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Markov Chain Driven Multi-Dimensional Visual Pattern
Analysis with Parallel Coordinates
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Visual Computing Group, Computer Science Department, Swansea University, cszg, csjames, r.s.laramee@swansea.ac.uk

Abstract

Parallel coordinates is a widely used visualization technique for presenting, analyzing and exploring multi-
dimensional data. However, like many other visualizations, it can suffer from an overplotting problem when ren-
dering large data sets. Until now, quite a few methods are proposed to discover and illustrate the major data
trends in cluttered parallel coordinates. Among them, frequency-based approaches using binning and histograms
are widely adopted. The traditional binning method, which records line-segment frequency, only considers data
in a two-dimensional subspace, as a result, the multi-dimensional features are not taken into account for trend
and outlier analysis. Obtaining a coherent binned representation in higher dimensions is challenging because
multidimensional binning can suffer from the curse of dimensionality. In this paper, we utilize the Markov Chain
model to compute an n-dimensional joint probability for each data tuple based on a two-dimensional binning
method. This probability value can be utilized to guide the user for selection and brushing. We provide various
interaction techniques for the user to control the parameters during the brushing process. Filtered data with a
high probability measure often explicitly illustrates major data trends. In order to scale to large data sets, we also
propose a more precise angular representation for angular histograms to depict the density of the brushed data
trends. We demonstrate our methods and evaluate the results on a wide variety of data sets, including real-world,
high-dimensional biological data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: —

1. Introduction

Parallel coordinates, introduced by Inselberg and Dims-
dale [ID90], is a widely used visualization technique for ex-
ploring large, multi-dimensional data sets. It is powerful in
revealing a wide range of data characteristics such as differ-
ent data distributions and functional dependencies. However,
one of the limitations of parallel coordinates is visual clut-
ter caused by rendering more polylines than available pixels.
The overlapped lines often obscure the underlying patterns
of the data, especially in areas with high data density.

One of the promising algorithms for discovering principal
data trends for large data sets in parallel coordinates is based
on data frequency [AdOL04, BBP08, NH06]. With these
approaches, data is sometimes aggregated and filtered by
means of binning. Due to the curse of dimensionality, most
frequency-based approaches adopt a two-dimensional bin
map which stores frequency of line segments between ad-

jacent axes. A joint histogram is then rendered based on this
bin map. A clustering or outlier detection method is limited
to a two-dimensional subspace and the multi-dimensional
features are not considered. Due to the dependencies inher-
ent within multidimensional parallel coordinates, we need
to discover and summarize the patterns which can propagate
through n-dimensional space, as opposed to being limited to
a two-dimensional subspace.

In this paper, we develop a probability model to guide the
user to brush a subset of the data items which can repre-
sent major and minor trends in a data set. To achieve this,
a weight value, which is determined by the joint probabil-
ity of the n-dimensional data features, is assigned to each
polyline. A polyline with a higher probability value implies
that a given data tuple is part of the principal trend, whereas
a lower probability value implies there are few similar pat-
terns present. In order to compute a joint probability value,
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we introduce the Markov Chain model [Rab89], which can
be constructed and implemented using the binning method.

Figure 1: This figure shows the line-based histogram for the
remote sensor data from the paper [NH06]. This method is
able to capture the local data trend in two-dimensional sub-
space, rather than global trend in higher dimensions. High-
lighted in yellow are the discontinuous patterns due to the
two-dimensional joint histogram representation.

We demonstrate our techniques on real world n-
dimensional marine biology data in addition to several well-
known data sets. The rest of this paper is organized as fol-
lows: Section 2 discusses the previous work related to our
approach. Section 3 demonstrates the key ideas to compute
a joint probability value for a data sample using Markov
chain. Once the probability values are obtained, they can
be presented by a histogram or scatterplot, as discussed in
Section 4. We also provide several interaction techniques for
the user, such as a brushing method based on a probability
value which can decompose the original data set into princi-
pal major and minor trends. Section 5 evaluates our proposed
method based on a comparison with other well-known visu-
alization techniques for large data sets. Section 7 describes a
case study with respect to a real world marine biology data
set. Section 8 wraps up with the conclusion.

