: response scaling, categorical variables scaling, and quantitative variables 

scaling. Response scaling is achieved using penalty values, as described in Section 2.1, where 

response values are transformed in the range [0 1] according to maximum and minimum 

threshold values (Tmax and Tmin). These thresholds quantify acceptable and unacceptable 

process response and are chosen by the analyst. The choice is normally achieved by 

penalising the worst 10-15% observations corresponding to at least 5-10 bad points and use 

zero penalty values for the best 30-40% of observations corresponding to at least 10-20 good 

points (Gianneti et al., 2014). 

The categorical variables scaling is mainly based on the principles of Multiple Factor 

Analysis (MFA) (Escofier and Pages, 1994). Categorical variables are transformed into 

continuous variables by introducing an indicator variables zi which takes a value of one when 

the original category has occurred and zero otherwise. A further transformation, based on 

equivalence of Multiple Correspondence Analysis (MCA) and weighted PCA, is applied to 

categorical data so they can be treated as continuous data for the purpose of PCA, as 

described in Giannetti et al (2014)and  Bécue-Bertaut et al. (2008). 

Scaling of continuous variables is performed using a data pre-treatment that uses median 

(med) and interquartile (iqr) range as shown in Table (2). This table also includes all data 

transformations used in the present work with all necessary descriptions. 

 

 

 

 

 



  

Table 2: Data transformations applied to raw data (Giannetti et al, 2014). 

Data Set Description Transformation Scaling factor 

Response 

(lower the better) 

(Resp) 

Penalty value 

Scaling 

              0       if    xij ≤ Tmin 

xij
(k)

=      1       if     xij ≥ Tmax 

                
)

)(

minmax

min

)(

TT

Tx k

ij



 otherwise 

 

 

Respmax,

1


 

Response 

(higher the better) 

(Resp) 

Penalty value 

Scaling 

              0         if    xij ≥ Tmax 

xij
(k)

=      1          if   xij ≤ Tmin 

                 
)

)(

maxmin

max

)(

TT

Tx k

ij



  otherwise 

 

 

Respmax,

1


 

Categorical 

variables (CVar) 

MFA 

transformation 

 

    
      

  
          

   

 

 
     

 

CVar

jw

max,
 

Quantitative 

Variables (QVar) 

Robust 

standardization 
    

        

    
  

QVar

jw

max,
 

 

2.2.1 Co-linearity index 

As explained by Giannetti et al. (2014), the data matrix XT is created after applying data pre-

treatment transformations as suggested in Table 1 on the sample data matrix (X) shown in 

Table 1. The PCA is performed on covariance matrix Cov as follows:    

T

t

T XX
m

Cov
1

1


  

The loading matrix is calculated based on the following equation 

ess DVDL 1  

Where: Ls is the standardized loading matrix, V is the matrix of eigenvectors arranged as 

column vectors in descending order of eigenvalues, Ds  is the diagonal matrix of the standard 

deviations of the columns of XT and De is the diagonal matrix containing the square roots of 

eigenvalues.  



  

The first p significant principal components are identified using a scree plot (Cattell, 1996). 

In the reduced dimensional space spanned by the first p components, the inner product of i
th

 

and j
th

 row vectors of psL , represents the correlation between variable i and j. After that co-

linearity index can be plotted by plotting angles and length of the loading vectors.  The co-

linearity index plot is then divided into five regions: a region with no correlation when the co-

linearity index value is between -0.2 to 0.2, two regions that identify weak correlations with 

co-linearity index values -0.5 to -0.2 and 0.2 to 0.5 respectively and the two strong 

correlation regions which include co-linearity index between -1 to -0.5 and 0.5 to 1 for 

negative and positive correlation respectively.               

The weakly correlated variables, in addition to strongly correlated variables, are chosen for 

further investigation for exploring interactions and the corresponding number is referred to as 

nc. The p-dimensional principal component space is chosen for projecting scores on the 

corresponding loading vectors based on their co-linearity index value. The details of these 

concepts are explained in the next section.  

3. A quality correlation algorithm for robust tolerance limit optimization  

Principal component scores represent the original data matrix  XT  in the principal component 

space. For a number of components p, the dimensions of the scores matrix (Tp) is  m×p, 

where m is the number of observations and p is the number of principal components. The 

score matrix (Tp) in a p-dimensional principal component space can be expressed as:    

psTp LXT ,         

Geometrically, each row of the scores matrix is the projection of the respective observations 

in the p-dimensional space. In the literature, scores plots have been used to discover 

similarities between observations (Begam and Kumar, 2014). The similarity and clustering 

behaviour of scores depends on the contribution of the observations on principal components. 

