

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Computers

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa24655

Paper:

Dan, L., Richard, R. & Robert, L. (2015). FoamVis, A Visualization System for Foam Research: Design and

Implementation. Computers, 4(1), 39-60.

http://dx.doi.org/10.3390/computers4010039

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78856774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa24655
http://dx.doi.org/10.3390/computers4010039
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Submitted to Computers. Pages 1 - 21.

OPEN ACCESS

computers
ISSN 2073-431X

www.mdpi.com/journal/computers

Article

FoamVis, A Visualization System for Foam Research: Design
and Implementation
Dan R. Lipşa1,*, Richard C. Roberts, Robert S. Laramee 1,*

1Visual and Interactive Computing Group, Department of Computer Science, Swansea University,
Swansea, UK

* Authors to whom correspondence should be addressed; {d.lipsa, r.s.laramee}@swansea.ac.uk

Version February 24, 2015 submitted to Computers. Typeset by LATEX using class file mdpi.cls

Abstract: Liquid foams are used in areas such as mineral separation, oil recovery, food1

and beverage production, sanitation and fire fighting. To improve the quality of products2

and efficiency of processes in these areas, foam scientists wish to understand and control3

foam behavior. To this end, foam scientists have used foam simulations to model foam4

behavior, however, analyzing these simulations presents difficult challenges. We describe5

the main foam research challenges and present the design of FoamVis, the only existing6

visualization, exploration and analysis application created to address them. We describe7

FoamVis’ main features together with relevant design and implementation notes. Our goal is8

to provide a global overview and individual features implementation details that would allow9

a visualization scientist to extend the FoamVis system with new algorithms and adapt it to10

new requirements. The result is a detailed presentation of the software that is not provided11

in previous visualization research papers.12

Keywords: FoamVis; Surface Evolver; bubble-scale foam simulation; time-dependent13

visualization14

1. Introduction and Requirements Liquid foams have important practical applications in areas such15

as oil extraction, mineral separation, food and beverage production, cleaning and fire safety [24]. In16

oil extraction, foam is pushed through porous rock to displace oil [17]. Domain experts desire to17

understand how the constricted geometry of the rock affects the flow of foam. Foam is used in mineral18

Version February 24, 2015 submitted to Computers 2 of 21

separation [15] in a process where ground ore is treated with foam. The efficiency of the separation19

between mineral and rock depends on how objects with different properties interact with foam.20

Liquid foam behavior is not yet well understood. Scientists try to determine foam behavior from21

measurable properties such as bubble size and distribution, liquid fraction, and surface tension. One22

way to study this dependence is to simulate foams at the bubble-scale, which makes it possible to model23

foam properties and see their influence on general foam behavior. However, it also poses challenges for24

visualizing and inferring generic foam response. Foam is simulated at a small scale, where each bubble is25

modeled individually, yet the goal is to determine behavior at a large scale, where foam can be described26

as a continuous medium.27

Surface Evolver (SE) [2] is the de facto standard for simulating foams at the bubble-scale. SE foam28

simulations pose specific challenges:29

1. Access to simulation data is difficult and requires domain-specific knowledge. Parsing and special30

processing are required to access the entire simulation data. Important bubble attributes are not31

provided by the simulation but inferred using domain specific-knowledge.32

2. It is challenging to visualize general foam behavior. While bubble-scale simulation makes it33

possible to investigate the influences that material properties have on general foam behavior, it34

makes it difficult to visualize the general behavior that is of primary interest. Simulation data is35

complex (unstructured grid with polygonal cells) and time-dependent, with large fluctuations in36

the values of the parameters determined by changes in the topology of the soap film network.37

3. Triggers to various foam behaviors are difficult to infer. Multiple attributes have to be examined38

and foam properties have to be taken into account. Topological changes (T1s), in which bubbles39

swap neighbors, have to be considered.40

4. Foam scientists work with dozens of simulations with a wide range of simulation parameters.41

Examples include foam container properties (such as shape and roughness), foam attributes (such42

as bubble size and distribution, liquid fraction and surface tension) or the properties of objects43

interacting with foam (such as shape, size and position). The large number of existing simulations44

and the variety of simulation parameters makes it difficult to manage simulation data. The45

possibility to compare related datasets results in a better understanding of various foam behaviors,46

however existing tools do not facilitate that.47

These challenges make it difficult to use a general-purpose visualization tool for foam research.48

Domain experts’ visualizations only partially address these challenges. They may require intervention49

in the simulation code and potentially recomputing the simulations for summarizing and saving the50

relevant data. Their standard visualizations do not have the ability to explore and analyze the data and do51

not facilitate comparison of datasets. They do not have the high level of detail and speed that is achieved52

using graphics hardware. We address shortcomings of existing visualizations used by domain experts53

and we provide visualizations to address foam research challenges. To the best of our knowledge, no54

previous visualization software exists for foam simulations modeled with SE. FoamVis [10,11,13] fills55

this void by providing a comprehensive solution which facilitates advanced examination, visualization,56

