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Abstract

A novel cell-centred control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume

formulation is presented for discrete fracture-matrix simulations on unstructured grids in three-dimensions

(3D). The grid is aligned with fractures and barriers which are then modelled as lower-dimensional surface

interfaces located between the matrix cells in the physical domain. The three-dimensional pressure equation

is solved in the matrix domain coupled with a two-dimensional (2D) surface pressure equation solved over

fracture networks via a novel surface CVD-MPFA formulation. The CVD-MPFA formulation naturally

handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed

in terms of matrix and fracture pressures and define the transfer function, which is added to the lower-

dimensional flow equation and couples the three-dimensional and surface systems. An additional transmission

condition is used between matrix cells adjacent to low permeable fractures to couple the velocity and pressure

jump across the fractures. Convergence and accuracy of the lower-dimensional fracture model is assessed

for highly anisotropic fractures having a range of apertures and permeability tensors. A transport equation

for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional

approximation for intersecting fractures avoids the more restrictive CFL condition corresponding to the

equi-dimensional approximation with explicit time discretisation. Lower-dimensional fracture model results

are compared with equi-dimensional model results. Fractures and barriers are efficiently modelled by lower-

dimensional interfaces which yield comparable results to those of the equi-dimensional model. Pressure

continuity is built into the model across highly conductive fractures, leading to reduced local degrees of

freedom in the CVD-MPFA approximation. The formulation is applied to geologically complex fracture

networks in three-dimensions. The effects of the fracture permeability, aperture and grid resolution are also

assessed with respect to convergence and computational cost.
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1. Introduction

Understanding of fluid flow through a fractured porous medium has immense importance in energy pro-

duction and environmental problems. The oil industry has a special interest because an estimated 60% of

the world’s remaining oil reserves reside in fractured formations [1]. In addition to oil and gas production

fracture modelling is of interest in determining carbon sequestration strategies, radioactive waste manage-5

ment in the subsurface [2], and flow of non-aqueous-phase liquids in aquifers. Fractures are a system of

rock discontinuities e.g. faults, joints and fissures, that occur in porous media with apertures having widths

ranging over scales from microns to centimetres [3]. Open fractures act as preferential fluid flow paths above

a certain aperture and size whereas cemented fractures can act as flow barriers. Flow, in any rock, is affected

by a few large fractures, by a dense network of small fractures, or by a combination of fractures of varying10

length scales ranging from microns to hundreds of kilometres [4, 5]. Usually the matrix provides the storage

for the fluid while fractures provide the main fluid flow paths. For example in two-phase flow, fractures may

form the predominant flow paths for a particular phase and the less permeable matrix may become the flow

region for the other phase [6].

Because of the importance of fractures in the reservoirs, increasing effort is being devoted to development of15

efficient and accurate numerical methods to simulate the fluid flow through fractured porous media. Dual-

porosity/permeability models, developed in [7, 8, 9], have traditionally been used for the last few decades.

Flow transfer terms are defined between the fracture and matrix systems. These transfer terms depend

on the shape factor, average pressure difference between two domains and further physical parameters in

the case of multi-phase flow [10]. The shape factor is not straightforward to determine and is not avail-20

able in the presence of capillarity and gravity for two-phase flow [2]. Also, barriers cannot be modelled

by dual-porosity/permeability models. Moreover, these models are based on the assumption that fracture

systems are dense so inaccurate results are given for large scale fractures. As a result, the discrete-fracture

model(DFM) was developed; see e.g. [11, 12, 13, 14, 15, 16], which is attractive for large scale and sparse

fracture systems. In this model actual geometry and location of the fracture are honoured in the domain.25

Unlike the dual-porosity model; the effect of individual fractures on fluid flow can be determined and fluid

transfer between the fracture and matrix is more straightforward and consistent. Generally, fractures are

modelled by (n-1) dimensional elements in an n-dimensional domain e.g. in two-dimensions (2D), fractures

are represented by lines at the edges of the polygonal matrix elements while in three-dimensions (3D) frac-

ture systems are modelled as polygonal surfaces between the polyhedral matrix elements. Equi-dimensional30

representation of fractures [17], are not popular because of complexity and computational cost contributed

by thin cells. In the equi-dimensional model, the control-volume at the intersection of the fractures is of the

dimensions of fracture aperture which reduces the time-step size in the numerical model [2]. Also, in our

experience with this method we have observed that a small control-volume increases the condition number

of the global linear system which increases the computational cost for the solution of the system, consistent35

with [18].
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In the discrete-fracture method, rock-matrix and fracture elements coincide at the interface, so an unstruc-

tured grid is used to honour the explicit fracture geometry (see [19, 20]). Also, the matrix cells near the

fracture are small enough to conform to the complex fracture-network geometry. Small cells lead to a large

numerical system to be solved. Because of grid conformity, application of this model to dynamic fracture40

networks requires a dynamic grid generator with a conforming mesh where the grid is updated because of

generation of new fractures [21, p. 72]. The discrete-fracture model would be increasingly costly for small

scale fractures and any cases with large numbers of fractures, which would lead to locally dense unstruc-

tured grids in-turn leading to high computational cost. Hierarchical fracture models have been presented

in [22, 23] for two-dimensional flow simulation in a fractured porous medium. In this approach, small scale45

fractures are homogenized into the matrix medium and their effects are added to the matrix permeability.

Large scale fractures are explicitly modelled as major fluid conduits embedded into a non-conforming struc-

tured mesh. Other techniques based on discontinuity finite element modelling and extended-finite element

method (XFEM) for embedded fractures into non-conforming mesh are presented in [24, 25, 26]. Recently,

a continuum voxel approach has been presented in [27] where hydraulic properties of a fracture network are50

mapped onto a stair-like regular mesh to avoid the intense meshing issue for discrete-fractures. A technique

of multi-scale philosophy is presented in [28] to reduce the number of degrees of freedom for the fracture-

only simulations. Various numerical methods have been used with DFM for single and multiphase flow in

fractured porous media. Mass conservative methods include control-volume finite-element (CVFE) [6, 29],

cell-centred finite-volume (CCFV) [30, 18], mixed finite-element (MFE) [16, 2, 31] and recently developed55

vertex-approximate-gradient (VAG) scheme [32] and mimetic finite-difference method [33]. CVFE is not

control volume distributed and is not flux-continuous for heterogeneous porous medium. MFE is locally

flux-continuous and consistent but is computationally expensive because of higher degrees of freedom per

cell as compared to CCFV and CVFE.

Herein, we will focus on a locally conservative cell-centred finite-volume (CCFV) formulation coupled with60

discrete-fracture networks, in particular we use the control-volume distributed multi-point flux approxima-

tion (CVD-MPFA) [34, 35]. We choose CVD-MPFA because the method is flux-continuous and consistent for

unstructured grids and heterogeneous porous media and uses a single degree of freedom per control-volume

(grid cell in this case). Note that commercial simulators also use a single degree of freedom per grid cell.

We use a conforming unstructured mesh to capture the heterogeneity of a porous medium with fractures.65

Recently, Sandve et al. [18] used the CVD-MPFA O-method (TPS with default quadrature q = 1), for two-

dimensional discrete-fracture and matrix simulation based on a hybrid-grid approach [30]. In the hybrid-grid

approach, fractures are (n-1)D in the physical mesh and are expanded to nD in the computational domain.

The nD pressure equation is solved by the usual CVD-MPFA formulation in both matrix and fractures in the

computational domain. The main difference between the equi-dimensional model and hybrid-grid model is70

the treatment of the intermediate cell between the intersecting fractures. In a hybrid-grid, the intermediate

cell is assumed to be of small size so that pressure variation is zero in that cell to avoid the complexity that
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would be incurred by the small size of intermediate cell in the equi-dimensional model.