The importance of an observation for a component is determined by the magnitude of the 

squared score value (Abdi & Williams, 2010). Chen et al. (1998) used PCA to analyse the 

Fourier transform infrared spectroscopy spectra of cotton fiber based on separating the 

spectra into different groups according to its PCA scores. It was shown that the scores of 

spectra are divided into two groups separated by the first two principal components, which 

lead to two different causality regions. The clustering of data sets can be revealed from 

projected scores in the reduced dimensional space of principal components.  



  

A scores plot is a scatter plot and it is normally used to visualize the scores of observations on 

the first two principal components (or any other pair of components) in order to show the 

distances between observations to discover the similarities (Varmuza and Filzmoser, 2009). 

On the other hand, the loading plot is widely used to show the correlation between variables 

in two dimensions, where each variable is represented by a vector whose coordinates are 

determined by the loading matrix.  

In order to understand the relation between observations and variables, scores and loading 

plots are often merged together and plotted for the first two or three principal components. 

These are referred to as biplots and can be used to discover features of data and similarities 

between variables and scores (Gabriel and Odoroff, 1990). On the biplots, the scores are 

represented by points and the loadings are represented by vectors. An example of biplot for 

the nickel based alloys case study discussed in this paper is depicted in Fig. 6. In most cases a 

two dimensional biplot is able to give an indication about the contribution of the scores on 

variables (Jollife, 2002).  

With the view of the data centring transformations proposed in Table 2 followed by the mean 

centred analysis of the PCA, it is noted that, for each variable, the origin in the principal 

component space corresponds to its central (or mean) value and the distance of the loading 

vector becomes proportional to the standard deviation (Gabriel, 1971; Jollife, 2002). A longer 

length for the response variables denotes higher standard deviation in penalty values or larger 

deviations from the expected results. This is a direct consequence of the data transformation 

for response variables. Thus, it is inferred that the proposed p-dimensional principal 

component space becomes a reference frame that embodies risk based thinking and allows 

choosing observations that are characteristic to the position of variables in this space. The 

observations, with positions far from the origin, account for larger proportion of the variance 

and in particular, the contribution of an observation to the variable variance is determined by 

its projection onto the loading vector of the variable. In the proposed algorithm only variables 

that correlate either positively or negatively with response values are chosen.  

In order to relate scores with corresponding variables in the p-dimensional principal 

component space, a new plot for each variable is derived from projecting p-dimensional 

scores respectively on the variable and response vectors to infer which scores contribute in 

the variable direction and the response direction. It is noted that the response direction is 

considered as the datum direction and co-linearity indices, or cosines of angles, which are 



  

considered as measures of the correlation, are calculated with reference to the response 

direction. For instance, in the Nickel based alloy example, the variable Carbon is correlated 

negatively with the response. For risk based thinking approach, the response variable (e.g. 

%shrinkage defect occurred in a batch of components) measures the deviation from desired 

values with a penalty function.  This means that higher values of Carbon are inversely 

correlated with higher penalty values for the response variable. Thus, the contribution area is 

bounded by a positively projected Carbon direction and negatively projected response 

(shrinkage) direction. In other words, it infers an hypothesis that within the range of the 

%Carbon in the observation data, the increase of the Carbon content is correlated with the 

reduction of the %shrinkage defects. It is also observed in Fig. 7 that the majority of 

corresponding scores in the bounded area have low penalty values and hence lower bubble 

diameters.  The projection of score ti on loading Lj in p dimension is given by the following 

equation.      

j

ij

p

k
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Fig. 6: Biplot for first two principal component of Nickel based alloy. 