2. Related Work
One of the ways to represent a major data trend in parallel
coordinates is based on data frequency. With this approach,
the data is often aggregated and filtered by binning. In gen-
eral, binning is the process of computing the number of val-
ues falling in a given interval and storing them in a bin map.
Data frequency can then be visually represented by a his-
togram.

In parallel coordinates, bin maps can either be line-
segment based which store the frequency of the line seg-
ments connecting adjacent axes, or point based which store
the frequency of data points along each axis [AdOL04].
Novotny and Hauser develop a focus+context visualization
using binned parallel coordinates [NH06]. Binned paral-
lel coordinates are used for context views, while the tradi-
tional polyline-based parallel coordinates are used for focus

views. However, for the binned parallel coordinates, uni-
form, equal-sized histogram bins may not allow for finer-
resolution views of the data. Ruebel et al. [RK08] extend
Novotny and Hauser’s work, and propose adaptive histogram
bins which use a higher resolution in areas with high data
density. Their adaptive binning is able to represent general
data trends more accurately. Blaas et al. [BBP08] optimize
the data preprocessing for the binning method with respect
to the data storage, histogram equalization and quantization.
This facilitates fast exploration for large data sets.

Because the bin map used in previous approaches is based
on neighboring dimensions, it inevitably introduces discon-
tinuous patterns across multiple dimensions. What we obtain
from these binning methods are the clusters and outliers in a
one or two-dimensional subspace. We are unable to visualize
n-dimensional data as a coherent feature, as shown in Fig-
ure 1. In Feng [FKLT10]’s work, this discontinuity between
every two dimensions is regarded as uncertainty and Kernel
Density Estimation (KDE) is used to enhance such informa-
tion. However, the uncertainty they consider is also based on
a two-dimensional subspace. A possible solution to address
this problem is to build a truly n-dimensional bin map. How-
ever, as the number of dimensions increases, the total num-
ber of required bins grows exponentially, which is kn for a
data set with n dimensions and k bins. This can cause enor-
mous memory demands even for a small number of intervals.
In this paper, we propose a novel approach to aggregate n-
dimensional data tuples using a probability model based on
a line-based binning method. A two-dimensional bin map
between the neighboring axes is constructed to compute a
transition probability in our Markov Chain Model [Rab89].
The main contribution of our work is that we consider the
multidimensional features of each polyline, not only in two
dimensional subspace. In addition, based on the probability
model, we can present the principal trends at various levels
of detail by selection and filtering. The user is able to fine-
tune different parameters of the Markov model to obtain both
major and minor data trends.

Clustering: The ultimate goal of our work is to improve the
previous line-based histogram for multidimensional pattern
discovery, it focuses on data extraction and filtering for vi-
sual data pattern discovery, rather than data clustering and
classification in the data space. Therefore, our technique is
not the same as the traditional clustering methods, such as
hierarchical clustering [FWR99] or K-Means clustering. In
our approach a data trend or cluster is implicitly revealed in
the visual space, but not computed in the data space.

Outlier Detection: Our method is not explicitly designed
for outlier detection. However it can be used to detect and
visualize outliers in higher dimensions using our joint prob-
ability distribution. The traditional density based outlier de-
tection method, such as n-dimensional Kernel Density Esti-
mation (KDE) which is based on a continuous density func-
tion, is computationally expensive especially when the size
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Figure 2: This figure shows the Markov Chain Model ap-
plied in parallel coordinates. Each vertical axis is treated as
one time step and is divided into several bins or states. The
thickness of the arrow for each transition, such as Ω1 and
Ω2, depicts the joint probability value.

and dimension of a data set is high. Whereas in comparison
our method with a complexity O(nm) does not suffer from
this problem, where n is the number of dimensions and m is
the number of data items. Because a probability value gener-
ated by our method for each data sample indicates the num-
ber of similar patterns to it, a very low probability potentially
suggests an outlier which is numerically distant from other
data items.

