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Abstract

Given the very rapid increase in today’s computing power, scientists

and researchers are able to collect ever larger repositories of data. A

common way to explore and analyze this data is through visualization be-

cause of visualization’s ability to provide rapid insight into large amounts

of data. Scientific visualization, an important field of computer graphics,

enables scientists to depict data from a real world phenomenon in ways

that facilitate understanding of that phenomenon. Visualization often

starts with data and a description of a problem. We describe common

ways to represent scientific data, including a discussion of different grid

types. These representations are determined by how the data is collected

from experiments or produced by simulation and at the same time, these

representations determine the kinds of visualization algorithms that can

be applied on data. Considering that data represent continous phenom-

ena, a process often needed in scientific visualization is the reconstruction

of data at different positions in space than the sampling positions. The

theory behind sampling and reconstruction of data, is presented. Wavelet

transforms, a common way to deal with large data, are also introduced.

Our goal is to provide a student or researcher new to the field of scientific

visualization with a convenient, data-centric introduction into the field,

and also provide an understanding of fundamental concepts required for

further study.

1 Introduction

Most would agree that we live in an age characterized by an explosion in data
and information. The very rapid increase in computing power often described
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using Moore’s law has enabled scientists, researchers and practitioners to collect,
store and analyze unprecedented amounts of data. Tools that enable insights
into these large quantities of data are of ever increasing importance.

Visualization is an important field of study that enables users to explore,
analyze and present large amounts of data rapidly. Visualization as a branch of
computer science is expanding and evolving quickly in response to the current
data explosion. This is evident in the rapid increases in both commercial and
open source visualization tools [14] as well as literature [4, 11]. Even Google
has introduced a visualization API [3]. What we present is an introduction to
the field of scientific visualization from a data-centric point of view. This paper
provides the following contributions and benefits:

• We provide a concise introduction and a logical starting point for those
interested or new to scientific visualization.

• We provide a description of scientific data, its characteristics and ways to
model the data e.g. various grid representations

• Various filtering and interpolation methods that operate on and enhance
the data are described.

• A brief introduction to both the theory and practice of data sampling and
reconstruction is provided.

• Wavelets and wavelets transforms, an important mathematical tool for
building multiresolution representations of data are introduced.

The resulting manuscript provides the reader with a concise and valuable in-
troduction to scientific visualization starting with a data centric point of view.
We aim to provide an educational tool for those new to the topic. The rest of
this manuscript is organized as follows: the next section presents a brief descrip-
tion of scientific data characteristics and common processing. Those motivate
the next sections: we present common types of scientific datasets and some of
their storage methods, we briefly describe the theory behind the sampling and
reconstruction of data points from a continuous function and we present the
main concepts of wavelets and wavelets transforms.

2 Characteristics and common processing of sci-
entific data

A scientific dataset consists of spatial data values either collected from the real
world or produced by a computer simulation. Several different attributes (for
instance the concentration of several chemical elements) can be acquired or
produced for each point in space and these measurements can be repeated over
a period of time. Scientific datasets have different characteristics based on the
spatial arrangement of their data points: they differ in how they are stored and
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in what algorithms can be used to process them. We present common types of
scientific datasets and some of their storage methods.

Scientists explore scientific datasets in order to discover features of interest
or to construct and study models of real world phenomena. Query operations
are used to restrict the explored region of data, and visualization algorithms
are used to display the data. A value for an attribute at a point in space can
be thought of as being a sample from a function with values in every point
in R

3 where R is the set of real numbers. Often we need attribute values at
other points in space than the sample data points contained in the dataset. The
theory behind the sampling and reconstruction of data points from a function
is summarized.

Often scientific datasets are very large, much larger than the main memory
of a computer. Because of large disk-drive latency, visualization algorithms de-
signed to process data from main memory cannot be directly applied to data
stored on disk. One way to deal with large scientific datasets is to use a lower
resolution version of the dataset for query, visualization and exploration. This
can be done by using multiresolution (MR) and adaptive resolution (AR) rep-
resentations of the dataset.