  

 

 

 

 

 

 

 

 

 

 

 

 

3.1 The quality correlation algorithm steps 

The main steps for calculating the optimal system settings for quantitative and categorical 

variables are described in Table 3. Firstly the co-linearity index method, as described in 

Section 2.2.1, is used to find the correlated variables nc. The scores are projected on all 

variables and responses. The corresponding scores for a j
th

 correlated variable are collected 

based on direction of variable and response as explained in the previous section. These scores 

relate to either optimal or avoid settings with reference to the correlated variable. The 

observations corresponding to the collected scores stored in  new variables 
j

optimalx or j

avoidx  

depending upon whether the correlation is positive or negative.  The number of observations 

stored are counted and stored in a variable j

xn . The minimum and maximum values for 

variable j are chosen from observations used in vectors 
j

optimalx or j

avoidx . These values 

determine the range which is further explored for its optimality. The obtained range is 

considered as an optimal range if (i) the variable is correlated positively with low penalty 

response vector and, (ii) the majority of observations in 
j

optimalx or j

avoidx have low penalty 

values. The range is considered as avoid if the variable is correlated positively with high 

penalty response vector and majority of observations in 
j

optimalx or j

avoidx have high penalty 

values. In case of categorical variables, the corresponding original variables vector will have 

Fig. 7. Scores projection on %C and response to show the optimal scores area. 

Scores corresponding to an 

optimal range.   

+ 

- 



  

binary values. A new variable, percentage of occurrences    , is introduced as an indication 

for the true positive occurrences for a specific variable j in 
jx : 

%100

)(
1 



j

x

n

i

j

i
j

n

optimalx

Po
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n

avoidx
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j
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Where n
j
x= number of elements in x

j
. 

 
The categorical variable j is chosen for recommendation as optimal classification if     ≥ 60 

% and is negatively correlated with penalty values high penalty values.  The recommendation 

will be ‘avoid’ for a categorical variable i if     ≥ 60 % and the variable is positively 

correlated with high penalty values.  

3.2. Interactions 

Interactions are used to discover strong combined effects of correlated variables when the 

combined effect is stronger than the individual ones. Traditional regression analysis and 

statistical based approaches calculate interactions by taking a product of mean centred 

variables. During the course of the research, it was realised that the process engineers 

preferred visualisation of interactions using bubble diagrams and penalty matrices rather than 

the traditional approach to predict interactions (Ransing et al. 2013). The proposed 

formulation allows robust calculation of optimal regions and the subsequent discovery of 

interactions so that they can be visualised using bubble diagrams and penalty matrices. The 

interactions and optimal regions discovered in this way may not always concur with 

traditional approaches and the authors do not expect the proposed method to give similar 

results obtained by the usual interaction formulation. Instead authors recommend process 

engineers to visualise interactions using penalty matrices, apply domain knowledge, follow 

the 7 steps of 7Epsilon and verify results via confirmation trials. The specific references to 

the statistical methods have also been dropped from the ISO9001:2015 revision. Hence, 

discovery of interaction using the proposed approach and its subsequent visualisation using 

penalty matrices has been considered as an appropriate step for satisfying the requirements of 

clause 6.1 of the ISO9001:2015 quality standard (Ransing and Ransing, 2015).   

A binary interaction variable is created with a unit value when both individual variables are 

within the ranges as described in Section 3.1. A zero value is assigned otherwise. For 



  

example the interaction between variable Carbon and variable Iron (see section 4.1) is 

accomplished by creating a categorical interaction variable that takes value of one when 

Carbon is in the optimal range (0.093-0.112) and when the value of Iron is within (0.095-0.2). 

For all other combinations a zero value is assigned. The interaction algorithm is described in 

Table 4. This interaction variable is chosen if its co-linearity index is greater than the co-

linearity index of its individuals. Using the method described in Section 2.1.2, the newly 

developed interaction variable is combined with all original variables and a combined co-

linearity index plot is generated for discovering correlations and studying scores.  

Table 3: The algorithm for discovering optimal/avoid range process settings 

 Optimal range process settings for quantitative variables 

Step1 

 

 

 

 

 

 

Step2 

 
 

 

 

Step3 

 

 

 

 

 

 

 

 

 

Step 4 

Collect in-process data as shown in Table 1. Use the batch data collected in sequence for all good 

and bad batches. Apply the data pre-treatment method as described in Table 2. Choose one 

response and treat all other responses as factors. Determine co-linearity indices to discover 

correlated variables for mixed datasets for each response using the formulation proposed by 

Giannetti et al (2014) and as described in Sections 2.1 and 2.2. Specify the correlated variables 

(nc) for each response. 

 

Project scores on all variables and responses using the following equation: for score i and variable 

or response j 

ij

ij

ii
tL

tL
tt

.
*   

For quantitative variables  

If  variable j is correlated negatively    

Then 

Find the projected scores that lay in the plane of positive direction of variable j and negative 

direction of response. 