3. Fundamentals
In this section, we will explain the key concepts behind
our approach. Section 3.1 demonstrates the Markov Chain
model developed for parallel coordinates. Based on this
model, each multidimensional data tuple can be assigned a
joint probability value. In order to quickly compute such a
probability value, we pre-compute a transition probability
matrix and store it in an external file.

3.1. Markov Chain Model
In this section, we will explain the key con-
cepts behind our approach. Given a data set
X =

{
xi = (xi,1,xi,2, ...,xi,n)

T |1≤ i≤ m
}

with m items
of n dimensions, the binning method converts the original
data into a frequency-based representation by dividing the
data space into k multidimensional intervals, namely bins.
The key idea behind our approach is to compute a joint
probability value for each data item xi = (xi,1,xi,2, ...,xi,n)

T .
Then we can introduce the Markov Chain to compute
the joint probability of multidimensional data. A Markov
Chain [Rab89] is a stochastic process that undergoes
transitions from one state to another in a chainlike manner.
The first-order Markov Chain defines that the current state
depends only on the previous state and not on the entire
past. In order to formulate the probability model, we firstly
construct one-dimensional binning for every data dimen-
sion. If the data in each attribute is divided into k intervals,
then in total we will need kn bins for all attributes, which

is denoted as S =
{

Ωi = (ω1,i,ω2,i, ...,ωk,i)
T |1≤ i≤ n

}
,

where ωi, j represents the ith bin in axis j. For every item xi, j
in the data space, it can be converted to the bin membership
by the function φ(xi, j), which returns to the bin index that
the data item xi, j belongs to.

To formulate our Markov Chain model, each bin ωi, j
can be interpreted as a state. A list of data dimensions,
D : d1,d2, ...,dn, can be treated as a temporal sequence. Ev-
ery data tuple or polyline forms a sequence of transitions
from one state to another over a series of time steps. Com-
puting a probability of a data tuple xi = (xi,1,xi,2, ...,xi,n)

T

can be transformed to computing the probability of the
list of states where this data tuple flows to, namely Φi =
(φ(xi,1),φ(xi,2), ...,φ(xi,n))

T , this Markov process is shown
in Figure 2. A joint probability of each bin tuple Φi can be
defined as:

P(Φi) = P0(φ(xi,1))
n

∏
t=2

P(St = φ(xi,t)|St−1 = φ(xi,t−1))

(1)

where P0(φ(xi,1)) is a stationary probability value, which can
be represented by the data frequency within this bin.

In order to improve the numerical stability when using
limited precision floating point numbers for product compu-
tation in equation (1), we take the logarithm of both sides.
This can be defined as:

ln(P(Φi)) = ln(P0(φ(xi,1)))+
n

∑
t=2

ln(P(St = φ(xi,t)|St−1 = φ(xi,t−1)))
(2)

Before defining the transition probability, we construct the
two-dimensional binning which stores the line segment fre-
quency between every pair of axes. Based on this bin map,
we are able to build a kn× kn stochastic transition matrix,
where k is the number of intervals and n is the number of
dimensions. Each element of this matrix can be defined as:

P(St = ωi, j|St−1 = ωu,v) =

{ ‖ωi, j∩ωu,v‖
‖ωu,v‖(n−1) i f j 6= v

0 otherwise
(3)

where ‖ωi, j ∩ωu,v‖ represents the number of common data
items that both bins ωi, j and ωu,v share, i.e, the number of
line segments joining the two bins between the axes j and
v. ‖ωu,v‖ is the number of data items in the bin ωu,v. n is
the number of dimensions. If two states are from the same
axis ( j = v), then the transition probability is zero. In our
model, we only consider the case ( j 6= v) where the transition
probability is the normalized conditional probability of state
ωi, j over state ωu,v.