A multiresolution (MR) representation of the dataset consists of a hierarchy
of versions of the original dataset, each having a different resolution. Typically
a user starts by exploring the coarsest resolution version, which is much smaller
than the original dataset. Higher resolution versions of the dataset are used
either when the user zooms in locally to view a region of interest or when the
user stops the exploration thus providing more time to render a higher resolution
version of the dataset.

An adaptive resolution (AR) representation partitions a dataset into regions
of different resolutions. Ideally, the resolution for each region is determined such
that the error for that region is smaller than a user specified error tolerance for
the dataset. A region of similar values will have a low resolution while a region
with larger variations will have a high resolution such that the error for both
regions will be smaller than the error tolerance specified for the dataset. The
error for a region at the original resolution is zero. The error for a region at a
lower resolution than the original is calculated by comparing the region at the
original resolution with the region at the lower resolution.

Wavelets are a popular mathematical tool used for building a multiresolution
representation of scientific data, image compression and in many other areas of
computer graphics. We present the main concepts of wavelets and wavelets
transforms.

3 Scientific Data Representation and Storage

In this section we present a model for scientific data. Based on the relation-
ship between neighboring data points, scientific datasets can be represented as
structured or unstructured grids. These are also described in this section.
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3.1 A Data Model

Rhodes et al. [5] present a formal data model for scientific data which we briefly
summarize in the next few paragraphs.

Scientific datasets represent a phenomenon defined over a continuous domain
D. These datasets store values for a measured or simulated quantity that de-
scribes the phenomenon. Measurements are done and samples are recorded only
for a finite number of points from the continuous domain D. If ∆ ⊂ D is the set
of sample points, the set of values stored in the dataset is given by a function
f∆ : ∆ → Ω where Ω is a subset of V , and V is the set of all possible values that
the measured quantity can have. The error in each sample point is defined as
a function E∆ : ∆ → E where E is the set of possible error values. Errors can
appear because of the measurement devices or because of approximations and
errors in the simulation. Formally, the dataset is represented [5] as a tuple:

R = 〈∆,Ω, f∆, E∆〉 (1)

where ∆ the set of all sample points, Ω the set of possible values for the measured
quantity, f∆ the function that gives the values measured at any sample point
and E∆ the function that gives the error at any sample point. The positions of
all sample points is called the geometry of the dataset.

Data points in scientific datasets are normally part of a grid which is a
tiling (tessellation) of the n-dimensional space, and the data model presented
so far does not make provisions for that. Finding the neighbors of a data point
and using tiles (cells) for processing the dataset is commonly used in scientific
visualization so Rhodes et al. augment their model to contain a grid. The new
model L which adds a grid component τ called the topology of the dataset to
the previous model is presented in Equation (2).

L = 〈R, τ〉 (2)

The scientific dataset model presented so far, which contains both the position
in space of every sample point (the geometry of the dataset) and the grid in-
formation (the topology of the dataset) does not provide a description of the
phenomenon measured over the whole continuous domain D over which the phe-
nomenon occurs. To extend the measurements in the sample points to the whole
domain D the authors use two interpolation functions. They use fD to calculate
the measured value in other points besides the sample points and they use ED

to calculate the error in other points besides the sample points. To calculate
the value at any point in the domain D the interpolation function uses values
in the sample points which are neighbors of that point. Both geometric and
topological information may be used to do that. The new model is presented in
Equation (3).

M = 〈L, fD, ED〉 (3)

When describing a grid of data points, there are two characteristics that are im-
portant: the structure of the grid which specifies the neighborhood information
(topology) and the mapping between the structure and the position in space
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of each point (geometry). There are two main types of grids: structured grid
and unstructured (irregular) grid. In the interest of clarity, we present all the
concepts in this section for two-dimensional data but they apply equally well to
three-dimensional data.

3.2 Structured Grids

A structured grid of data points can be represented as a two-dimensional array,
each position in the array storing all attribute values for a point. The coordi-
nates in space of a data point can be calculated from its position in the array,
together with some additional information that depends on the grid type. The
neighbors of a data point can be retrieved implicitly from the position of the
point in the array. These two characteristics lead to significant space saving
when storing a structured grid dataset in memory or in a file.