Find the original values corresponding to the scores in the last step xj
optimal. 

Find the minimum and maximum values in xj
optimal and the resulting range  

[Min(xj
optimal),   Max(xj

optimal)] that leads to low penalty values. 

Else 

Find the projected scores lay in the plane of positive direction of variable j and positive direction 

of response. 

Find the original values corresponding to scores in the last step xj
avoid. 

Find the minimum and maximum values in xj
avoid and the resulted range  

[Min(xj
avoid)   Max(xj

avoid)] that leads to high penalty values. 

End 

For categorical variables 
If  variable j is negatively correlated with response   

Then 

Find the projected scores that lay in the plane of positive direction of variable j and negative 

direction of response. 

Find the original values corresponding to scores in the last step xj
optimal. 

Find the percentage of occurrence of variable j on the resulted xj
optimal using: 

%100
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j

i
j
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optimalx
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j
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If Poj > 60% the occurrence of  variable  j lead to low penalty values. 



  

Else 

Find the projected scores that lay in the plane of positive direction of variable j and positive 

direction of response. 

Find the original values corresponding to scores in the last step xj
avoid. 

Find the percentage of occurrence of variable j on the resulted x
j
avoid using: 

%100

)(
1 

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j

x

n

i

j

i
j

n

avoidx

Po

j
x

 

If Poj > 60% the occurrence of variable j lead to high penalty values. 

End 

 
 

 

Table 4: The algorithm for discovering interactions among variables 

 Interaction between two variables i,j 

Step1  

 
 

 

 

 

 

 

 

 
 

 

 

 
Step 2 
 

 

 

 

 

 

Step 3   

 

For Quantitative variables 

For any 
ii QVarq  and any 

jj QVarq   

If  )()( i

avoidoroptimal

ii

avoidoroptimal xMaxqxMin  and 

)()( j

avoidoroptimal

jj

avoidoroptimal xMaxqxMin   

Then 

Ivari,j=1 

Else  

Ivari,j=0 

End 

For categorical variables 

If CVari =1 and CVarj =1 

 Ivari,j=1 

Else  

Ivari,j=0 

End 

Merge new variable Ivari,j within the global matrix with data transformations as given in Table 2 

and perform the covariance PCA using steps described in Section 2.2 (Giannetti et al 2014) 

Determine co-linearity indices 

If the correlation of  Ivari,j with response variable is stronger than the correlation of the original 

variables i,j. 

Keep the new interactions variable Ivari,j
 

Else  

Ignore 

End  

 



  

4. Results of a foundry case study for a nickel based alloy as described in Section 2.1 

4.1. Co-linearity index and scores based bubble plots 

The main aim of the analysis is to reduce the shrinkage defects in Nickel based alloy by 

analysing in-process data as described in Section 2.1. The co-linearity index method along 

with the corresponding data pre-treatment, as described in Section 2.2, is applied to 

understand the correlation of variables with shrinkage penalty vector. The co-linearity plot is 

depicted in Fig. 8. One variable, %Cobalt (%Co), showed positive correlation with high 

penalty vector and seven other variables showed negative correlation with high penalty 

vector.   

 

 

     

 

 

 

 

 

 

 Projection of scores on loadings, calculated with the algorithm proposed in Section 3, is 

shown in Fig. 9.  The optimal and avoid ranges are obtained by using Steps 3 and 4 (Table 3) 

for continuous and categorical data respectively. The rectangles in Fig. 9 show the data points 

chosen for deciding optimal or avoid limits. The data points are plotted in a lower 

dimensional space with the associated scores. As discussed in Steps 3 and 4 (Table 3), the 

minimum and maximum process variable value associated with these data points constitute 

optimal or avoid ranges. The optimal settings for all variables are shown in Fig. 10.  The 

optimum range is plotted beside the whole range for each variable. The interaction co-

linearity index plot and the interaction between variables are shown respectively in Fig. 11, 

Fig. 12 and Table 5. Even though the results are shown for a single response, the approach is 

Fig. 8. Co-linearity index plot for the in-process data used in Nickel based alloy.  