Version February 24, 2015 submitted to Computers 3 of 21

analysis and comparison of foam simulation data. This paper presents design and implementation details57

required for understanding the software not found in previous literature.58

The design and implementation of the software is not featured in the previous literature which focuses59

on visualization. We present a software-centric view of FoamVis which is essential for future developers60

wishing to implement or extend this framework.61

The rest of this paper is organized as follows: We describe how our design choices meet foam62

research challenges and provide an overview of the implementation in Sec. 3.1. In the next sections63

we present design and implementation details for parsing and processing, interface, visualizations64

(simulation attributes, bubble paths, time-average, topological changes kernel density estimate (KDE)65

and, histograms), multiple linked-views, and user interaction. We end with conclusions and future work66

(Sec. 4).67

2. Related Work In this work we aim to provide a global overview and individual features68

implementation details for FoamVis, a visualization tool for foam research. Our description is based69

on previous visualization literature, the source code documentation [9] and the source code itself. In70

a previous publication [11] we describe the foam research application area and introduce FoamVis,71

a novel application that provides various techniques for visualization, exploration and analysis of72

time-dependent 2D foam simulation data. We show new features in foam simulation data and new73

insights into foam behavior discovered using our application. Features described include: color-mapping74

of scalar attributes, display of topological changes, visualization of bubble paths, multiple-linked views75

and histograms.76

Next, we describe extensions [13] to FoamVis that allow comparison of related simulations and77

enhance its analysis capabilities. Comparative visualization features include: the two halves view,78

linked time with event synchronization, the reflection feature, force difference and torque visualizations.79

Additional visualization and analysis features include: deformation tensor computation and visualization80

using ellipses, time-average computation for vector and tensor simulation attributes, velocity vector81

visualizations using glyphs and streamlines, average around moving objects and, topological changes82

kernel density estimate visualization.83

Solutions to visualize and analyze 3D foam simulations are described in a third [10] paper.84

Three-dimensional visualization include color-mapping of scalar attributes, location and type for85

topological changes, visualization of velocity vectors using glyphs, average of scalar and vector86

simulation attributes and topological changes kernel density estimate. A description of FoamVis from87

a user’s perspective is also presented [12]. Again, none of the previous literature provides guidance on88

how the implement the features.89

3. Design and Implementation Our visualization solutions are driven by the foam research and90

visualization challenges listed in Sec. 1. Surface Evolver output files are parsed and processed to access91

the complete data generated by the simulation. Our application works with any SE simulation and92

no changes to the simulation output are necessary to accommodate the application. This processing93

addresses challenge one.94

Version February 24, 2015 submitted to Computers 4 of 21

We visualize important simulation attributes (Sec. 3.4) which include bubble scalar measures, bubble95

velocity (a vector), bubble deformation (a tensor), location of topological changes and forces acting on96

objects in foam. Overall foam behavior is analyzed using the average feature (Sec. 3.6), kernel density97

estimate for topological changes (Sec. 3.7) and bubble paths (Sec. 3.4). This addresses challenge two.98

Foam scientists wish to understand what triggers certain behavior in foam simulations (challenge99

three). Foam behavior is studied by either examining different attributes that influence it or by comparing100

simulations (challenge four) where the behavior is varied by modifying simulation parameters. Both101

these requirements are addressed using multiple linked-views (Section 3.9).102

To present our solutions for visualization of foam simulation data, we use three simulation groups103

containing related simulations: the falling discs and the falling ellipse (2D), constriction (2D), and104

the falling disc (2D) and the falling sphere (3D). The falling-objects simulation group contains the105

falling-ellipse and the falling-discs simulations (Fig. 6). The falling-discs simulates two discs falling106

through a monodisperse (bubbles having equal volume) foam under gravity. It contains 330 time steps107

and simulates 2200 bubbles. The two discs are initially side-by-side and in close proximity. As they108

fall, they interact with the foam and each other by rotating towards a stable orientation in which the109

line that connects their centers is parallel to gravity. The falling-ellipse simulates an ellipse falling110

through a monodisperse foam under gravity. This dataset contains 540 time steps and simulates 600111

bubbles. The major axis of the ellipse is initially horizontal. As the ellipse falls, it rotates toward a112

stable orientation in which its major axis is parallel to gravity. The constriction dataset contains two113

simulations, one with a square-constriction and one with a rounded-constriction (Fig. 8). They simulate114

a 2D polydisperse (bubbles with different volumes) foam flowing through a constricted channel, with115

725 bubbles and 1000 time steps. The radius of the curvature of the rounded corners of the constriction116

is five times smaller for the square-constriction compared with the rounded-constriction. The falling disc117

(2D) / sphere (3D) simulate a disc/sphere falling through a monodisperse (bubbles having equal volume)118

foam under gravity. In 2D we have 254 time steps and 1500 bubbles. In 3D we have 208 time steps119

and 144 bubbles. Note that the number of bubbles that scientists are able to simulate in 3D is severely120

restricted by the duration of the computation time.121

3.1. Overview In this section we present the structural relationships between FoamVis’ main components122

(Fig. 1). For this purpose we use a UML 2 components diagram [1]. Briefly, a component represented123

in our diagram as a rectangle, is a design unit that is typically implemented using a replaceable module.124