Since a state transition probability matrix has to be a
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stochastic matrix, the sum of each row of the matrix has to be
one. Based on equation (3), we can prove that our transition
probability matrix satisfies ∑

kn
v=1 pu,v = 1, for all 1≤ u≤ kn,

where pu,v represents a matrix element. We take the first row
of the matrix as an example. The transition probabilities in
this row can be separated into two parts, one contains the
states in the same dimension as ω1,1, the other contains the
states in different dimensions:

kn

∑
u=1

p1,u =
k

∑
u=1

p1,u +
kn

∑
u=k+1

p1,u (4)

Based on equation (3), the first part of equation (4),
namely ∑

k
u=1 p1,u equals zero. The second part of equation

(4) computes the sum of the transition probabilities between
the state ω1,1 and all states in the other (n− 1) dimensions.
The part ∑

kn
u=k+1 p1,u equals to:

n

∑
e=2

ek

∑
u=(e−1)k+1

‖ωu,e∩ω1,1‖
‖ω1,1‖(n−1)

) =

n

∑
e=2

∑
ek
u=(e−1)k+1 ‖ωu,e∩ω1,1‖
‖ω1,1‖(n−1)

=
n

∑
e=2

‖ω1,1‖
‖ω1,1‖(n−1)

= 1

(5)

Then the results in equations (4) equals unity. In our paper,
the probability value is mainly used for ranking. According
to equation (2), we learn that the degree of probability value
for each data sample indicates the number of patterns which
are similar to it. If two data samples are passing through a
similar set of states or bins in a Markov Chain, then we say
these two data samples have a similar profile in multidimen-
sional space.

The transition probability of the Markov Chain is based
on the line-segment frequency between the bins in neighbor-
ing axes, namely ‖ωi, j ∩ωu,v‖. In order to enable fast data
exploration, we pre-compute a transition probability matrix
and store it in an external file. For n axes and k uniform in-
tervals, the total number of bins to be computed and stored

is (n−1)k2

2 . Whenever a new Markov Chain is determined
by the user, n reads suffice to compute a joint probability
value. In addition to the transition probability, we also pre-
compute a bin map which stores the data frequency in each
dimension, namely ‖ωi, j‖, which requires kn bins in total.

4. Visualization and Analysis
Once we have obtained a list of probability values for all data
items from Equation (2), this can be represented either by a
scatterplot or a histogram. A scatterplot can be used when
rendering a small number of data items, whereas a histogram
is adopted when rendering a large data set. In the first exam-
ple, we would like to consider a synthetic dataset about the
geometric features of pollen grains consisting of 3848 obser-
vations with 5 variables. This is the 1986 ASA Data Expo-
sition data set from David Coleman of RCA Labs [WL97].
From the probability scatterplot shown in the third row of

Figure 3: This figure shows the pollen data set. The first
row shows the line based histogram. The second row shows
the composite brushing, with the yellow polylines showing
the trend and the blue polylines the noise. The third row
shows the scatterplot of probability distribution. The fourth
row shows only the yellow points captured in the third row.
A color scale is mapped to each polyline according to its
position in the first axis of parallel coordinates.

Figure 3, we can see that most of the data items have rel-
atively low probability values as depicted in blue. However
there are 99 data items having a much higher probability and
are isolated from the original 3848 points as depicted in yel-
low. If we render these data trends and noise separately on
parallel coordinates in different colors, we obtain the visu-
alization on the second row in Figure 3. As we re-scale the
selected data trends drawn in yellow, we are able to catch six
clusters, as shown in the fourth row of Figure 3. Although
the extracted 99 data points are only approximately 2.7% of
the data set, we are able to succsessfully isolate these points
from the noise. In the previous method [WL97], the time
cost to prune the noisy data is approximately within three
minutes. However, in our method the identification occurs
instantly once we have computed the joint probability distri-
bution. The first row of Figure 3 is a visualization using the
line-based histogram [NH06]. The patterns in the middle of
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Figure 4: This figure shows a proprietary, biodiversity data set from XMDV [XMD11]. This data set has 25 dimensions and
49324 samples. The first row is visualization using alpha blending. The second row shows the visualization rendered in hierar-
chical clustering and proximity-based representation. The third row shows the outlier-preserving line-based histogram [NH06].
The fourth row shows our composite brushing with yellow patterns representing a high probability range and red patterns a
low probability range. The fifth row shows our probability histogram.