Shrink Penalty % 



  

applicable for multiple responses. When co-linearity indices are analysed for a chosen 

response, all other response variables are treated as factors and analysed together with 

remaining factors. The results can then be compiled to study the influence of each factor 

setting on all responses in order to make an informed decision on choosing the factor and its 

setting for a confirmation trial.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The optimal range for variables, for each variable the left hand bar represent the optimal (black 

bars) or avoid (the light bar) range, obtained range for each variable corresponding to scores bounded 

by rectangle in Fig.(9) for the variable. 

Fig. 9. Scores projection on variables and response of Nickel based alloy for 8 principal components. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Interactions Table with percent of occurrence (PO%) for interacted variables 

 

 

 

 

 

 

Fig. 11. The interaction co-linearity index for Nickel based alloy. 

Shrink Penalty % 

Fig.12. Scores projection on variables and response for 8 interactions resulted from using ranges in Fig. (10). 



  

Table (5) Interactions Table with percent of occurrence (PO%) for interacted variables 

Variables C Co Nb 

Fe 100% - - 

Nb 100% 75% - 

W 94.4% 35.3 % 94.4% 

Zr - 53.3% - 

Al&Ti - 38.8% - 
 

4.2 Discussion of results and comparison with the quartile based classification by 

penalty matrices  

The comparison of present results with results of the penalty matrix approach (Ransing et al. 

2013) (see Table 6) shows that there is a slight difference. The most important reason for the 

deviation in results may be attributed to the range of variables used. In the penalty matrix 

method the optimal and avoid ranges are obtained from comparing the number of 

observations in each quartile, whereas in the present work the obtained range depends on the 

projection of scores on loadings to find out which scores contribute to each variable. The 

interactions table (Table 5) shows interactions, where most of the correlated variables tend to 

interact and produce stronger variables. The proposed algorithm’s ability to account for 

mixed data types has allowed comparing the categorical interactions variable with the 

corresponding continuous variables on the same co-linearity index plots.  In this case, the 

analysis of interactions gives additional information and leads to a better understating of the 

process. The resulted variable interactions provide additional hypotheses that need to be 

checked by process engineers whilst satisfying the requirements of clause 6.1 of the 

ISO9001:2015 standard. The standard further requires process engineers to develop strategies 

for managing the new knowledge discovered and continually upgrade its organisational 

knowledge library.. 

 

The interactions Carbon with Iron, Niobium and Tungsten and the interaction of Niobium and 

Tungsten (Fig. 11) are considered strong as they have high corresponding values of PO% 

(Table 5). On the other hand, Fig. 11 also illustrates that Cobalt has a strong interaction with 

Tungsten, Zirconium and Al&Ti but the corresponding PO% values are low as shown in 

Table 5. Hence, these interactions are not suggested by the proposed algorithm.  

 



  

Table (6) Comparison of obtained ranges with penalty matrix approach (Ransing et al. 2013).     

Variables Penalty Matrix  

Range 

Range predicted by the 

proposed algorithm 

%C 0.095-0.113 (Optimal) 0.093-0.112  (Optimal)  

%Al 3.24-3.306 (Optimal) 3.1453.306 (Optimal) 

%Co 7.84-8.028 (Avoid) 7.847-8.018 (Avoid) 

% Fe 0.114- 0.2 (Optimal) 0.095-0.2 (Optimal) 

%Nb 0.77-0.827 (Optimal) 0.77-0.865 (Optimal) 

%W 2.451-2.594 (Optimal) 2.413-2.594 (Optimal) 

%Zr 0.026- 0.05 (Optimal) 0.023-0.05 (Optimal) 

%Al+Ti 6.299–6.527 (Optimal) 6.299-6.498 (Optimal) 

 

5. Conclusion 

Many industries measure the quality of process outputs in terms of percentage of defective 

components in a production batch. A large number of process inputs across sub-processes 

influence the quality of this batch. A quality correlation algorithm is described that penalises 

undesired and unexplained quality variation among batches and discovers the optimal and 

avoid settings for various process inputs (factors). The approach takes into account the 

variance contribution of each process input and is applicable for mixed data sets. The median 

based data transformations and covariance PCA makes the approach applicable to situation 

where in-process data associated with factors may not always follow Guassian distributions. 

The co-linearity concept is constrained by the linearity assumptions of the PCA however, the 

discovery of optimal and avoid settings and the new definition of interactions allow discovery 

of quality correlations even if the factor response relationship is non-linear. The algorithm is 

generic and is applicable to discover complex correlations and interactions among continuous 

and categorical variables using ISO9001:2015’s risk based thinking strategy.  However, the 

proposed algorithm is unable to work missing data. Future research is necessary to address 

this technological gap. 