A component may provide one or more public interfaces, represented with a complete circle at their125

end (lollipop symbol). Provided interfaces represent services that the component provides to its clients.126

Similarly, a component may require services from other components. These services are formalized127

through the required interfaces, represented with a half circle at their end (socket symbol).128

FoamVis starts by executing the Parser component. This component, uses services from the UI129

component to allow the user to specify the simulations to be analyzed and additional information about130

the simulations. This is done either through the command line or through graphical user interface. Then,131

the Parser parses the specified simulation files, creates an in-memory representation of the simulation132

data and yields the execution to the Controller module.133

Version February 24, 2015 submitted to Computers 5 of 21

Figure 1. FoamVis UML Component Diagram. The Parser parses simulation data and
stores it in memory. FoamVis uses the Model-View-Controller design pattern to separate
the data and program state (Model), the presentation (View), and the interaction with the
user (Controller) in three different components. The UI provides user interface controls and
classes and the Display provides display and visualization algorithms.

The main logic of the program uses the Model-View-Controller design pattern [14]. This pattern134

separates the data and program state (Model), the presentation (View), and the interaction with the135

user (Controller) in three different components. This architecture has two main benefits. First, because136

views are separated from data, several views of the same data can be displayed in the same time. Second,137

because the Model does not depend on the View or Controller components, changing the user interface138

or adding new views generally do not affect the Model. This results in a more modular and maintainable139

code and in quicker development cycle.140

The Controller manages the interaction between a user, the Model (that stores data and program141

state) and the views that show foam simulation data.142

The Model component (Fig. 2) is composed of three sub-components: Data which provides interfaces143

to create the in-memory representation of the foam simulation data and to read that data; Settings144

which stores the program state; and Average which stores and provides interfaces to compute and read145

time-averages of simulation attributes.146

The View component provides visualizations for 2D and 3D foam simulation data as well as147

histograms for scalar attributes.148

Each of these logical components contains several implementation files which in turn contain one149

or several related C++ classes. Logical components (modules), their implementation files and classes,150

and groups of member functions (member groups) are also documented [9] using Doxygen [22]. We are151

going to refer to the doxygen documentation as we describe the main features of the program and present152

Version February 24, 2015 submitted to Computers 6 of 21

Figure 2. The Model Component. This component is responsible for storing data and
program state. It is composed from three subcomponents: Data which stores simulation
data, Average which stores derived time-average of simulation attributes, and Settings which
stores program state.

implementation notes for those features. Here we provide a brief summary of the main components of153

the program: Parser, Model, View and Controller. For brevity we omit the Display and UI154

components. We include the name and a brief description for each file part of a component. We use a155

file name without an extension, to refer to both the interface (.h) and the implementation (.cpp) files156

with that name.157

The Parser parses Surface Evolver .dmp files and calls the Data component to build a memory158

representation of the simulation data. It contains the following files:159

• AttributeCreator – Create attributes which can be attached to vertices, edges, faces, and bodies.160

• AttributeInfo – Information about attributes for vertices, edges, faces, and bodies.161

• EvolverData.l – Lexical analyzer for parsing a .dmp file produced by Surface Evolver.162

• EvolverData.y – Grammar for parsing a .dmp file produced by Surface Evolver.163

• ExpressionTree – Nodes used in an expression tree built by the parser.164

• main.cpp – Drives parsing of SE .dmp files and creates FoamVis main objects.165

• NameSemanticValue – Tuple (name, type, value) used for a vertex, edge, face, and body attribute.166

• ParsingData – Stores data used during the parsing such as identifiers, variables and functions.167

• ParsingDriver – Drives parsing and scanning.168

• ParsingEnums – Enumerations used for parsing.169

The Controller manages the interaction between a user, the Model (that stores data and program170

state) and the views that show foam simulation data. This component contains one implementation file:171

• MainWindow – Stores the OpenGL, Vtk and, Histogram widgets, implements the Interface and172

manages the interaction between a user, the Model and the views.173

Version February 24, 2015 submitted to Computers 7 of 21

Figure 3. Element class Inheritance Graph. This class stores a vector of attributes that
can be attached to bodies (bubbles), faces, edges, and vertices. This diagram also shows the
three types of edges represented in FoamVis: regular (Edge) edges that have a begin and
an end vertex, quadratic edges (QuadraticEdge) that have an additional middle vertex,
and constraint edges (ConstraintEdge) that are described using a begin vertex, an end
vertex and a curve f(x, y, z) on which the edge lies.