In this work, we present a 3D CVD-MPFA formulation applied to a 3D matrix coupled with a 2D fracture

model. The matrix is defined over a 3D unstructured mesh, and fractures are defined by 2D surface meshes.75

A novel surface CVD-MPFA method is introduced to approximate the 2D surface pressure equation de-

scribing flow in the fractures. In this formulation, the 3D pressure equation is solved in the matrix domain

with coupling for surface fracture networks where the 2D surface pressure equation is solved. This work

represents a 3D extension of the 2D CVD-MPFA formulation coupled with a 1D fracture model presented

in [36, 37]. In this paper we refer to the 3D matrix coupled with a 2D fracture model as a lower-dimensional80

fracture model (2D surface fracture model in 3D context) because fractures are strictly lower-dimensional.

The coupled CVD-MPFA formulation can easily be incorporated into current CVD-MPFA based simulators.

Moreover, we compare the pressure and tracer transport fields computed by the lower-dimensional fracture

model with the results of an explicit equi-dimensional model on unstructured meshes. The lower-dimensional

fracture model gives comparable results to those given by the equi-dimensional model for domains involv-85

ing fractures and barriers. Highly conductive fractures can be modelled by the lower-dimensional model,

with continuous pressure approximation across fractures, without adding extra degrees of freedom locally

for the cluster of cells as required by the hybrid-grid method. An additional transmission condition is used

between matrix cells adjacent to low permeable fractures to couple the velocity and pressure jump across

the fractures.90

The outline of the paper is as follows; we present the flow equations in section 2. We present our CVD-

MPFA formulation in section 3 for the 3D matrix coupled with 2D surface fractures. The transport model

for the lower-dimensional fractures is discussed in section 4. Numerical tests are presented in section 5 to

compare the lower-dimensional and equi-dimensional fracture models. We draw our conclusions based on

numerical tests in the last section 6.95

2. Flow equations

We focus on the discretisation of an elliptic partial differential equation for pressure by a CVD-MPFA

method for DFM. The pressure equation arises from Darcy’s law and mass conservation for single phase flow

(a similar method is also applicable to multiphase flow). The resulting elliptic pressure equation

−∇ · k
μ
∇φ = qc (1)

is solved on a domain Ω, where φ is the pressure and qc is any known source term, k is the permeability100

tensor and μ is the viscosity of the fluid. As usual in single phase flow we let K = k
μ denote the (abbreviated)

possibly heterogeneous spatially varying, symmetric permeability tensor of second rank with possibly non-

zero off-diagonal coefficients written, in general, as; K =

(
K11 K12 K13

K12 K22 K23

K13 K23 K33

)
. The Darcy velocity is given by

v = −K∇φ. Eq. (1) is solved here subject to Dirichlet and/or Neumann boundary conditions which are
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φ = h(x) and (K∇φ) · n = g(x) respectively on the domain boundary δΩ, where h and g are scalar fields105

defined at the boundary and n is the outward normal vector at the boundary. Pressure and/or flow rate may

also be prescribed at wells in the domain. While this CVD-MPFA formulation is consistent and applicable

to problems with full permeability tensors in both the rock matrix and fracture, the test cases presented

involve fractures with diagonal tensors, where the fracture tensor is of the form Kf =

(
Kf t1

0.0 0.0

0.0 Kf t2
0.0

0.0 0.0 Kfn

)
.

Usually, Kf t1
,Kf t2

≤ a2h/12 which is the maximum tangential permeability of the region, of width ah, when110

flow is between two parallel plates without tortuosity or cementation.

The mass conservation equation for tracer transport ignoring dispersion is written as the advection equation

below:

ϕ
∂c

∂t
+∇ · (vc) = qc (2)

where, c is the tracer concentration and ϕ is the porosity which can be taken as unity here for simplicity.

3. CVD-MPFA formulation with coupling for fractures115

Here, we will investigate a lower-dimensional fracture model where the 2D pressure equation is solved over

fracture surfaces, coupled with the 3D pressure equation in the matrix. We incorporate the lower-dimensional

fracture model for fractures and barriers, presented by V. Martin et al. [16] in context of 2D MFE, into the 3D

CVD-MPFA framework. F. Heße et al. [38] has summarized the assessment of lower-dimensional modelling

of fractures and concluded that such modelling is applicable “when the matrix-diffusion coefficient is small or120

like in field experiments, the sub-surface parameters are determined with little accuracy”. Highly conductive

fractures can be treated as lower-dimensional cells without including extra matrix-fracture interfaces thus

reducing the local degrees of freedom of a cluster when compared to the hybrid-grid method. Many authors

e.g. [39, 2, 23], have efficiently treated lower-dimensional fracture cells with various numerical methods for the

solution of elliptic pressure equation. Here, we focus on the CVD-MPFA method for fractured media because125

the method is locally flux-continuous, consistent, applicable on unstructured grids and has a single degree of

freedom globally per grid-cell. There are two variations of lower-dimensional fracture model (i) continuous

pressure model where pressure across the fracture is assumed continuous and (ii) discontinuous pressure

model where discontinuity in pressure is allowed across the fracture for matrix-fracture flux computation

which is more generic to model fractures and barriers alike. Moreover, we use the transfer function approach,130

presented by Hoteit et al. [2], to couple matrix and fracture domains. For the matrix domain the 3D equation

is solved while the 2D equation is solved over fracture cells:

−∇ ·Km∇φ = qcm in Ωm (3)

−∇t ·Kf,t∇tφf + qf = qcf in Ωf (4)
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where, ∇t and Kf,t are the respective longitudinal ( surface tangent) gradient operator and permeability

of fracture. qcm and qcf are known source terms for the rock matrix and fracture respectively. Transfer

function, qf , accounts for the net normal flux transfer between matrix and fracture cells, resulting from the135

dimensionality reduction to obtain (n-1)D equation (4). Matrix-fracture flux is also added naturally in the

formulation for the matrix cells discussed later on. The flow equations (3) and (4) are integrated over the

grid cell control volumes using the Gauss divergence theorem to obtain,

−
∮
δΩmi

(Km∇φ) · nidS = q̄cm (5)

−
∮
δΩf j

(Kf,t∇tφf ) · njdS +Qf = q̄cf (6)

where q̄cm =
∫
Ωmi

qcm dV ; any known source term for matrix cell Ωmi. q̄cf =
∫
Ωf j

qcf dV ; known source

term for fracture cell Ωf j . Moreover, Qf =
∫
Ωf j

qf dV , transfer function for the lower-dimensional fracture140

cell Ωf j .

3.1. Matrix-matrix and matrix-fracture fluxes

For the cell-centred finite-volume method, control-volumes are defined by the grid cells which can be the

tetrahedrons, hexahedrons, prisms or any polyhedral shapes in three-dimensions (3D). The primal grid nodes

form corner points of the primal grid cells and are called vertices. The numerical solution is associated with145

the grid point, which is usually the cell centroid, as in this work. Flow variables and physical properties are

assigned to the grid cells i.e. control-volume distributed (CVD). Continuous flux and pressure constraints are

imposed locally with respect to each cluster of cells that are attached to a common grid vertex. A dual-cell is

introduced which is defined by connecting each grid point with centres of the respective cell faces and edges

that are attached to the cluster vertex. The resulting polyhedron around a cluster vertex is called a dual-cell.150

A cluster and the dual-cell for 8 tetrahedrons are depicted in Fig. 1a. Sub-cell hexahedrons are formed when

dual-cells overlay the primal cells. Each sub-cell is defined by joining the grid point to the centres of the faces

connected to the cluster vertex and by joining the face centres to the midpoints of corresponding edges. The

number of the sub-cells in a grid cell are the same as the number of the vertices defining the grid cell; four

for tetrahedron, six for prism, five for pyramid and eight for a hexahedron. A tetrahedron decomposed into155

four sub-cells is depicted in Fig. 1b. A sub-interface is the name of the quadrilateral that is formed when

a sub-cell intersects the face of the grid cell. The (quadrilateral) sub-interface is constructed by connecting

the face centre to the mid-points of the edges then to the cluster vertex. There are three sub-interfaces for

a sub-cell connected to the cluster vertex. In the CVD-MPFA method, normal flux continuity and pressure

continuity are fulfilled for every sub-interface of the cluster. In this work, we employ the tetrahedron pressure160

support (TPS) formulation [35]. An auxiliary interface pressure is introduced on each sub-interface to ensure

point-wise pressure continuity. The continuity point is defined by the parametric variation in [0 < q ≤ 1]

along the diagonal of the sub-interface, where q = 0 corresponds to the cluster vertex (which is avoided) and
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(a) Cluster and the dual of the tetrahedral matrix
cells.