Because it maps directly to a two-dimensional array, structured grid data
is normally stored in a file using linear storage, by traversing its indexes (axes)
in predefined order using nested loops [6]. To optimize disk access, a two-
dimensional array is often stored in a file using chunked storage when data is
split in tiles (chunks, cubes or bricks) of equal size, and each individual tile
is stored contiguously in the file using linear storage. Tiles are stored in the
file in linear fashion by traversing the axes of the volume in a certain order
using nested loops. The order of traversing the axes and the size of the tiles is
determined by the expected access pattern of the application.

With the same neighborhood information (structure) there can be different
grid types based on the position in space of the data points. To specify the
position in space of every point in the dataset we need to specify the position
in space of the point at the origin of the array besides other information that
depends on the type of structured grid that is used for the dataset. There
are four different types of structured grids: regular, cartesian, rectilinear and
curvilinear.

On a regular grid all data points are located on a tiling (tessellation) of the
space with a rectangular tile. To specify the position in space of all points in
the dataset, the additional information we need is the size (dx, dy) of the tile.
Figure 1-a shows a two-dimensional regular grid.

A cartesian grid is a special case of a regular grid where all sides of the tile
have the same length (i.e. dx = dy). To specify the position in space of all
points in the dataset, the additional information we need is the length of a side
of the square tile. Figure 1-b shows a two-dimensional cartesian grid.

Rectilinear grids have all data points on a tiling of the space with rectangu-
lar tiles of different size. These rectangles are specified by intersections of lines
perpendicular on X and Y axes. All lines perpendicular to the X-axis are spec-
ified with an array of tile side lengths along X-axis and the same is true for all
lines perpendicular to the Y-axis. So, to specify the position in space of all the
points of the dataset, the additional information needed is two arrays of lengths,
one for each axis X and Y. Figure 1-c shows a two-dimensional rectilinear grid.
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Table 1: a. Regular grid (dx 6= dy), b. cartesian grid (dx = dy), c. rectilinear
grid (di

x 6= di+1
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y 6= di+1
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dx
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dΘ
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Figure 1: A curvilinear grid and a cartesian grid with the same topological
structure (dt → dx, dΘ → dy).

To understand a curvilinear grid we can think of a rectilinear grid with
flexible edges, where the vertices of the grid are not in the original positions
but are moved in space. It is possible for a curvilinear grid to have shared
boundaries, for instance a 2D rectilinear grid that is wrapped around a cylinder.
Sometimes, curvilinear grids specify the position in space of its points using a
function of the point position in the structure array. It is also common for the
position information to be stored explicitly in each point. Figure 1 shows a
curvilinear grid (on the left) and a cartesian grid that has the same topological
structure as the curvilinear grid (on the right).

3.3 Unstructured or Irregular Grids

An unstructured (irregular) grid data starts with data points at arbitrary po-
sitions in the two-dimensional space. To visualize data it is essential to have
neighborhood (structure) information for the data points which is usually cre-
ated with a procedure called triangulation. A triangulation of a set of points
in the plane is obtained by adding the maximum set of edges that connect two
points such that no new edge can be added without intersecting existing edges.
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Figure 2: An unstructured (irregular) grid dataset

The data points together with the imposed structure determines a tiling of
the two-dimensional space where each tile is a triangle. Both the position of
points in space and neighborhood information needs to be stored together with
data to enable efficient processing of irregular data.

Irregular volume data is usually stored in a format called index cell set
(ICS) [7] as a list of vertices and a list of tetrahedral cells. For each vertex we
store the x, y, z coordinates in space of that vertex and all data attributes. Each
cell contains four indexes (references) to vertices in the vertex list.

4 Sampling and Reconstruction of Data

Often, visualization algorithms are used to process data obtained by sampling
a function defined in all points in space. Ideally, the sampled function value,
should allow us to reconstruct the original function without any loss, but often
this is not possible. We would like to know how many samples we need from
the original function such that reconstruction without loss is possible and how
to reconstruct the signal such that we minimize the loss. The answers to these
questions are provided by the field of signal processing [2]. In the rest of this
section we present properties of functions of one variable (which can represent
time or space) but the results we present can be extended to three or four
dimensional functions that are used in scientific visualization.