The Data component creates, processes and stores foam simulation data. It contains the following174

implementation files:175

• AdjacentBody – Keeps track of all bodies a face is part of.176

• AdjacentOrientedFace – Keeps track of all faces an edge is part of.177

• ApproximationEdge – Curved edge approximated with a sequence of points (Fig. 3).178

• Attribute – Attribute that can be attached to vertices, edges, faces and bodies.179

• Body – A bubble.180

• BodyAlongTime – A bubble path.181

• ConstraintEdge – Edge on a constraint approximated with a sequence of points (Fig. 3).182

• DataProperties – Basic properties of the simulation data such as dimensions and if edges are183

quadratic or not.184

• Edge – Part of a bubble face, stores a begin and an end vertex (Fig. 3).185

• Element – Base class for Vertex, Edge, Face and Body. Stores a vector of attribute (Fig. 3)186

• Face – A bubble is represented as a list of faces, a face is an oriented list of edges.187

• Foam – Stores information about a time step in a foam simulation.188

• ForceOneObject – Forces and torque acting on one object.189

• ObjectPosition – Stores an object interacting with foam position and rotation190

Version February 24, 2015 submitted to Computers 8 of 21

• OOBox – An oblique bounding box used for storing a torus original domain.191

• OrientedEdge – An oriented edge. Allows using an Edge in direct or reversed order.192

• OrientedElement – Base class for OrientedFace and OrientedEdge. Allows using a Face or Edge193

in direct or reversed order.194

• OrientedFace – An oriented face. Allows using a Face in direct or reversed order.195

• ProcessBodyTorus – Processing done to “unwrap” bodies in torus model.196

• QuadraticEdge – Quadratic edge approximated with a sequence of points (Fig. 3).197

• Simulation – A time-dependent foam simulation.198

• T1 – A topological change.199

• Vertex – Element used to specify edges. An edge has at least two vertices, begin and end. A200

quadratic edge has a middle vertex as well.201

The Settings component stores and provides access to program state. This component is composed202

from the the following files:203

• BodySelector – Functors that specify selected bubbles.204

• Settings – Settings that apply to all views.205

• ViewSettings – Settings that apply to one view.206

The Average component computes time-average of simulation attributes. It contains:207

• AttributeAverages – Computes the average for several attributes in a view. Base class for208

AttributeAverages2D and AttributeAverages3D (Fig. 4).209

• AttributeAverages2D – Computes the average for several attributes in a 2D view. Casts the210

computed averages to the proper 2D types (Fig. 4).211

• AttributeAverages3D – Computes the average for several attributes in a 3D view. Casts the212

computed averages to the proper 3D types (Fig. 4).213

• Average – Computes a time-average of a foam attribute. Base class for 2D and 3D time-average214

computation classes (Fig. 4).215

• AverageInterface – Interface for computing a time-average of a simulation attribute (Fig. 4).216

• AverageShaders – Shaders used for computing a pixel-based time-average of attributes.217

• ForceAverage – Time-average for forces acting on objects interacting with foam (Fig. 4).218

• ImageBasedAverage – Calculates a pixel-based time-average of 2D foam using shaders (Fig. 4).219

Version February 24, 2015 submitted to Computers 9 of 21

Figure 4. AverageInterface Inheritance Graph. This class provides the interface
for updating an average of attributes. AttributeAverages stores an average of
many simulation attributes. Average provides common computation for averages of
forces (ForceAverage), 2D simulation attributes (ImageBasedAverage) and 3D
simulation attributes (RegularGridAverage). Two-dimensional averages include
scalars (ScalarAverage), vectors (VectorAverage), tensors (TensorAverage)
and kernel density estimates (T1KDE2D).

• PropertySetter – Sends an attribute value to the graphics card (Fig. 4).220

• RegularGridAverage – Time-average for a 3D regular grid (Fig. 4).221

• ScalarAverage – Computes 2D scalar average (Fig. 4).222

• T1KDE2D – Calculates T1s KDE for a 2D simulation (Fig. 4).223

• TensorAverage – Computes a pixel-based time-average of vector and tensor attributes (Fig. 4).224

• VectorAverage – Computes a pixel-based time-average of vector attributes (Fig. 4).225

• VectorOperation – Math operations for vtkImageData, used for 3D average computation.226

The Model component consists of the Data, Settings and Average components. It also includes two227

additional files:228

• Base – Simulation data, derived data and, program status.229

• DerivedData – Data derived from simulation data such as caches and averages.230

The View component contains the views for displaying data. It contains the following implementation231

files:232

• AttributeHistogram – A GUI histogram of a scalar attribute useful for one time step and all time233

steps.234

• FoamvisInteractorStyle – Interactor that enables FoamVis style interaction in a VTK[8] view.235

Version February 24, 2015 submitted to Computers 10 of 21

• Histogram – A histogram GUI that allows selection of bins.236

• HistogramItem – Implementation of a GUI histogram, modified from Qwt[3].237

• WidgetBase – Base class for all views: WidgetGl, WidgetVtk, WidgetHistogram.238

• WidgetGl – View that displays 2D (and some 3D) foam visualizations using OpenGL.239