(b) Sub-cells of a tetrahedron cell

q

1

a

b

c

V

(c) Tetrahedral pressure support for a sub-cell (d) Two neighbouring tetrahedrons. Sub-cells and
sub-interface are depicted, attached to the cluster
vertex V . TPS for the cells are also shown (in green
and blue) for q = 1.

Fl

Fr

(e) Discontinuous fluxes across the interface which is
fracture cell

Figure 1: CVD-MPFA framework in 3D

q = 1 corresponds to a face centre and is the standard default point. Double parameters (q1, q2) can also be

used to define continuity points on sub-interfaces, cf. [40, 35]. In this scheme, pressure is assumed piecewise165

linear in a tetrahedron region defined by joining the grid point with the auxiliary continuity points on three
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faces connected to the cluster vertex. Pressure in the tetrahedral region of the cell 1, as shown in Fig. 1c, is

written in terms of the barycentric coordinate referential (ξ, η, γ) as φ = (1− ξ− η−γ)φ1+ ξφa+ ηφb+γφc.

A piecewise constant pressure gradient vector can be formed over each sub-cell from the tetrahedral linear

pressure field from which the Darcy velocity vector is determined in each sub-cell. The Darcy velocity170

is resolved along the outward normals to three sub-interfaces of the sub-cell. So, the normal flux at a

sub-interface is written as,

F = vh · dAh = −(T11φξ + T12φη + T13φγ) (7)

where, T = T (q) is an approximation of the general Piola tensor and define the coefficients of (φξ, φη, φγ).

For the full definition of general tensor we refer to [35]. Similarly, fluxes are determined on both sides of the

sub-interfaces in a cluster. Continuity of flux is imposed on all the sub-interfaces, between matrix cells, (but175

not fracture cells) to eliminate the pressure associated with matrix sub-interfaces. Next, we present the flux

formulation in the case of the fracture cell between the matrix cells.

3.1.1. Continuous pressure model

For high permeability and low aperture, the jump in pressure across the fracture is very low. Pressure can

be assumed constant across the width of fracture but the velocity jump is not zero. In this case, point-wise180

pressure continuity is imposed on the 2D fracture sub-interfaces, between matrix cells. Consider an interface,

between two matrix cells, which is a lower-dimensional (2D) fracture cell, as shown in Fig. 1d. Outward flux

on sub-interface If from sub-cell of cell m1 can be written as,

F 1
If

= −(T 1
11φξ + T 1

12φη + T 1
13φγ)|1If (8)

where,

⎛
⎜⎜⎜⎝
φξ

φη

φγ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
φf − φm1

φA − φm1

φB − φm1

⎞
⎟⎟⎟⎠

Similarly, from sub-cell of cell m2, the outward flux on sub-interface If can be written as,185

F 2
If

= −(T 2
21φξ + T 2

22φη + T 2
23φγ)|2If (9)

where,

⎛
⎜⎜⎜⎝
φξ

φη

φγ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
φC − φm2

φf − φm2

φD − φm2

⎞
⎟⎟⎟⎠

Fluxes defined by Eq. (8) and Eq. (9) are discontinuous across a 2D surface fracture cell f , but the pressure

of fracture cell φf is continuous and is unknown. The fluxes on the nfl sub-interfaces of the cluster can be

formulated in the combined simple form of matrices as follows:

F = Anfl×nmΦm +Bnfl×niΦi + Cnfl×nfΦf (10)
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where, Φm is the vector of pressures associated with the centres of the nm matrix cells in the cluster, Φi is190

the vector of pressures associated with the ni sub-interfaces, between matrix cells (without fractures), and

Φf is the vector of pressures associated with the nf interfaces, which are 2D fracture cells in the cluster. As

usual, pressures associated with the sub-interfaces which are not fracture cells, are eliminated by imposing

continuity of fluxes across these sub-interfaces.

Ani×nm

L Φm +Bni×ni

L Φi + C
ni×nf

L Φf = Ani×nm

R Φm +Bni×ni

R Φi + C
ni×nf

R Φf (11)

which yields,195

Φi = (Bni×ni

L −Bni×ni

R )
−1

(Ani×nm

R −Ani×nm

L )Φm + (Bni×ni

L −Bni×ni

R )
−1

(C
ni×nf

R − C
ni×nf

L )Φf (12)

Fluxes are then expressed in terms of unknowns Φm and Φf only and are of the form as;

F = Ānfl×nmΦm + C̄nfl×nfΦf (13)

where, Ānfl×nm = Anfl×nm + Bnfl×ni(Bni×ni

L −Bni×ni

R )
−1

(Ani×nm

R − Ani×nm

L ) and C̄nfl×nf = Cnfl×nf +

Bnfl×ni(Bni×ni

L −Bni×ni

R )
−1

(C
ni×nf

R − C
ni×nf

L ).

3.1.2. Discontinuous pressure model

In this approximation pressure is discontinuous across the fracture sub-interfaces in the cluster. We allow200

pressure to vary across the fracture. The outward flux on sub-interface If from sub-cell of cell m1 is written

as (8) with:

⎛
⎜⎜⎜⎝
φξ

φη

φγ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
φ−
f − φm1

φA − φm1

φB − φm1

⎞
⎟⎟⎟⎠

Similarly, from sub-cell of cell m2, the outward flux on sub-interface If can be written as (9) with:⎛
⎜⎜⎜⎝
φξ

φη

φγ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
φC − φm2

φ+
f − φm2

φD − φm2

⎞
⎟⎟⎟⎠

The pressures φ−
f and φ+

f are discontinuous across sub-interfaces of a fracture cell f in the mesh. The205

required nfl fluxes on sub-interfaces of the cluster are formulated in the combined simple form of matrices

as follows:

F = Anfl×nmΦm +Bnfl×nifΦif (14)

where, Φif is the vector of pressures associated with the ni sub-interfaces, between matrix cells, that are not

fracture cells and 2nf discontinuous pressures (φ−
f and φ+

f ) across nf fracture sub-interfaces. Here, nif =

ni + 2nf . Matrix interface pressures are eliminated via flux continuity. We use two transmission conditions210

(Robin type conditions) following [16] for each of the fracture sub-interfaces to eliminate discontinuous

9



pressures. For the sub-interface If , the two transmission conditions can be written as;

−ζF 1
If

+ αfφ
−
f = −(1− ζ)F 2

If
+ αfφf (15)

−ζF 2
If

+ αfφ
+
f = −(1− ζ)F 1

If
+ αfφf (16)

where, φf is the unknown pressure associated with the involved fracture cell f and specified at the centroid.