In the proposed work, the co-linearity index procedure presented by Giannetti et al. (2014) is 

used to predict the correlations between variables and responses for in process data for 

casting process. A new algorithm has been proposed to predict the optimal process settings 

for correlated variables. The algorithm uses the analogy between loading and scores of 



  

principal component analysis in bi-plots but extends the concept for p number of principal 

components. The data pre-treatment of response variables has been shown to embed the risk 

based thinking as proposed by the ISO9001:2015 quality standard. The proposed approach 

found optimal or avoid ranges from the observation data. It separated the corresponding 

scores into different clusters according to its contribution on loading vectors of variables in 

the p-dimensional space. Another advantage of the proposed algorithm is that it has allowed 

the discovery of interactions between variables by creating new categorical variables and 

comparing its co-linearity index on the original co-linearity index plot. Additional constraints 

to further qualify interactions have also been proposed.  The results are verified with 

previously published literature (Ransing et al. 2013).  
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% 

Shrinkage 

Defect 

Per Melt 

(or Heat)

Carbon Aluminium Boron Cobalt Chromium Iron Molybdenum

0.12 0.101 3.23 0.009 7.857 15.2 0.086 1.663

0 0.093 3.145 0.009 7.971 15.295 0.086 1.644

0.15 0.107 3.249 0.009 7.781 15.248 0.152 1.691

0 0.103 3.249 0.008 8.028 15.096 0.105 1.653

0 0.105 3.183 0.008 7.781 15.001 0.124 1.682

0 0.107 3.107 0.008 7.8 15.295 0.19 1.663

0 0.109 3.145 0.01 7.866 15.267 0.095 1.691

0 0.112 3.287 0.009 7.743 15.305 0.19 1.663

0.02 0.106 3.145 0.009 7.838 15.352 0.095 1.644

0 0.106 3.249 0.008 7.809 15.276 0.095 1.634

0 0.108 3.097 0.008 7.781 15.286 0.095 1.653

0 0.108 3.183 0.008 7.828 15.286 0.095 1.634

0 0.106 3.24 0.008 7.857 15.02 0.143 1.663

0 0.108 3.268 0.009 7.895 15.267 0.171 1.672

0 0.102 3.306 0.008 7.885 15.248 0.114 1.634

0.07 0.102 3.306 0.009 7.942 15.229 0.067 1.663



  

Niobium Tungsten Tantalum Titanium Zirconium Aluminium + TitaniumNitrogen Oxygen Ta/Ti

0.846 2.556 1.587 3.23 0.037 6.46 33.25 6.65 0.492

0.798 2.594 1.558 3.211 0.05 6.365 11.4 6.65 0.486

0.893 2.423 1.653 3.278 0.031 6.527 38 10.45 0.505

0.865 2.489 1.568 3.211 0.035 6.46 22.8 7.6 0.489

0.808 2.423 1.52 3.107 0.032 6.289 21.85 5.7 0.49

0.808 2.442 1.615 3.145 0.022 6.251 20.9 8.55 0.514

0.77 2.451 1.653 3.192 0.024 6.337 20.9 9.5 0.518

0.817 2.461 1.672 3.211 0.023 6.498 26.6 5.7 0.521

0.808 2.461 1.596 3.164 0.023 6.308 38.95 11.4 0.505

0.817 2.48 1.558 3.173 0.024 6.422 30.4 3.8 0.492

0.836 2.432 1.625 3.202 0.023 6.299 29.45 7.6 0.508

0.798 2.48 1.577 3.145 0.026 6.327 20.9 7.6 0.502

0.865 2.518 1.615 3.173 0.03 6.413 32.3 5.7 0.509

0.865 2.47 1.568 3.211 0.03 6.489 32.3 7.6 0.489

0.817 2.489 1.492 3.145 0.027 6.451 36.1 11.4 0.475

0.865 2.47 1.549 3.183 0.031 6.489 20.9 7.6 0.487



  

 

 

Highlights 

 An approach to embed ISO 9001:2015’s risk based thinking for in-process quality 

improvement is proposed.  

 The algorithm determines optimal and avoid ranges within the process variation including 

process interactions.  

 It is shown how the technique can be used to satisfy the requirements of Clause 6.1 of the 

ISO9001:2015 standard. 

 

 

 