• WidgetHistogram – View for displaying histograms of scalar values.240

• WidgetSave – Widget that knows how to save its display as a JPG file.241

• WidgetVtk – View that displays 3D foam visualizations using VTK.242

3.2. Parsing and Data Processing Foam simulation data consists of a list of SE output files, one per243

time step. A file stores the entire configuration of the simulated foam at a particular time step. For244

maximum generality and flexibility, we parse SE files directly instead of using derived files created245

by foam scientists. This allows our application to work with any simulation created using SE and at246

the same time it gives us access to the entire duration and state of the simulation. Parsing is done247

using flex [5] and bison [6] tools using EvolverData.l lexical analyzer and EvolverData.y248

grammar. Parsing is run by Simulation::ParseDMPs which parses the simulation files, stores the249

simulation data in memory and performs the additional processing required.250

Our tool can read the following optional data that is saved by the simulation code: a list of T1s and251

the network and pressure forces that act on a body (Sec. 3.4).252

After parsing foam simulation data and creating the corresponding data structures, we perform253

additional data processing (Foam::Preprocess and Simulation::Preprocess). First254

we compact each list of geometric elements as there can be numbering gaps in the list255

specified in a SE file (Foam::compact). Then, if the foam described in the SE file256

contains periodic boundary conditions (PBC) [20,21] we unwrap the geometric elements so257

that we can display the foam (Foam::unwrap). Additional processing include calculating258

each bubble’s center of mass (Foam::calculateBodyCenters), bounding box and the259

bounding box of the foam at each time step (Foam::CalculateBoundingBox and260

overall (Simulation::CalculateBoundingBox, and calculating statistical quantities such as261

histogram, minima and maxima for values of attributes (Simulation::calculateStatistics).262

For 3D foam simulations unstructured simulation data is converted to a regular grid and it is cached in263

files on disk (Sec. 3.6).264

The design of the data structures for storing bubbles and their topology is object-oriented. We have265

an object that stores an instance of each bubble. The Bubble contains a list of edges. These are the266

shared edges between neighboring bubbles. The Bubble object also stores a pointer to its neighboring267

bubbles. Technically speaking this information could be considered redundant since bubbles share edges,268

however, it does accelerate computation. Another option is to have each edge contain a list of pointers to269

its bubble objects. This is an important consideration for neighbor searching. During the foam evolution,270

the foam topology must be updated for every T1 event.271

Version February 24, 2015 submitted to Computers 11 of 21

Figure 5. The BrowseSimulations dialog which allows the user to view related
simulations and select simulations of interest for individual analysis or comparison.

3.3. Interface Each dataset consists of a list of data files stored in a folder. The only information about272

the simulation available without parsing the simulation files is the name of the folder. While this often273

encodes important parameters of the simulation, their meaning may be cryptic and only known to the274

scientist that created the simulation. Additionally there is an increasing number of parameters providing275

additional information about the simulation which is not encoded in the simulation files. To address these276

issues we create a simulations database and a browsing interface. The simulations database records for277

each simulation three pieces of information: a simulation name - usually this is the name of the folder278

that stores the simulation files; a list of labels, each label is used to group simulations based on specific279

criteria; and simulation specific visualization parameters. The database is stored as a .ini file and is280

created by the user from a template. The UI, Options file contains classes that read options either from281

the command line or from an .ini file.282

The browsing feature (Fig. 5) presents all grouping labels from the simulation database in a list.283

When a user selects a label, a list with all simulations tagged by that label is presented. When a user284

selects a simulation name, a picture of the first time step in the simulation is displayed. The image is285

saved beforehand so no parsing of simulation files is required. This allows a user to explore existing286

simulations based on similarity criteria encoded in labels and visually select simulations of interest for287

individual analysis or comparison. The browsing dialog is implemented by UI, BrowseSimulations288

class.289

FoamVis’ main window (Fig. 6) contains three panels that are used for both visualization and user290

interaction (Spatial and Information Visualization and Time), and one panel (Interface) that allows the291

user to specify desired visualizations and visualization parameters. The spatial visualization panel292

shows multiple views with each view showing a different visualization, a visualization of a different293

simulation attribute or a visualization of a different simulation. The information visualization panel294

shows histograms for simulation scalars shown in the spatial visualization panel. The time panel shows295

the current time step and marks time steps resulting from selections on scalar values. The main window296

of the application is implemented in Controller, MainWindow. This class implements the Interface297

panel and handles user notifications resulted from user interactions with the panel or with simulation data.298

The Spatial Visualization panel is implemented by the View component. In this component WidgetGl299

class displays 2D visualizations and 3D attribute and bubble paths visualizations; WidgetVtk class300

Version February 24, 2015 submitted to Computers 12 of 21

Figure 6. FoamVis’ MainWindow showing the spatial visualization, information
visualization, time and interface panels. The spatial visualization panel shows two views:
bubble velocity magnitude for a falling ellipse simulation and bubble deformation a falling
discs simulation. A selection of velocity magnitude values is performed on the histogram
showing this scalar and it is reflected in the spatial visualization and time panels. We can
observe in the time panel that only 55 time steps out of 549 contain high velocity bubbles and
in the spatial visualization panel we see those bubbles color mapped, the rest of the bubbles
are rendered in gray as context information.