αf =
2Kf,n

a where Kf,n and a are the normal permeability and aperture of fracture cell. ζ is a positive

parameter such that ζ ∈]1/2, 1] [16]. ζ = 3/4 corresponds to the second order pressure approximation215

across the fracture and ζ = 1 corresponds to simple finite volume scheme. Discontinuous pressure across

the fracture is important whenever normal permeability Kf,n is lower than the matrix permeability and the

fracture acts as a barrier. For high permeability, 1
αf

��0 and the transmission conditions approach continuity

of pressure i.e. φ−
f ��φ+

f ��φf . Flux continuity conditions and transmission conditions can be written in the

combined form as follows;220

A
nif×nm

L Φm +B
nif×nif

L Φif = A
nif×nm

R Φm +B
nif×nif

R Φif + C
nif×nf

R Φf (17)

rearranging,

Φif = (B
nif×nif

L −B
nif×nif

R )
−1

(A
nif×nm

R −A
nif×nm

L )Φm + (B
nif×nif

L −B
nif×nif

R )
−1

C
nif×nf

R Φf (18)

where CR is diagonal with non-zeros corresponding to Eqs. (15), (16) and zero-rows corresponding to the

matrix flux continuity conditions without fractures. Fluxes are expressed in terms of unknowns Φm and Φf

only and are of similar form to (13). Note that, a larger local system has to be solved in (17) because of the

discontinuity of fracture pressures as compared to (11) for the continuous pressure model.225

Matrix-fracture transfer

Fluxes on the sub-interfaces of fractures, are retained as discontinuous for both the fracture models

discussed above. The sum of the negative of the discontinuous fluxes on both sides of each fracture-interface

are the transfer functions for the sub-cell of the corresponding 2D fracture cells. At interface If , the sum

of the negative of the discontinuous fluxes is defined as the transfer function for a sub-cell of the triangular230

fracture cell f where:

Qf,1/3 = −F 1
If

− F 2
If

(19)

In the same way we can determine the transfer functions of sub-cells of other fracture cells (as interfaces)

involved in the cluster. As the fluxes have already been determined in terms of Φm and Φf in equation (13)

(with an analogous equation resulting from the discontinuous pressure model), so we can write the system

10



of transfer functions for the corresponding fracture cells in terms of Φm and Φf as follows;235

Qf,1/3 = −FL − FR (20)

and Qf,1/3 = D̄nf×nmΦm + Ēnf×nfΦf (21)

(a) Cluster of six 2D fracture cells in
3D space

(b) Sub-cells of the fracture cells

3

4

2

1

6

5

(c) TPS for the fracture cells are
shown . Cell pressures are depicted by
numbered balls and the auxiliary in-
terface pressures by the smaller balls.

Figure 2: CVD-MPFA framework for 2D fracture-fracture fluxes in 3D space

3.2. Surface fracture-fracture fluxes

In this section, we present a 2D CVD-MPFA formulation for computing flow in the fractures which

are surfaces in 3D space. Pressure is approximated at the centroids of the fracture cells. A cluster of six

fracture cells, connected to the common vertex, is shown in Fig. 2a which form part of the discretised three240

intersecting fracture surfaces. The sub-cells are defined by joining the centroids of the fracture cells with the

mid-points of the edges. The dual-cell, for a certain cluster, consists of the sub-cells which are common to the

cluster vertex. The sub-cells are depicted in Fig. 2b where the dual-cell is illustrated around a cluster vertex,

consisting of all the 2D fracture sub-cells in 3D space. We approximate the fracture-fracture fluxes for all

sub-cells in terms of pressures at the fracture cell centroids and then assemble a discrete divergence equation.245

Pressure and flux continuity conditions are imposed on the sub-interfaces which are half of the edges (sub-

interfaces) between the cells. Auxiliary interface pressures are introduced on each sub-interface to ensure

point-wise pressure continuity. The continuity point is defined by the parametric variation in [0 < q ≤ 1]

along the sub-interface where q = 0 corresponds to the cluster vertex (which is avoided) and q = 1 corresponds

11



to the edge mid-point and is the standard default point. Here, the symmetric positive definite (SPD) scheme250

of [34] with q = 2/3 is used for the triangular fracture cells. For each sub-cell, pressure is assumed to have

a piece-wise linear variation in the triangular region defined by joining the cell centroid with the continuity

points on the corresponding sub-interfaces. Referring to Fig. 2c for illustration, pressure for a sub-cell of

cell 1 is written in terms of the barycentric coordinates (ξ, η) as φf = (1− ξ− η)φ1+ ξφa + ηφb. A piecewise

constant pressure gradient vector is then formed in 3D over each surface sub-cell from the piecewise linear255

triangular pressure field, from which the 3D Darcy velocity vector is determined in each sub-cell using the

3D projected surface gradient, written as;

vh = −Kf,t∇tφf = −Kf,tJ(J
trJ)

−1

⎛
⎝φξ

φη

⎞
⎠ (22)

where, non-square Jacobian J =
( xξ xη

yξ yη
zξ zη

)
and J tr is the transpose of the Jacobian J , and the position vector

r(x, y, z) is also expressed in terms of (ξ, η) as r(x, y, z) = (1− ξ − η)r1 + ξra + ηrb.

The Darcy velocity is resolved along the outward normals (scaled by value of aperture a) to two sub-interfaces260

of each sub-cell and the normal flux at the sub-interface is written as;

F = (an) · vh = −(T11φξ + T12φη) (23)

where, T = T (q) defines the coefficients of (φξ, φη). Fluxes are determined on all sub-interfaces (edges) for

all sub-cells of fracture cells. All nfl fluxes are expressed in the combined form;

F = Dnfl×nfΦf + Enfl×neΦe (24)

where, Dnfl×nf and Enfl×ne are the coefficient matrices. Φf and Φe are the vectors of pressures on cell

centroids and sub-interfaces respectively. There are nf = 6 pressures associated with the centroids of fracture265

cells, ne = 5 sub-interface pressures and nfl = 12 fluxes for the cluster shown in Fig. 2c. To eliminate the

sub-interface pressures we impose mass conservation (zero divergence) on all the sub-interfaces (edges).

D
ne×nf
e Φf + Ene×ne

e Φe = O (25)

Using (25), we eliminate Φe in (24) and fluxes are then expressed in terms of the cell pressures only:

F = (Dnfl×nf − Enfl×ne(Ene×ne
e )

−1
D

ne×nf
e )Φf (26)

Note that, the above fracture-fracture CVD-MPFA formulation can be easily generalized to a cluster with

any number of fracture cells in any orientation in 3D space. For sub-interfaces which are common to only two270

fracture cells, the mass conservation condition is analogous to flux continuity as in the standard CVD-MPFA
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formulation.

3.3. Global linear system

The fluxes defined by (13) and (26), and transfer function defined by (21), complete the discrete finite-

volume approximation of the divergence equation for every matrix cell and fracture cell.275

Discrete approximation of the divergence equation (5) for the matrix cell is written as;

Ni∑
j=1

nsj∑
k=1

Fj,k = q̄cm for every matrix cell (27)

where, Fj,k is the flux on sub-face k of the face j of the matrix cell which has Ni faces and nsj is the number

of sub-faces of the face j and q̄cm is a known source term. A tetrahedral matrix cell has four faces so there

are 12 outward normal fluxes on corresponding sub-faces of the cell. For those matrix cells which are in the

cluster having fracture cells, fluxes are also dependent on the fracture pressure unknowns, as defined in (13).280

The system of equations for discrete conservation of fluxes for all the matrix cells, using (13) and (27), can

be written in system form as follows;

GmmΦm + GmfΦf = q̄cm (28)

where Φm is the unknown global pressure vector of all matrix cell pressures, Φf is the unknown global

pressure vector of fracture cell pressures and q̄cm is the vector of source terms corresponding to the matrix

cells. Gmm and Gmf are matrices corresponding to the pressure unknowns for rock matrix and fracture cells285

respectively. Gmf is the coupling of matrix pressure unknowns with the pressure unknowns for connected

fracture cells because of matrix-fracture fluxes as expressed in (13). Similarly, discrete approximation of the

divergence equation (6) for a 2D fracture cell is written as;

Ne∑
j=1

2∑
k=1

Fj,k +

Ne∑
j=1

Qf j = q̄cf for every fracture cell (29)

where Fj,k is the fracture-fracture flux on sub-face k of the face (edge) j of the 2D surface fracture cell

which consists of Ne number of faces (edges). For triangular fracture cells, in the 3D problem, there will be290

three faces (edges), each decomposed into two sub-faces, for every fracture cell. Qf and q̄cf are the transfer

function and any known source term respectively for the corresponding fracture cell. Fracture-fracture fluxes

are defined by (26). Because each fracture cell is common to two neighbouring clusters of matrix cells, so

the total transfer function Qf is determined by the addition of transfer functions of sub-cells determined via

(21), from the corresponding clusters, in terms of matrix and fracture pressure unknowns. Using (26) and295

(29), the system of equations describing mass conservation in the fracture cells, can be written as;

GffΦf +Qf = q̄cf (30)
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where Gff corresponds to the fracture-fracture fluxes, q̄cf is the vector of known source terms for the fracture

cells and Qf is the vector of transfer functions corresponding to fracture cells. Using (21), equation (30) is

expressed as

GffΦf + GTmΦm + GTfΦf = q̄cf

or (Gff + GTf )Φf + GTmΦm = q̄cf (31)

where GTm and GTf correspond to transfer functions for the fracture cells. GTm is the coupling between300

pressure unknowns for matrix and fracture cells.