4.1 Discrete Fourier Transform (DFT) and the Inverse
DFT

An important tool in studying sampling and reconstruction of functions is
Fourier analysis [1, 8, 12] which allows a function to be expressed as a (pos-
sibly infinite) sum of sinusoids of different frequency, amplitude and phase. In
practice, the frequency, amplitude and phase for those sinusoids is calculated
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using the Discrete Fourier Transform (DFT). Suppose we sample a function
x(t) at t0, t1, ..., tN−1 to get N sample values x0, x1, ..., xN−1. From the sample
values we can define N sinusoids using the DFT formula:

Xk =
N−1∑

n=0

xne−iωktn (4)

In Equation (4) k = 0, . . . , N − 1, xn is the sample value for tn = nT the nth

sampling instant, T is the sampling interval, Xk is the amplitude and phase for
ωk = 2πk

N fs the kth frequency sample and fs = 1/T is the sampling frequency.
If x is a function in the temporal domain, its Fourier transform X is said to
be the representation of the function x in the frequency domain. The Fourier
transform of a signal is a complex function of the form Xk = Rk + iIk that
encodes both the amplitude |Xk| =

√

R2
k + I2

k and the phase φk = tan−1 Ik

Rk

of
the sinusoid with frequency ωk.

The DFT formula is obtained by viewing the N signal samples as an n-
dimensional vector in the vector space C

N , where C is the set of complex num-
bers. In this space the set of vectors s1, s2, . . . , sN is an orthogonal base where
sk(n) = eiωktn is the complex sinusoid with frequency ωk. The amplitude and
phase Xk in the DFT formula is obtained by projecting vector x onto the kth

complex sinusoid sk. All original signal samples xn can be obtained by adding
together all projections onto vectors sk that form a base of C

n. This transfor-
mation is called the inverse DFT:

xn =
1

N

N−1∑

k=0

Xkeiωktn (5)

The complex sinusoid sk can be understood by using the Euler identity
eiωktn = cos ωktn + i sin ωktn. Complex sinusoid sk contains two sinusoids, one
for the real and one for the imaginary axes of the complex plane. Note that
both sin and cos can be thought of as sinusoids because cos θ = sin(θ + π/2).

4.2 Graphical Representation of Functions in the Frequency
Domain

Radian frequencies [8] ωk = 2πk
N fs with k = 0, 1, . . . , N − 1 create N equally

spaced frequency samples in the interval [0, 2πfs) with values:

0, 2π
1

N
fs, 2π

2

N
fs, . . . , 2π

N/2 − 1

N
fs, 2π

N/2

N
fs, . . . , 2π

N − 1

N
fs (6)

You can add or subtract a multiple of 2πfs from these radian frequencies
without changing their meaning because ei(ωk+2πfs)tn = eiωktne2πfstn . But
e2πfstn = e2π 1

T
Tn = e2πn = 1. An equivalent list of frequency samples obtained

by subtracting 2πfs from all frequencies greater or equal to 2π N/2
N fs is:

0, 2π
1

N
fs, . . . , 2π

N/2 − 1

N
fs, 2π

−N/2

N
fs, . . . , 2π

−1

N
fs

︸ ︷︷ ︸

negative frequencies

(7)
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Figure 3: Frequency spectrum of a sin function: (a) x(t) = 1+sin 2π25t and (b)
frequency spectrum of x, where X = DFT(x) and N is the number of samples.

The list of frequencies in Equation (7) can be reordered as:

−πfs,−π(1 −
2

N
)fs, . . . ,−π

2

N
fs

︸ ︷︷ ︸

negative frequencies

, 0, π
2

N
, . . . , π(1 −

2

N
)fs

The representation of a signal in frequency domain is usually shown with fre-
quencies in the interval [−πfs, πfs), where a negative frequency can be trans-
lated to a frequency in the interval [πfs, 2πfs) as shown above. When the
Fourier transform of a function x is displayed graphically, the phase φk is usu-
ally ignored and the amplitude |Xk| is showed as a function of frequency ωk.
Figure 3 shows the graphs for x(t) = 1 + sin 2π25t and for the DFT(x). Note
that the DFT graph shows a zero frequency (DC - direct current) component
which is equal to 1 and two complex sinusoids with frequency equal to -25 and
25 Hz and amplitude 0.5. The two complex sinusoids combine to yield a real
sinusoid with frequency of 25 Hz and amplitude of 1. Note that for real signals
x we have that |X(ωk)| = |X(−ωk)| for all frequencies ωk so the graphical rep-
resentation of Xk is symmetric about axis Y. The amplitude of the real sinusoid
is twice the amplitude of |X(ωk)|. This can be explained by using the Euler
identity to express a real sinusoid as a sum of two complex sinusoids with the
same absolute frequency and half the its amplitude:

cos θ = (eiθ + e−iθ)/2 and sin θ = (eiθ − e−iθ)/(2i)

4.3 The Nyquist Rate

It has been shown [8] that a signal can be reconstructed completely from its
samples if the signal was sampled at a frequency that is greater than 2∗fh, where
fh is the highest frequency component in the signal. That minimum sampling
frequency is called the Nyquist rate. Unfortunately, many signals in the real
world have infinite frequency spectrum which means that those signals cannot
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Figure 4: A square function and its frequency spectrum. (a) x(t) = 1 +
square (2π25t) and (b) frequency spectrum of x, where X = DFT(x) and N is
the number of samples.

be reconstructed from a set of samples, regardless of the sampling frequency.
For instance, a square wave has infinite frequency spectrum because its value
changes discontinuously as showed in Figure 4.

4.4 Low Pass Filters and the Convolution Operation

An operation that is often useful, called low pass filter, removes all components
with frequencies larger than a certain frequency ω from a signal. This operation
makes it possible to sample and reconstruct the remaining signal without loss
because its frequency spectrum is finite. A low pass filter in the frequency
domain is realized by multiplying the signal in frequency domain with a pulse
function

p(k) =

{
1 if |ωk| < ω
0 otherwise

,where k = 0..N − 1

where N is the number of samples.
An image can be thought of as a function f of two variables where the

color of the pixel at position (x, y) is given by f(x, y). A low pass filter in the
frequency domain on function f causes blurring in the associated image as this
filter removes sharp transitions in a signal.

Figure 5 shows the signal x(t) = 1 + square (2π25t) limited at 500 Hz in
the frequency domain. To be able to reconstruct the remaining signal without
loss we have to sample the signal at a sampling rate above the Nyquist rate,
which is 1000 Hz. If the sampling rate for a signal is below the Nyquist rate
higher frequency components in the signal can masquerade as lower frequency
components, a phenomenon called aliasing. Figure 6 shows a sinusoid sampled
at below twice its frequency. The samples obtained look like a sinusoid with
lower frequency than the original.

To apply a low pass filter to a signal x we need to multiply X, the repre-
sentation of the signal in the frequency domain, with a pulse function. Signal
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Figure 5: A square function (x(t) = 1 + square (2π25t)) limited in frequency,
(to 500 Hz) represented in time and frequency domains. Plot (a) show the time
domain and plot (b) shows the frequency domain.
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Figure 6: Aliasing: a signal sampled at frequency under Nyquist rate, can look
like a lower frequency signal. In the figure x(t) = 1+sin 2π25t (interrupted line)
is sampled at 20 Hz while its Nyquist rate is 50 Hz. Samples look as if they are
part of a sinusoid with frequency 5 Hz (1 + sin 2π5t drawn with a continuous
line)
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Figure 7: A low pass filter in the frequency domain, and its representation in the
time domain, the sinc function. (a) x(t) = sinc(t) and (b) the pulse function,
sinc representation in the frequency domain. To obtain a perfect pulse function
in the frequency domain, x has to be transformed using the Discrete Fourier
Transform over (−∞,∞).

processing theory shows that multiplication in the frequency domain of X with
a function Y corresponds to x ∗ y in the time domain, where ∗ is an operation
called convolution and x and y are the Inverse Fourier Transform of signals X
and Y respectively. For discrete signals, the convolution between signal x of
length n and signal y of length m is a signal w of length m + n − 1. Alge-
braically, the convolution is the same operation as multiplying the polynomials
whose coefficients are elements of x and y.

w(k) =
∑

j

x(j)y(k − j) where k = 0, . . . ,m + n − 2

and the sum is over all the values which lead to legal subscripts for x and y.