Spatial

visualization

Information

visualization

Time

Interface

displays 3D attribute time-average and T1s KDE visualizations. The decision to use VTK [8] rather301

than plain OpenGL [18] for some of the 3D visualizations was based on the desire to speed-up the302

development of the application. We believe this was a sound decision which, besides speeding-up303

development, opened-up a wide range of visualization algorithms for adoption into FoamVis.304

3.4. Simulation attributes Scalar bubble attributes include velocity along principal axes, velocity305

magnitude, edges per face, deformation, pressure, volume and growth rate. Scalar bubble attributes306

are visualized using color mapping. The user can change the color palette and change the range307

of scalar values mapped to color through clamping (Sec. 3.10). Fig. 7-a and Fig. 8, Fig. 6 show308

examples of scalar attributes visualized through color mapping. While domain experts are mostly309

interested in bubble attributes, in SE attributes can be attached to a body (bubble), face, edge or vertex.310

Information about predefined attributes that can be attached one of these elements is stored in Parser,311

AttributesInfoElements class. New attributes can be defined in a .dmp file. The Parser calls312

Data,Foam::AddAttributeInfo to register a new attribute. The Parser,EvolverData.y parses313

a list of attributes on the following grammar rules: xxx_attribute_listwhere xxx is vertex, edge,314

face or body. It creates a list of NameSemanticValue objects and it passes them to the Foam object315

for storage.316

Bubble velocity, defined as the motion of the center of mass, provides information about foam flow.317

We visualize bubble velocities using glyphs (2D and 3D) (Fig. 7-a) and streamlines (2D only) (Fig. 9).318

We compute the velocity attribute in a processing step after parsing (Simulation::Preprocess) in319

Simulation::calculateVelocity. Velocity glyphs are visualized using the Display module,320

DisplayBodyFunctors file, DisplayBodyVelocity class.321

Version February 24, 2015 submitted to Computers 13 of 21

Figure 7. Are the falling discs behaving like the falling ellipse? (a) The foam between the
discs moves at high velocity with the discs. Velocity is displayed using glyphs and velocity
magnitude is also color-mapped. (b) Few topological changes occur between the discs, so
the foam behaves like an elastic solid there. Topological changes over time visualized using
KDE [13].

Figure 8. Rounding the corners of the constriction results in reduced elastic deformation
of the foam (top versus bottom). In both simulations, there is an area where bubbles are
not deformed just downstream from the constriction. We show the square (top) and rounded
(bottom) constriction simulations. Deformation magnitude and direction is displayed with
ellipses, deformation magnitude is also color-mapped. An average over the entire duration
of the simulations is displayed [13].

Bubble deformation magnitude and direction are important bubble attributes, because they facilitate322

validation of simulations and provide information about the force acting on a dynamic object in323

foam. While visual inspection of individual bubbles provides information about foam deformation,324

this information is not quantified and, more importantly, cannot be averaged to obtain the general foam325

behavior. To address these issues, we define a bubble deformation measure [13] expressed as a tensor.326

The deformation tensor is visualized using glyphs as shown in Fig. 8. We compute a deformation scalar327

and tensor measures in a processing step after parsing: Foam::CalculateDeformationSimple328

and Foam::CalculateDeformationTensor. Two-dimensional deformation glyphs are329

visualized using the Display module, DisplayBodyFunctors file, DisplayBodyDeformation330

class.331

When foam is subjected to stress, bubbles deform (elastic deformation) and move past each other332

(plastic deformation). Domain experts are interested in the distribution of the plasticity which is333

indicated by the location of topological changes. A topological change is a neighbor swap between334

four neighboring bubbles. In a stable configuration, bubble edges meet 3-way at 120◦ angles. As foam is335

sheared, bubbles move into an unstable configuration, in which edges meet 4-way, then quickly shift into336

Version February 24, 2015 submitted to Computers 14 of 21

Figure 9. Topological changes are associated with strong circulation; topological changes
shown with green dots, velocity field shown with streamlines, t = 412. Velocity is shown
with streamlines, and velocity magnitude is color-mapped.

a stable configuration. Topological changes for the current time step or for all time steps are visualized337

with glyphs (or spheres) of configurable color and size showing the location of the topological change338

(Fig. 9). Topological changes are parsed either from a separate file or from variables inside the .dmp file339

by the overloaded function Simulation::ParseT1s. They are stored in the Simulation object.340

The forces and the torque acting on objects are computed by the simulation code and stored in the341

simulation data. Each force acting on an object is represented with an arrow that starts in the center of342

the object and with length proportional to the magnitude of the force.343

For the falling discs simulation, the interplay of the network and pressure forces rotate one disc around344

the other. We provide a user option that displays the difference between the forces acting on the leading345

disc and forces acting on the trailing disc. This difference allows us to better analyze the causes of the346

rotation as there is a direct correspondence between the forces displayed on the screen and the movement347

of the disc (Fig. 10 right).348

The torque τ rotating an object around its center is displayed as a force F acting off-center on the349

object τ = r × F , where r is the displacement vector from the center of the object to the point at which350

the force is applied. The distance |r| is a user-defined parameter, FoamVis calculates the appropriate351

value of F to keep the torque constant (Fig. 10 left).352

The forces and torques acting on objects are read from the simulation files, from variable353

names passed as parameters either from command line or from the .ini file. Variable names354

that store forces and torques are passed as parameters in Data, ForceNamesOneObject class355

while the forces and torques are stored in Data, ForceOneObject in the Foam object. Forces356

are displayed using ForceAverage::DisplayOneTimeStep1 for OpenGL views or using357