Thus we have two systems to solve, (28) and (31), for unknown pressures in the matrix and fracture cells

respectively, which combine to form the coupled linear system:

⎛
⎝Gmm Gmf

GTm Gff + GTf

⎞
⎠

⎛
⎝Φm

Φf

⎞
⎠ =

⎛
⎝q̄cm

q̄cf

⎞
⎠

Using simplified notation where Ḡff = Gff + GTf , the system is then written as;

⎛
⎝Gmm Gmf

GTm Ḡff

⎞
⎠

⎛
⎝Φm

Φf

⎞
⎠ =

⎛
⎝q̄cm

q̄cf

⎞
⎠ (32)

Matrix-matrix fluxes and matrix-fracture fluxes in (13) and fracture-fracture fluxes in (26) can be determined305

separately in parallel and assembled into the coupled linear system (32). Iterative solution methods can be

used to solve (32) for matrix and fracture pressures. The performance and computational cost of iterative

solution method is proportional to the condition number of the linear system to be solved. In our case, the

condition number of the coupled linear system depends on the grid cell size, fracture aperture and fracture

permeability. For certain grid cell size and fracture aperture, the higher the fracture permeability, the higher310

the condition number of the fracture-fracture system Ḡff , leading to an even higher condition number of

the overall coupled linear system. Since the general global linear system (32) is non-symmetric (unless the

mesh consists of uniform hexahedrons), so we solve the system via GMRES[41] method preconditioned by

the algebraic multi-grid (AMG) [42] or incomplete-LU (iLU) by employing the library PETSc[43].

4. Transport model315

We use an explicit first order upwind (upstream weighting) method for computing tracer transport. We

treat the intersecting fractures in the same way as treated in [2] and [18]. The discrete transport equation

for the fracture cell can be written as;

ϕ
cn+1 − cn

δt
Vf +

Ne∑
j=1

Fjcfo − Fm1c1 − Fm2c2 = qcfVf for time step n (33)
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V1

V2

Figure 3: Intersecting fractures with line V1V2 as the intersection interface.

where, c is the concentration of the tracer in the fracture cell of volume Vf , Fj are the fracture-fracture

fluxes, Fm1 and Fm2 are the matrix-fracture fluxes, outward normal to neighbouring matrix cells m1 and320

m2, as computed in previous section (expressions (8) and (9)). c1 and c2 are the concentration of a fracture

cell or neighbouring matrix cell depending on the upstream direction of flux i.e. into the fracture or out of

the fracture. cfo is the concentration at the intersection line between the intersecting fracture cells; depicted

by V1V2 in Fig. 3. We assume that the flow is fast in the fractures such that there is no accumulation of

mass at the intersection line. If there are N intersecting fractures meeting at the line and there are l fluxes325

going into the intersection line then we can compute cfo by the following condition;

l∑
k=1

Fkck = cfo

N−l∑
k=1

Fk (34)

In this way we do not need to include the small intermediate cell explicitly, as in the equi-dimensional model,

in overall computations and avoid the restriction of a low CFL condition that would result from inclusion of

the intermediate cell.

5. Numerical results330

Numerical results are presented in this section to assess and demonstrate the lower-dimensional fracture

modelling by CVD-MPFA. First, we show a fracture-only simulation to show the application of the 2D CVD-

MPFA formulation for surface fractures oriented in 3D. Then, we assess the accuracy of the lower-dimensional

fracture model for a challenging discrete fracture-matrix problem and observe the effect of the ζ parameter

in the discontinuous fracture pressure formulation. In the next sub-section we compare the pressure and335

tracer transport fields, for a discrete fracture-matrix system, computed by the lower-dimensional model and

equi-dimensional fracture models respectively on unstructured meshes. We also discuss the complexity of

the method with respect to the number of fractures and the characteristics of these. A test case is presented

that involves simulation of a complex discrete fracture-matrix system for a slightly compressible fluid. We

conclude this section with a study to analyse the sensitivity of the results on the grid resolution of matrix340
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and fractures.

(a) Mesh of 3D volumetric fractures consists of 4716 thin prismatic cells and the mesh
of 2D surface fractures consists of 4662 triangular cells. As both meshes are indistin-
guishable at this scale, only one mesh is shown.

(b) Close-up view of the thin
hexahedral intermediate cell
at the intersection of thin
3D volumetric prism fracture
cells

Figure 4: Fracture network mesh

(a) Pressure field for 3D fractures (b) Pressure field for the 2D fractures. L2 relative error
norm = 6.115e−11 when compared with the pressure field
for the 3D fractures

Figure 5: Pressure fields for the 3D fractures and the 2D fractures

5.1. Fracture-only simulation

The first example involves application of the surface CVD-MPFA formulation for a fracture network and

its comparison with the full 3D discretised volumetric fracture network. The fracture-network consists of

7 interconnected fractures which are 2D surfaces oriented in 3D space. The size of the whole system is345

200× 150× 15 m3. We discretise the fracture surfaces with a conforming Delaunay mesh with lines (edges)

at the intersection of the fracture surfaces. The corresponding 3D fracture network is discretised into a thin

prismatic mesh of the same resolution as of the surface fractures. There are thin hexahedral cells at the

junction of the intersecting 3D fractures. The fracture-network mesh and a thin hexahedral cell at one of
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(a) Tracer concentration for 3D fractures at t = 5.0 years (b) Tracer concentration for 2D fractures at t = 5.0 years
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(c) Tracer concentration at producer P1 w.r.t time (years). Concen. at producer P1 at t = 10 years for
3D fractures is 0.634458 and for 2D fractures is 0.634431.

Figure 6: Tracer concentration plots for the 3D fractures and the 2D fractures

the intersections are shown in Fig. 4. All fractures are assigned an isotropic permeability of Kf = 106I mD.350

The aperture of each fracture is a = 1 mm. Fluid is injected through an injector I at the rate of 2.739e− 3

m3/day and 10 bar pressure is imposed at producers P1 and P2. Locations of injector and producers are

depicted in Fig. 4. We solve the fracture-only equation (29) by the CVD-MPFA formulation presented

in section 3.2 and ignore the transfer function because the matrix is absent in this case. The respective

pressure fields computed using the 3D model and 2D surface fracture model are shown in Fig. 5. We note355

that the pressure field computed by the CVD-MPFA formulation for the 2D triangulated fracture surfaces

is in excellent agreement with the pressure field computed by using the full 3D gridded volumetric fracture

network, with an overall L2 relative error of 6.115e − 11 difference between the respective pressure fields.

The corresponding tracer concentration contours at t = 5 years are shown in Figs. 6b and 6b with similar

excellent agreement. Plots of concentration versus time at producer P1, obtained by both models, are seen360

to overlap each other as shown in Fig. 6c.

5.2. Single fracture; Anisotropic discontinuous permeabilities and BCs

The next case involves a single fracture of anisotropic permeability, embedded in the matrix. The bound-

ary conditions for the fracture and matrix are quite distinct and give rise to a discontinuity at the boundary
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Kf1

φ = 1 u · n = 0u · n = 0

φ = 1Km

u · n = 0 φ = 0

φ = 0

u · n = 0

(a) 2D domain in XY

(b) 3D domain with a single surface fracture with heterogeneous
permeability illustrated in Fig. 7c

(c) Heterogeneity of surface fracture

Figure 7: Domain and boundary conditions for single fracture test
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(b) 3D Pressure field

Figure 8: 2D and corresponding 3D Pressure fields for kf = 200 and aperture, a = 1e− 2 m.

surfaces. We assess the accuracy of the 2D fracture discontinuous pressure model and observe the influence365

of different values of parameter ζ.