the axes are not very sailent and clear. In addition, we are
unable to extract and seperate these data points out of the
noise from this method.

For a large data set, we could apply histogram for prob-
ability representation. Our goal is to select a subset of the
data which can mostly represent multi-dimensional features
and characteristics. In this section, we introduce some of the
brushing techniques to handle this class of data sets. The
essence of our technique is that a data sample in a multidi-
mensional principal trend will have a high joint probability
value, whereas a data item regarded as an outlier often has
a very low probability value. The question arises as to how
to classify the high, medium and low probability ranges. We
provide a classification as guidance for the user to brush for
data patterns. The user can also directly interact with dif-
ferent probability ranges by brushing. Initially, we compute
the 10th percentile, median and 90th percentile values of the
probability lists of all data samples. Then we use these val-
ues as the initial means for K-means clustering. The number

of clusters namely k, is set to three as default referring to
"high", "medium" and "low" probability range. In addition,
we allow the user to choose an arbitrary number of clus-
ters for their desired degree of classification. One point we
emphasize is that the classification based on this probability
distribution is used for data extraction and brushing, rather
than data clustering.

In this example, we consider a real biodiversity infor-
matics data set. This data set is from a clustering-based
niche envelope model that William Hargrove and Forrest
Hoffman studied for Lobolly pine across the contiguous
United States [HH00]. From this data they aim to classify the
Lobolly pine based on twenty-five factors, including eleva-
tion (ELEV), maximum, mean and minimum annual temper-
ature (MAXANN, MEANANN, MINANN), monthly pre-
cipitation (PCPJAN to PCPDEC), several soil parameters,
number of frost-free days (FFREE) and solar output and in-
put. Each data element represents a data map which was de-
veloped for the continental United States at a resolution of 1
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Figure 5: This figure shows the visualizations of three different orderings of our animal tracking data set. The data patterns on
the left column are rendered using a line-based histogram, while the patterns on the right column is the brushed data samples
with high probability using our method. We note that a color scale is mapped to the position of polylines according to the first
vertical axis in the parallel coordinates view to depict the coherent patterns in higher dimensions. In addition, we are unable
to assign a color mapping on the n-dimensional data space on the patterns in right column, because they only show patterns in
two-dimensional subspace.

km2. This data set has 49324 samples. It can be downloaded
from the XMDV website [XMD11]. Shown in the bottom
of Figure 4 is a histogram representation for the probabil-
ity distribution. The histogram is partitioned into three parts
using K-means clustering. Each class is depicted in differ-
ent colors. If we brush the high probability cluster (depicted
in yellow) and low probability cluster (depicted in red) re-
spectively, we are able to obtain a visualization shown in
the fourth row of Figure 4. The pattern in yellow illustrates
a principal data trend. There are 45.5% of the data sam-
ples brushed which reveals a coherent pattern propagating
through twenty five dimensions. In these areas, the overal
annual temperature is moderate as shown in the first three
axes. From axis ELEV we can see these areas are low in ele-
vation. The precipitation has larger variance from January to
May than from June to October. In addition, the precipition
drops from May and remains relelvatively low in the next
few months. The depth to water table (WDEPTH) reamins
high.