PipelineAverage3D::createObjectActor for VTK views.358

3.5. Bubble paths Visualization of bubble paths provides information about the trajectory of individual359

bubbles in the simulation. The paths are a useful way to compare simulation with experiment. They360

also provide insight into the overall behavior of the foam. A bubble path is determined by connecting361

1 This function would better fit in the Display module, as this would separate the data from its display. We plan to address
this issue in future work.

Version February 24, 2015 submitted to Computers 15 of 21

Figure 10. Falling-ellipse versus falling-discs. The linked time with event synchronization
feature [13] is used to synchronize the rotation of the ellipse and the two discs such that they
reach an orientation of 45◦ in the same time. Attributes (pressure, deformation and forces)
are averaged over 52 time steps for the ellipse simulation (resulting in an average over 15
time steps for the two disc simulation). Pressure is color-mapped, deformation is shown
using ellipses. The force difference between the leading disc and the trailing disc and the
torque on the ellipse is indicated. The network force and torque are indicated with a black
arrow and the pressure force and torque are indicated with a red arrow.

the center of bubbles with the same ID in consecutive time steps. Fig. 11 shows a pattern of bubbles362

traversing loops revealed by a bubble paths visualization.363

Bubble paths are stored in a processing step after parsing by calling364

Simulation::CacheBodiesAlongTime and they are displayed in Display,365

DisplayBubblePaths.366

3.6. Time-Average of a Simulation Attribute Bubble-scale simulations can be too detailed for observing367

general foam behavior and topological changes generate large fluctuations in attribute values that hide the368

overall trends. A good way to smooth out these variations is to calculate the average of the simulation369

attributes over all time steps, or over a time window before the current time step. This visualization370

reveals global trends in the data because large fluctuations caused by topological changes are eradicated.371

This results in only small variations between averaged successive time steps. The time window is a372

parameter set by the user. We compute the average for the entire simulation (Fig. 8) if there are no373

dynamic objects interacting with the foam. In this case, at a high level of detail, there is no difference374

between different time steps in the simulations. For simulations that include dynamic objects interacting375

with the foam (Fig. 7, 10) a smaller time window is appropriate, as objects may traverse transient states376

that have to be analyzed independently.377

Time-averages of several 2D foam simulation attributes are stored in AttributeAverages2D378

and are referenced from WidgetGl. A pixel-based time-average of one simulation attribute is379

computed by ScalarAverage, VectorAverage and TensorAverage for scalars, vectors380

and tensors. Most of this computation is done in the base class ImageBaseAverage381

(Fig. 4). Displaying an average of attributes is done by the graphics card fragment shader using382

AverageInterface::AverageRotateAndDisplay1 overwritten for each attribute type. For383

3D simulations, unstructured grid data is converted to regular grid data and is cached in files inside384

.foamvis folder using Foam::SaveRegularGrid. This is done in the processing step after385

Version February 24, 2015 submitted to Computers 16 of 21

Figure 11. Pattern of bubbles traversing loops visualized using bubble paths in the falling
discs simulation. The bubbles paths are color-mapped to velocity along Y , with orange
indicating descent and purple indicating ascent. The left image shows the bubble paths over
the entire simulation. The red area shows the paths of the two discs. The black rectangle
shows the region that is magnified in the right image.

parsing Simulation::Preprocess. Time-averages of several 3D foam simulation attributes are386

stored in AttributeAverages3D and are referenced from WidgetVtk. A time-average for387

one attribute, for all types of attributes, is computed by RegularGridAverage and displayed388

using a VTK pipeline created by PipelineAverage3D::createScalarAverageActor and389

PipelineAverage3D::createVelocityGlyphActor for scalars and respective vectors.390

3.7. Topological changes kernel density estimate (KDE) Topological changes, in which bubbles change391

neighbors, indicate plasticity in a foam. Domain experts expect that their distribution will be an important392

tool for validating simulations. Simply rendering the position of each topological change suffers from393

over-plotting, so it may paint a misleading picture of the real distribution. We compute (see Lipsa et394

al. [13] for details) a KDE for topological changes (Fig. 7, Fig. 12). While traditional histograms395

show similar information and are straightforward to implement they have drawbacks which may prove396

important depending on the context. Drawbacks of histograms include the discretization of data into bins397

which may introduce aliasing effects and the fact that the appearance of the histogram may depend on398

the choice of origin for the histogram bins [4,19]. Kernel-based methods for computing the probability399

density estimate eliminate these drawbacks.400

T1s KDE is computed using the average framework (Fig. 4) (T1KDE2D or RegularGridAverage401

classes for 2D or 3D foam simulation). For 2D simulations, for each topological change in a time step,402

a Gaussian is added to the average using T1KDE2D::writeStepValues. For 3D simulations, a403