First we solve the problem as the projected case of the 2D problem presented in [16, 37] to validate the

3D model and the implementation. The 2D domain is shown in Fig. 7a. Permeability of the rock-matrix

is isotropic with Km = I mD, in contrast the fracture permeability is anisotropic and discontinuous with

Kf1 =
(

1/kf 0.0
0.0 kf

)
mD and Kf2 =

(
kf 0.0

0.0 1/kf

)
mD where kf > 1.0. Consequently fluid cannot flow along370

18



0

1

0.25

0.5

0.75

Pressure

(a) Reference solution

0

1

0.25

0.5

0.75

Pressure

(b) ζ = 2/3

-0.024105

1.0241048

0

0.25

0.5

0.75

1

Pressure

(c) ζ = 0.51

-0.024105

1.0241048

0

0.25

0.5

0.75

1

Pressure

(d) ζ = 0.49

Figure 9: Reference solution and the 2D fracture model Pressure field for fracture aperture, a = 1e− 2 m and kf = 200
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Figure 10: Reference solution and the 2D fracture model Pressure field for fracture aperture, a = 5e− 4 m and kf = 200

the middle part of the fracture but can cross it. Dirichlet boundary conditions are applied at the ends of

fracture. The 3D domain of size [2×1×1] m3 is shown in Fig. 7b and has the same permeability as discussed

for the 2D domain along-with the Kzz = 1.0 mD in the fracture. A uniform structured quadrilateral mesh

and hexahedral mesh are used for this test case in 2D and 3D respectively. The mesh cell size is Lh = 1.0/32

m. The pressure fields for the 2D and 3D domains, computed by lower-dimensional fracture model (with375

ζ = 2.0/3.0), are shown in Fig. 8. The pressure fields for the 2D domain and the 3D domain plane view are

identical as expected.

Now, we extend the 2D problem into a fully 3D problem and analyse the influence of different values of pa-
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Figure 11: Relative L2 error variation versus the fracture aperture. For 2D fracture model mesh has 64 × 32 × 16 cells. Cell
length, Lh = 1/32 m

rameter ζ on the accuracy of the 3D CVD-MPFA formulation coupled with a 2D fracture. The permeability

of the matrix is defined by Km = I mD. The permeability of the fracture is given by;380

Kf =

⎛
⎜⎜⎜⎝
kxx 0.0 0.0

0.0 kyy 0.0

0.0 0.0 kzz

⎞
⎟⎟⎟⎠ mD

(i) kxx = kf , kyy = 1/kf ∀y ∈ [0.25, 0.75] m,

(ii) kxx = 1/kf , kyy = kf ∀y ∈ [0, 0.25) ∪ (0.75, 1] m

(iii) kzz = 1/kf ∀z ∈ [0.25, 0.75] m and kzz = kf ∀z ∈ [0, 0.25) ∪ (0.75, 1] m.

where, kf > 1.0.

Permeability definitions (i) and (ii) are the same as used for the 2D problem previously, while definition (iii)

is for the z-direction. The heterogeneity of the fracture is depicted in Fig. 7c. The Dirichlet boundary

conditions of φ = 0.0 bar and φ = 1.0 bar are imposed at the YZ surfaces of the matrix at x = 0.0 m and

x = 2.0 m respectively. Zero flux is imposed on all other boundary surfaces of the matrix. The Dirichlet385

condition φ = 0.5(y + z) bar is imposed on all the boundary edges of the fracture. We solve the problem

using the lower-dimensional model and assess its accuracy with respect to the parameter ζ of the model

and fracture attributes (kf , a). We compare with the reference solution obtained by the equi-dimensional

method (CVD-MPFA, q = 1.0) using a much refined mesh. A uniform structured hexahedral mesh is used

for this test case. The cell size of the mesh for the reference solution is L∗
h ≈ 1.0/64 m and 3D fracture cell390

size is L∗
h,f = a/3 m in normal x-direction. The total number of cells is 268288. The mesh cell size for the

2D fracture model is Lh = 1.0/32 m and has a total of 32768 matrix cells and 512 2D fracture cells. Fig.

9 shows the reference pressure solution and the pressure field computed by the lower-dimensional fracture

model with different values of parameter ζ for the fracture aperture a = 1e−2 m and kf = 200. For the value

ζ = 2.0/3.0, the resulting pressure field is comparable to the reference solution. The pressure fields produced395

by ζ = 0.51 and ζ = 0.49 have spurious oscillations close to the fracture and violate the discrete maximum

principle (DMP) so these values of ζ should be avoided for high aperture values. The same behaviour is

observed for the 2D case in [16, 37]. Pressure fields for the fracture aperture a = 5e− 4 m and kf = 200 are
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shown in Fig. 10. The accuracy of the 2D fracture model, with different values of parameter ζ with respect

to the fracture aperture a and for kf is shown in Fig. 11. The relative L2 error of the pressure field is not400

affected by the change of aperture if kf ∗ a = 1.0 as shown in Fig. 11a but the pressure field behaviour

changes with the change of parameter ζ of the model and we obtain the best accuracy for ζ = 2.0/3.0. Fig.

11b shows the relative L2 error versus fracture aperture for high permeability contrast with kf = 200. For

this case the relative L2 error increases with increase of the aperture. For all the cases discussed here the

2D fracture model with ζ = 2.0/3.0 yields the best solution accuracy.405

I

P

(a) 92440 3D cells

P

I

(b) 63280 3D cells + 1420 2D fracture cells

Figure 12: (a) Explicit grid representation of intersecting fractures of aperture a = 1 mm and (b) mixed-dimensional grid with
2D fractures representation. Position of injector is marked by I and producer is marked by P.

5.3. Comparison of tracer transport: lower-dimensional versus 3D fracture model

We now solve the transport problems using fracture models (i) lower-dimensional fracture model (2D

fracture) and (ii) equi-dimensional model (3D fracture) where fractures are gridded explicitly in the physical

mesh. We solve the problem for a domain with two intersecting fractures. The same time step-size has

been used for both the fracture models. We solve the problems with both variations of the 2D fracture410

model that are with continuous pressure and discontinuous pressure (with ζ = 2/3) across the fracture and

show contours of the solutions produced by the discontinuous pressure model as both give similar solutions

for permeable fractures. We will refer to the discontinuous pressure model by 2D fracture and continuous

pressure model by 2D fracture-cont. We compare the results of concentration variation with time at the

producer. For the 3D fracture meshes, the whole domain is discretised by 3D prismatic cells including thin415

fractures. Moreover, the mesh is refined very close to the fracture to keep the quality of the mesh uniform.

We solve the problem using CVD-MPFA. For the 2D fracture model, the fracture is treated as an internal

boundary constraint and discretised by the specified quadrilateral faces of the 3D prismatic matrix cells.

Grids for the test cases have been generated by the Triangle [44] unstructured mesh generator.
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Figure 13: Pressure contours and tracer concentration contours at PVI= 0.6342 and PVI= 2.5368 computed by 3D fracture
and 2D fracture model for isotropic permeability and kf = 104.