5. Comparison
In this section, we would like to compare our results with
other popular large data visualizations, such as alpha blend-
ing [Weg90, WL97], hierarchical clustering [FWR99] and
line-based histograms [NH06, RK08]. The first row in Fig-
ure 4 is a visualization rendered using alpha blending. The
density of the plots is represented with transparency. Under
a low alpha value, the sparse parts of the dataset fade away

while the more dense areas are emphasized. This works well
with small datasets, however, with large datasets the range of
data is much greater and consequently it is more difficult to
fully represent the fidelity of complex datasets. It is difficult
to obtain a clear understanding of patterns and clusters, as it
becomes cluttered in some areas between axis AWC150 and
ELEV. The yellow patterns in our method as shown in the
fourth row of Figure 4 provides a much clearer data trend. In
addition, outliers may get lost using alpha blending, such as
patterns on the bottom between axis PCPJAN and PCPDEC.
Our method is able to preserve such outliers as depicted in
red patterns. If we combine the yellow and red patterns in our
method, we are able to approximately reconstruct a complete
view of data features with an emphasized view of principal
data trends.

The second row of Figure 4 shows a hierarchical parallel
coordinates rendered by XMDV [FWR99]. In this approach,
a Birch’s hierarchical clustering algorithm is adopted which
builds a tree of nested clusters based on proximity infor-
mation. Proximity-based coloring is introduced to demon-
strate clusters, and transparency to show the mean and the
extent of each cluster. Then multi-resolution views of the
data can be rendered. Compared with the alpha blending, it
is able to offer a clearer data distribution and preserve the
low frequency data samples. However, the densities of dif-
ferent clusters might be difficult to distinguish from XMDV.
This is because most of polylines are rendered in a small por-
tion of screen space, the differences in the proximity-based
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transparencies for various levels of clusters are not easy to
discern. Using our method, we are able to immediately catch
a clear view of central data trends as depicted in yellow and
minor data trends depicted in red. In addition, because each
polyline rendered is a mean value of a cluster in XMDV, they
may deviate from the original positions of the polylines and
cause problems with interpretation. For example, outliers on
the bottom between the axis PCPJAN and PCPDEC are sup-
posed to be at minimal value of each axis and patterns on the
lower part between axes ELEV and SOLARANN are differ-
ent from patterns in alpha blending and our method.

The third row of Figure 4 shows a visualization rendered
using line-based histograms [NH06, RK08]. It is built upon
a two-dimensional bin map storing the frequency of line
segments in every neighboring dimensions, which is similar
to our method. Eventually, every bin is rendered as a par-
allelogram connecting a pair of intervals at adjacent axes
with its vertexes placed at the respective positions of the
bin borders with its frequency represented by transparency.
Then the high frequency histograms are emphasized whereas
the low frequency ones fade away. Although the local data
trends can be discovered from this method, the global trends
in higher dimensions are missing. This causes discontinuity
across high dimensional space, as highlighted in yellow. Our
method is advantageous by overcoming such discontinuity
by offering a coherent global data trend in multi-dimensional
space. The previous method [NH06] also proposes an outlier
detection method. For any low frequency bin, a 3 by 3 isola-
tion filter is used to check the occupancy values of the 8 bins
that are adjacent to the central bin. If the number of empty
neighboring bins is above a certain threshold (say 2 for the
corners, 4 for the borders and 6 or 7 for the rest), the central
bin is declared an outlier which is shown as the red patterns
in the third row of Figure 4. As we can see, the outliers ob-
tained are limited to two-dimensional subspace which lose
the continuity in higher dimensions. However, our method
is able to present a continuous multi-dimensional outliers by
brushing a low probability range.