4.5 Reconstruction Filters

It has been shown [13] that the Inverse Fourier Transform of a pulse function
is a function called sinc where sinc(t) = sin πt

πt . That means that to apply a
low pass filter to a function in the frequency domain we need to convolve the
function with a sinc function in the temporal domain. Figure 7 shows a sinc
function together with its frequency spectrum.

Unfortunately, sinc has infinite domain, so in practice, the sinc function is
approximated using a pulse, a triangle or a Gaussian function. Figure 8 shows
a pulse, triangle and Gaussian functions in the temporal domain and in the
frequency domain.

Suppose that a signal has its frequency spectrum limited so that a sam-
ple from the signal can be theoretically used to reconstruct the original signal
without loss. This reconstruction can be done if the signal is sampled at a fre-
quency twice as large as its largest frequency component. It can be shown that
the frequency spectrum of the sample is obtained by duplicating the frequency
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Figure 8: Approximations of the low pass filter (pulse function) in the frequency
domain and their representations in the time domain: rectangle, triangle and
Gaussian functions. The time domain is represented in (a), (c) and (e) and the
frequency domain is represented in (b), (d) and (f).
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spectrum of the original signal at equally spaced frequencies along the entire
frequency spectrum. To reconstruct the original signal, the sample has to be
multiplied with a low pass filter in the frequency domain or convolved with a
sinc function in the temporal domain. We note that sinc has infinite domain so,
in practice, the signal will be convolved with one of its approximations which
has finite domain. That means that, in practice, the original signal cannot
be accurately reconstructed even if sampling was done at above Nyquist rate.
Differences between the original signal (frequency spectrum limited) and the
reconstructed signal are called artifacts.

5 Wavelets Transforms

Wavelets [9, 10] are a mathematical tool for decomposing data into approxi-
mation and detail constituents. This decomposition can be applied recursively
which yields a hierarchy of approximations to the original data from the origi-
nal high resolution to a desired low resolution. Each of these approximations,
together with detail data can be used to completely recover the original data.
There are different kinds of wavelets which determine different ways of decom-
posing a dataset and can be applied to different kind of data such as an image,
a curve, a surface or a volume. Wavelets are used in many areas of computer
graphics such as image compression, level-of-detail control for editing, rendering
surfaces and global illumination [10].

The computation that transforms data into approximation and detail com-
ponents is called an analysis filter or a decomposition filter and the computation
that recovers the original data from approximation and detail data is called a
synthesis filter or a reconstruction filter.

As an example we apply an analysis filter to a unidimensional dataset to
decompose it into an approximation part and a detail part. We are going to use
the Haar analysis filter, a simple and widely used filter. Suppose that we start
with a dataset with four values [5, 3, 7, 9]. To obtain the approximation part we
average every two values in the list to get [ 5+3

2 , 7+9
2 ] which is [4, 8]. To obtain

the detail part we subtract every two values in the list and then we divide the
result by two to get [5−3

2 , 7−9
2 ] which is [1,−1]. From a dataset with four values

we obtain an approximation dataset that has two values and a detail dataset
that has two values. We can apply our filter again on the approximation dataset
with two values to get an approximation value and a detail value. The entire
process is summarized in Table 2:

Resolution Approximation Detail
4 [5, 3, 7, 9]
2 [4, 8] [1,−1]
1 [6] [−2]

Table 2: Haar analysis filter

The one approximation value for the dataset followed by detail values in or-
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der of increasing resolution is called the Haar wavelet transform of the dataset.
For our example the wavelet transform is [6,−2, 1,−1]. Note that using the
wavelet transform, we can reconstruct any level of resolution including the orig-
inal data.

To decompose a 2D dataset (for example an image), the Haar decomposition
filter is generalized in two dimensions. The 1D filter is run on all rows of the
dataset and then the 1D filter is run on all columns of the horizontal decompo-
sition resulted in the previous step. This yields the average data stored in the
upper left quadrant of the 2D dataset and detail data stored in the rest of the
quadrants. The process is continued recursively, on the average data. (the next
data that is split is the upper left quadrant). The Haar decomposition filter is
generalized for 3D data in a similar fashion.