The size of the domain is 1×1×0.5 m3. The meshes with explicit 3D fracture and 2D fracture representations420

are shown in Fig. 12. The aperture of both the fractures is a = 1 mm and two different permeability ratios

are taken into consideration i.e. kf = 104 and kf = 106. Both fractures have the same permeability. Matrix

permeability is defined by the identity tensor; Km = I mD for the first case. For the second case, an

anisotropic permeability of ratio 10 : 5 : 1 at an angle 30o about z − axis and x− axis is used for Km. The

fracture permeability is set to Kf = kfKm for both isotropic and anisotropic cases. Zero-flux Neumann425

conditions are imposed on the whole external boundary of the domain. Fluid is injected through an injector I

(with rate 1.7375e−3 pore volumes per day) and pressure φ = 0 bar is specified at the producer. Respective

pressure and tracer concentration fields, produced by the two models are shown in Fig. 13 and Fig. 14,
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Figure 14: Pressure contours and tracer concentration contours at PVI= 0.6342 and PVI= 2.5368 computed by 3D fracture
and 2D fracture model for anisotropic permeability and kf = 104.

Isotropic Anisotropic
Fracture model kf = 104 kf = 106 kf = 104 kf = 106

3D fracture 29 24 55 54
2D fracture 7 7 7 7

Table 1: CPU times (sec) for the linear systems obtained by 3D and 2D fracture models. Linear systems are solved by GMRES
preconditioned by algebraic multi-grid using PETSc.

with kf = 104, for the cases of isotropic and anisotropic permeabilities respectively. Behaviour of solution

contours are similar for kf = 106 with overall good agreement between the 3D and 2D fracture models.430

The CPU times necessary for solving the linear systems resulting from different permeability cases for 2D and

3D fractures are given in table 1. The CPU times are considerably lower for the 2D fractures as compared to
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(b) Anisotropic case

Figure 15: Plots of tracer concentration at producer w.r.t time for permeability contrast kf = 104.
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(b) Anisotropic case

Figure 16: Plots of tracer concentration at producer w.r.t time for permeability contrast kf = 106.

the 3D fractures. Anisotropy of the problem increases the computational cost for the 3D fractures because of

the change in the sparsity pattern of the linear systems. Whereas, there is no increase in the computational

cost for 2D fractures with anisotropy because of the simpler fracture-matrix connections involving two-point435

fluxes. Moreover, tracer concentration at the producer is recorded for each time step.

The variation of tracer concentration at the producer with time computed by the two methods are shown in

Figs. 15 and 16 for kf = 104 and kf = 106 respectively. The concentration plots show that the 2D fracture

model yields results that are in excellent agreement with those of the 3D fracture model for high fracture

permeability. While the lower permeability case proves more challenging with a partial discrepency in the440

concentration versus time profile, overall good agreement is obtained by the reduced dimensional model

when compared to the explicit 3D fracture model. The 2D model yields comparable tracer transport results

for higher permeable intersecting fractures. The treatment for intersecting fractures avoids the explicit

representation of the small intermediate cell and associated small CFL number which is included in equi-

dimensional model. Moreover, as shown in Figs. 15 and 16 the 2D fracture model with continuous pressure445
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across the fracture gives the results that are comparable to the results obtained by the discontinuous pressure

model for the conductive fractures. The discrepancy between the two variations of the model is negligible

for the isotropic case. We note that the discontinuous fracture pressure approximation is favourable when

the fracture has low-permeability in the normal direction to the fracture.

(a) Mesh 1: 2 fractures; 5141 tetrahe-
drons + 400 triangles; κ = 1.82e7

(b) Mesh 2: 4 fractures; 7453 tetra-
hedrons + 820 triangles; κ = 1.11e7

(c) Mesh 3: 8 fractures; 11593 tetra-
hedrons + 1700 triangles; κ = 1.62e7

Figure 17: Mesh specifications and the pressure fields for domains with different numbers of fractures with kf = 106 and
aperture a = 1 mm. Condition number κ is also given for each of the cases. There is a producer in the centre.
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Figure 18: Computational cost to compute pressure fields for cases with different numbers of fractures (kf = 106 and aperture
a = 1 mm)

5.4. Complexity with respect to fracture characteristics450

In this section, at first, we study the complexity of the method with increasing number of fractures in

the network embedded in the matrix. We solve the steady-state pressure problem for three cases that have

number of fractures of 2, 4 and 8, respectively, with the number of fractures increases by a factor of 2. We

keep the fracture mesh size almost the same for all three cases so the number of fracture cells also increases

by an approximate factor of 2. Since the tetrahedral matrix mesh conforms to the fractures, the number of455

matrix cells increases as the number of fracture cells increases. The Delaunay tetrahedral mesh is generated

using Tetgen [45] using the default quality constraints. The domain size is 800× 600 × 120 m3. There is a

producer in the middle of the domain that produces at a pressure of 100 bar, while the external boundaries

have an imposed pressure of 200 bar. Matrix permeability is defined by Km = I mD while the fractures are

assigned a permeability of Kf = kfKm where kf = 106. The fracture aperture is a = 1 mm. Fig. 17 shows460
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Figure 19: Relationship between condition number and CPU time for the solution of the linear system w.r.t permeability ratio
kf and aperture a for Mesh 2 (Fig. 17b)

the meshes and the pressure fields for three cases that have different numbers of fractures. The condition

number (κ) of each linear system is also shown. The order of magnitude of the condition number (κ) is the

same for all three cases, showing the independence of the condition number on the number of fractures for

a particular permeability and aperture. We employ the library PETSc (v 3.5.3) [43] for the solution of the

global linear systems and execute computations on a machine with an Intel(R) Xeon(R) CPU E5-2687W v2465

@3.40 GHz. We solve the linear system by GMRES preconditioned by iLU(0). The convergence criterion for

the linear solver is the relative convergence tolerance of 1e−12 (PETSc parameter rtol). The computational

cost of solving the linear systems obtained for the three cases increases (by factor of 2), proportional to the

number of fracture cells, as shown in Fig. 18.

Now, we analyse the relationship of condition number and computational cost with respect to the fracture470

permeability and the aperture for a fixed mesh and number of fractures. We compute the pressure field for
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Mesh 2 (Fig. 17b) for different permeability ratios kf and apertures a. Figs. 19a and 19b show that the

condition number and the computational cost are high for the highly conductive fractures and increase with

the increase in the fracture aperture. Figs. 19c and 19d show a clear relationship of both the condition

number and computational cost with the product of permeability ratio and the aperture (kf ∗ a). The475

product kf ∗ a is involved in the fracture-fracture flux formulation (Eq. (23)). With the increase in kf ∗ a,
the condition number and the computational cost increase, directly proportional to the increase in kf ∗a, for
kf ∗ a > 10. For smaller values of this product (kf ∗ a ≤ 10), the computational cost is mainly determined

by the parameters that determine the matrix fluxes. Hence, the computational cost is basically constant for

kf ∗ a ≤ 10 for a fixed mesh and fixed matrix parameters.

Figure 20: Domain consisting of matrix and fracture network. A producer is shown in the matrix between two sections of
fracture network named ’Frac N1’ and Frac N2.

480

5.5. 3D transient pressure simulation of realistic fractures

The final test case involves a 3D simulation of the discrete fracture-matrix system which includes complex

intersecting fractures. We solve a transient pressure equation for a slightly compressible single phase-fluid,

governed by

ϕct
∂φ

∂t
−∇ · k

μ
∇φ = qc (35)

where, ϕ is the porosity of domain and ct is the total compressibility which is assumed constant here. The485

discrete form of Eq. (35), using (32), for the implicit scheme (in time), can be written as;

⎛
⎝Mm +Gmm Gmf

GTm Mf + Ḡff

⎞
⎠

⎛
⎝Φn+1

m

Φn+1
f

⎞
⎠ =

⎛
⎝q̄cm +MmΦn

m

q̄cf +MfΦ
n
f

⎞
⎠ for time step n (36)
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Figure 21: 3D conforming tetrahedral mesh for complex fractured domain where fractures are modelled as triangulated surfaces
(55322 tetrahedrons + 5281 triangles).