6. Dimension Reordering
As our paper title implies, the focus of this paper is on the
visual pattern analysis. Since reordering the parallel coordi-
nates often leads to different visual patterns, therefore our
probability distribution is optimized for these orderings in
order to achieve the best visual effect. In section 3, we pre-
compute a transition probability matrix and store it in an ex-
ternal file. Based on this matrix, computing a new probabil-
ity value for each re-ordered data tuple is very fast, which re-
quires n additions where n is the number of dimensions. Be-
cause our initiative is to extract the major patterns in visual
space, therefore the change of individual element probabil-
ity value in data space is of no interest in this paper. As long
as the probability distribution is optimized, we can always
display data samples with highest probability values to form
the principal visual patterns in screen space to overcome vi-

sual clutter. This is the same as the previous output-oriented
line-based histogram [NH06]. The difference with previous
approach is that we consider the n-dimensional coherent vi-
sual patterns rather than two dimensional discontinuous vi-
sual patterns.

In this example, we consider a real world, large, marine
biology data set [GJL∗09]. Biologists at Swansea univer-
sity have collected a large amount of data relating to animal
movement by attaching sensors to individual subjects. The
data here is re-sampled once a second over five days. In this
example, we select 7 important data attributes with 536,548
records. This data set can be plotted using traditional parallel
coordinates, but suffers from heavy overplotting, as shown
in the top image of Figure 6. Shown in Figure 5 are the dif-
ferent orderings of our marine biology data set. Visualiza-
tions on the left column are rendered using the traditional
line-based histogram and on the right column are the poly-
lines brushed by the high-probability data items using our
method. In our method, each polyline is assigned a different
color along a user-defined axis, in our case the first axis (IR)
is chosen. As we can see, no matter which ordering it is, the
line-based histogram is able to illustrate local data trends in
a two dimensional subspace, whereas our method manages
to capture global data trends in higher dimensions. Then we
are able to observe relationships and dependencies between
any dimensions as rather than in neighboring dimensions in
previous method.

7. Use Cases
In this section, we provide an in-depth analysis of the data
trend discussed in Section 6 on our marine biology data set.
As mentioned in the previous section, there are seven mea-
surements in this marine biology data set, including Tri-axial
accelerometer data in x, y and z, mouth sensor(Hall), pres-
sure, IR(speed) and temperature. As shown in the first row
of right column in Figure 5, two major clusters along the
first axis (IR) are revealed in different colors. If we decom-
pose these two clusters by the first axis and render them
separately, we are able to obtain the data patterns shown in
Figure 6. The second row of Figure 6 shows the data trends
with high IR value and the bottom row shows the trends with
low IR value. The IR value indicates a relative speed of the
animals moving against water, high IR often suggests a low
speed and low IR indicates a high speed [LPL∗08]. When the
relative speed is low, as shown in the second row of Figure 6,
there are two patterns can be observed with one leading to
high temperature and the other to low temperature. Because
the deeper the animal is swimming in the water, the lower
the temperature. Combined with the pressure value (Pabs),
we can infer two actions. One is that the animal is diving
into the water and the other is ascent up to the surface. More-
over, from the mouth sensor (Hall), we can observe two pat-
terns, one is that the animal closes its mouth when it is mov-
ing and the other is it opens mouth when preying. The data
trends shown in the bottom of Figure 6 is a cluster with low
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Figure 6: The top row shows the angular histograms im-
posed on the brushed data trends in our marine biology data
set. The middle and bottom row is the divided patterns by the
first axis (IR) from the brushed polylines. A complete color-
coded view is shown on the top of right column in Figure 5.

IR value, which means that the animal is moving at a high
speed. This pattern mostly leads to low temperature, from
which we can infer that the animal is diving or swimming
quickly under the water. Compared with the line-based his-
togram shown in the first row of left column in Figure 5, our
method preserves salient global features of the data, uncov-
ers different clusters and avoids pattern discontinuity across
n-dimensions. By exploring the angular histograms, we are
able to observe the data density in the brushed data patterns,
especially in a large data set.

8. Conclusion and Future Work
In this paper, we have developed a Markov Chain model
for visualizing multidimensional patterns with parallel co-
ordinates. A histogram or scatterplot view presents the joint
probability distributions for all data samples. The user is able
to brush the data trend based on this probability value. Us-
ing our method, the global data trends in higher dimensional
space can be discovered and displayed.
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