An alternate view of a sequence of values is to view it as a piece-wise constant
function defined on the interval [0, 1) with values in the set of real numbers. For
example, a sequence with two values can be seen as a function which has two
constant values over intervals [0, 1/2) and [1/2, 1). The set of all functions with
two values is denoted with V 1 (21 is the number of values that a function in the
set can take). A sequence with four values can be seen as a function which has
four constant values over intervals [0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1) and
the set of all functions with four values is denoted with V 2 (22 is the number
of values that a function in the set can take). A sequence with 2j values can
be seen as a function which has constant values over equal intervals of size 1/2j

and the set of all functions with 2j values is denoted with V j .
Each set V j can be thought of as a vector space, where each function with

2j values is a vector in this space. A basis for this vector space is the following
set of scaled and translated “box” functions:

φj
i = φ(2jx − i). i = 0, . . . , 2j − 1.

where the box function φ is defined by:

φ(x) =

{
1 for 0 ≤ x < 1
0 otherwise

For example, the basis for V 2 is showed in Figure 9. The function used in
our previous example [5, 3, 7, 9], can be expressed in terms of V 2 basis as: f =
5φ2

0 + 3φ2
1 + 7φ2

2 + 9φ2
3.

The set V j of all functions with 2j values is included in the set V j+1 of
functions with 2j+1 for all values j. So we have:

V 0 ⊂ V 1 ⊂ . . . ⊂ V j ⊂ V j+1 for all j ≥ 0

We define the inner product between two functions f and g in the vectors space

V j as the integral of the product of the two functions: 〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

This can be used to define vectors in V j that are orthogonal to each other, as the
vectors for which the inner product is zero. We can now define a set, denoted
with W j , which is the orthogonal complement of V j in V j+1. This means that
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Figure 9: Any sequence of four values can be seen as a function that has four
constant values over intervals [0, 1/4), [1/4, 1/2), [1/2, 3/4) and [3/4, 1). Each
of these functions, in turn, can be seen as a vector in a vector space denoted
with V 2. This figure shows a basis for V 2 formed by scaled and translated box
functions
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Figure 10: Haar wavelets for W 2 or basis for vector space W 2. W 2 is the
complement of V 2 (vector space of functions with 4 values) in V 3 (vector space
of functions with 8 values) so V 2 ∪ W 2 = V 3

V j ∪ W j = V j+1 and every vector in W j in orthogonal to every vector in V j .
A basis for W j , known as the Haar wavelets are given by:

ψj
i = ψ(2jx − i), i = 0, . . . , 2j − 1

where

ψ(x) =







1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1

0 otherwise

For example the Haar wavelets for W 2 are showed in Figure 10. The decomposi-
tion presented in Table 2 can be thought as a change of basis in vector space V 2.
We start with the box functions basis: f = 5φ2

0+3φ2
1+7φ2

2+9φ2
3. We express the

vector in V 2 in terms of the bases for V 1 and W 1: f = 4φ1
0+8φ1

1+1ψ1
0 +(−1)ψ1

1 .
Then, we express the vector in V 1 ([4, 8]) in terms of the bases for V 0 and W 0:
f = 6φ0

0 + (−2)ψ0
0 + 1ψ1

0 + (−1)ψ1
1 . This is the Haar wavelet transform of the

original function.
The Haar wavelet transform can be extended in two and three dimensions.

For example in two dimensions we can apply the Haar filter on rows and then
apply the Haar filter on columns to get an approximation that is one fourth of
the size of the original data plus detail coefficients that are three fourths of the

16



size of the original data. The process continues until we get a value which is an
approximation of the entire dataset and detail values.

6 Conclusions

We have provided a concise introduction into the field of scientific visualization
from a data-centric point of view. We have presented scientific data charac-
teristics and common processing and those motivated the next topics of our
manuscript. We have described a formal data model and common types of
data representation and storage for scientific data. We have briefly presented
the theory behind sampling and reconstruction of data. Wavelets and wavelets
transforms, a common way to build a multiresolution hierarchy for dealing with
large data was introduced. We hope to have provided a student or researcher
new to the field of scientific visualization with an understanding of fundamental
concepts used in the field, and a good starting point for further study.
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