Figure 22: Pressure field after 18 days for the case of producer in the middle of domain with fracture network.

where, Mm and Mf are diagonal systems of coefficients ϕmct/δt, ϕfct/δt associated with matrix and fracture

respectively. The system size is 220 × 240 × 40 m3 and consists of 15 intersecting fracture surfaces. There

is a producer in the middle of the domain between the sections of the fracture network named ‘Frac N1’

and ‘Frac N2’ in Fig. 20. The producer is intersecting both the sections of the fracture network which are490
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(a) 01 day (b) 18 days

(c) 201 days

Figure 23: XY cross-section of the (transient) pressure contours at three different times.

otherwise not interconnected with each other. The producer has a constant pressure of 100 bar. The initial

reservoir pressure is 300 bar. We discretise the whole domain in a conforming unstructured tetrahedral

mesh with fractures defined by triangular internal-faces between the tetrahedrons. A fracture conforming

3D mesh is generated using Tetgen [45]. The mesh is depicted in Fig. 21. Matrix permeability is defined by

the identity tensor; Km = I mD and porosity (ϕm = 0.2). Fracture permeability is set to Kf = 106Km and495

porosity (ϕf = 1.0). All fractures are assigned aperture of a = 1 mm. We have assumed here a constant total

compressibility (ct = 10−3 bar−1) everywhere in the domain. Zero-flux Neumann conditions are imposed on

the whole external boundary of the domain.

The pressure field is shown in Fig. 22 after 18 days of production. There is a high pressure gradient around

the producer because of the presence of the highly conductive fracture network in the domain. Also, the500
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Figure 24: Production rate for the transient pressure field over the domain involving discrete fracture-matrix system for a period
of 4 years.

pressure contours are non-symmetric and show anisotropy because of fractures. The production rate with

respect to time is shown in Fig. 24 which shows the declining trend of the production rate. There is sharper

decline of the production rate in the beginning than for the later stages. Cross-sections (XY) of pressure

contours for the transient problem are shown in Fig. 23 at three different times. The pressure contours

illustrate (i) the depletion from the fracture network in the initial stage (ii) the matrix to fracture feed and505

(iii) the approach to the state where the pressure wave propagates into the fracture network which acts as

the pressure boundary condition draining the surrounding matrix volume. This test case demonstrates the

applicability of the presented method for the multi-rate aspects of drainage of a fractured zone involving a

complex fracture network.

Figure 25: Domain with a fracture network for the grid sensitivity study. A producer in the middle is depicted as a blue
horizontal tube extending in the x-direction.
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Mesh name No. of Matrix tetrahedrons No. of fracture triangles

Mat1 − Frac0 59791 1618
Mat1 − Frac1 69451 1873
Mat1 − Frac2 79729 2432
Mat1 − Frac3 118148 5276
Mat1 − Frac4 176745 8709
Mat1 − Frac5 261074 14936
Mat1 − Frac6 402109 25299
Mat2 − Frac4 220127 8630
Mat3 − Frac4 318499 8788

Table 2: Specifications of the meshes used for the grid sensitivity study. Meshes are named by Mati − Fracj where Mati
represents the tetrahedral matrix mesh refinement level and the Fracj represents the triangular fracture mesh refinement level

(a) Mat1 − Frac0 (b) Mat1 − Frac2

(c) Mat1 − Frac4 (d) Mat1 − Frac6

Figure 26: Meshes with increasing levels of local refinement of the fracture mesh and around the fractures
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(a) Mat1 − Frac0 (b) Mat1 − Frac2

(c) Mat1 − Frac4 (d) Mat1 − Frac6

Figure 27: XY cross-sections of the pressure fields at t = 18.25 days for several meshes, with increasing levels of local refinement
of the fracture mesh and around the fractures

5.6. Grid sensitivity study510

In this section, we analyse the sensitivity of the transient pressure field with respect to the matrix and

fracture mesh resolution. We solve the transient pressure problem similar to the case presented in the

previous sub-section. There is a producer (of length 20 m) in the middle of the domain intersecting with

the fracture network as shown in Fig. 25. The problem specifications are the same as given in the previous

sub-section. We solve the problem using various meshes that have a different fracture and matrix mesh515

resolution, keeping the mesh size constant in and around the producer. The specifications of the meshes

are given in table 2. Fig. 26 shows the meshes with increasing fracture mesh resolution and fixed matrix

mesh size away from the fractures i.e. Mat1 − Fracj from table 2, where j = 0, . . . , 6. The corresponding

cross-sections (XY) of the pressure fields are shown in Fig. 27. The solutions are consistent across the

different mesh sizes. The production rates with respect to time for different fracture mesh resolutions are520

given in Fig. 29a. There is a difference in the production rates for different meshes in the initial period of
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(a) Mat2 − Frac4 (b) Mat3 − Frac4

Figure 28: Meshes with increasing levels of refinement of the matrix mesh away from the fractures
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(b) Production rate for several meshes with increasing
levels of refinement of the matrix mesh

Figure 29: Production rate w.r.t time for different meshes.

production. Progressively refining the mesh of the fractures and thereby the mesh of the matrix close to the

fractures improves the short term production profile until mesh Mat1 −Frac4. Further refinement does not

yield further improvement of the solution.

Now, we analyse the sensitivity of the results with respect to the matrix mesh refinement away from fractures525

and keeping the fracture mesh resolution fixed. The transient problem is solved for the meshes Mati−Frac4;

i = 1, 2, 3 as shown in Figs. 26c and 28. The production rates for different levels of matrix mesh refinement,

shown in Fig. 29b, overlap each other which depicts the independence of the results with respect to the

matrix mesh resolution for this transient pressure problem with fixed time step size. The effect of the

difference in time step size on the production rate is shown in Fig. 30 for a fixed mesh. Similar trends in the530
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Figure 30: Production rate w.r.t time for different time step sizes, for the fixed mesh Mat1 − Frac4. δt = 1.825 days

results obtained using local grid refinement around fractures and global refinement through out the matrix

verify that the CVD-MPFA formulation coupled with local grid refinement is advantageous and applicable

to fracture modelling.

6. Conclusions

We have presented a CVD-MPFA formulation for discrete fracture-matrix simulations, in three-dimensions,535

where lower-dimensional fracture networks are efficiently coupled via a novel surface CVD-MPFA formula-

tion for fractures. We compare pressure and transport results obtained by the lower-dimensional fracture

model and equi-dimensional model on unstructured meshes. For thin highly conductive fractures, the lower-

dimensional fracture model with continuous pressure approximation across the fracture yields results that

are comparable to those of the explicit equi-dimensional modelling of fractures. We note that the lower540

dimensional model does not use extra matrix-fracture interfaces, thus reducing the local degrees of freedom.

For problems involving systems of thin highly conductive fractures, we recommend using the lower-dimensional

fracture model with continuous pressure approximation. Problems involving barriers are modelled by the

lower-dimensional model with discontinuous pressure approximation. Numerical tests show that the lower-

dimensional model with discontinuous pressure across the fracture yields improved flow resolution with545

minimum error when ζ = 2.0/3.0 is used in the model.

We also present a tracer flow solver that is coupled with the respective 3D and surface fracture velocity

fields and is used to assess the performance of the fracture model, the lower-dimensional results demonstrate

the benefit of the method. The increase in complexity of the method with the increase of the number of

fractures in the domain is also analysed. Furthermore, we present a transient pressure simulation, for a more550

complex discrete fracture-matrix system, which demonstrates the applicability of the method for multi-rate

aspects of drainage of a fractured zone. A sensitivity study of the results obtained from a transient pressure

problem with respect to matrix and fracture grid resolution, and time step size is also presented. Condition
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numbers and CPU times are presented. The comparison with the equi-dimensional model shows that the

lower-dimensional model provides a significant reduction in CPU time.555
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Nomenclature560

CVD-MPFA control-volume distributed multi-point flux approximation

DFM discrete-fracture model

φ pressure

k permeability tensor

μ viscosity

K k
μ

a fracture aperture

ct total compressibility

ϕ porosity

c tracer concentration

Φ vector of pressures

F matrix flux

F fracture-fracture flux

Qf transfer function

ζ parameter for discontinuous pressure fracture-model

Subscripts

m matrix

f fracture
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