Gaussian determined by a topological change in a time step is returned by Simulation::GetT1KDE.404

This Gaussian added to the current average in RegularGridAverage::OpStep.405

3.8. Histograms We provide both a histogram of bubble attribute values over one time step and406

over all time steps. To facilitate data analysis, our histogram is configurable. The user can407

choose a maximum height, logarithmic or linear height scale and uni-color or color-coded display408

Version February 24, 2015 submitted to Computers 17 of 21

Figure 12. KDE around the falling disc versus falling sphere simulations. The maximum
values in the color bar represent the maximum number of topological changes in a time step.
KDE for all time steps (b) shows that, for 3D, topological changes on top of the sphere
dominate the final result. This is caused by topological changes in the same area being
triggered repeatedly in the simulation code, feature discovered using our visualization.

(a) KDE for one time
step: t = 18 left view
and t = 21 right view.
Isosurface density is 0.5
for the right view.

(b) KDE for all time
steps. Isosurface
density is 0.12 for the
right view.

using HistogramSettings dialog. Histograms are also used in selection and filtering of data409

based on attribute value and in color-map clamping used for selecting features of interest in the410

data. These interactions are described in detail in Sec. 3.10. Histograms are displayed by View,411

WidgetHistogram. Histograms notify the Controller when scalar selection has changed using412

WidgetHistogram::SelectionChanged.413

3.9. Multiple linked-views Foam scientists wish to understand what triggers certain behavior in414

foam simulations. Foam behavior is determined by many simulations attributes so the ability to see415

different attributes at the same time and to understand how different attributes relate to one another416

is very important. At the same time, to understand the influence that simulation parameters have on417

foam behavior, foam scientists would like to analyze and compare related simulations. Both these418

requirements are addressed using multiple linked views. We provide up to four different views. For419

maximum flexibility, each view can depict a different simulation attribute, a different visualization or420

even a different simulation. Each view uses its own color-bar and can show the navigation context.421

Each of the three widgets used to show data (WidgetGl, WidgetVtk and WidgetHistogram)422

can display up to four views. These three classes are derived from WidgetBase which provides view423

related functionality; WidgetBase is derived from Base which provides access to data and program424

status (Fig. 13).425

To set up optimal views to analyze data, users can copy viewing transformations426

(WidgetXXX::CopyTransformFromSlot where XXX is Gl or Vtk) and color mapping between427

views depicting the same attribute (MainWindow::CopyColorMapXXX where XXX is Scalar or428

Velocity).429

The two halves option facilitates visual comparison of two related foam simulations (Fig. 8). It430

visualizes related simulations that are assumed to be symmetric with respect to one of the main axes.431

Version February 24, 2015 submitted to Computers 18 of 21

Figure 13. WidgetBase Inheritance Graph. This class provides functionality common
to all views. It inherits from Base which stores simulation data and program status.
WidgetGl displays views rendered with OpenGl, WidgetVtk displays views rendered
with VTK, and WidgetHistogram displays histograms.

While the same information can be gathered by examining the two simulations in different views,432

the two halves view may facilitate analysis as images to be compared are closer together and it is433

useful for presentation as it saves space. This type of visualization was previously performed manually434

by domain experts. This option is only available for 2D simulations in WidgetGl. It is set using435

Settings::SetTwoHalvesView.436

We provide three connection operations [23] between views: one linked-selection connection and437

two linked-time connections. The linked-selection connection works by showing data selected in one438

view in other views. This is used to see, for instance, the elongation of high pressure bubbles or both439

pressure and elongation for bubbles involved in a topological change. This connection works by copying440

the selection in one view in any other view using ViewSettings::CopySelection.441

The first linked-time connection works by having each view linked to the same time step, as442

foam scientists want to analyze several attributes at the same time to understand foam behavior443

influenced by those attributes. The linked-time connection is set to independent time or linked time444

using Settings::SetTimeLinkage. The second linked-time connection, linked-time with event445

synchronization, is described next. In simulations that involve dynamic objects interacting with foam,446

we may want a similar event in both simulations to be visualized at the same time so that behavior447

up to that event can be compared and analyzed together. When comparing the falling discs with the448

falling ellipse simulations, the ellipse and the discs start in similar configurations. The main axis of449

the ellipse and the line connecting the center of the two discs are horizontal. We want the ellipse and450

the discs to reach intermediate configurations and the stable configuration at the same time. These451

configurations are defined in terms of the angle that the major axis of the ellipse and the line connecting452

the centers of the two discs make with gravity. For instance, an angle for the intermediate configuration453

could be 45◦ while the angle for the stable configuration is 0◦. A new event for the current view and454

current time is added using Settings::AddLinkedTimeEvent. All views that use linked-time455

with event synchronization have to have the same number of events. This technique splits simulation456

times in intervals - an interval before each event and an interval after the last event. For each interval457

before an event, one simulation will run at its normal speed (the simulation with the longest interval as458

returned by Settings::GetLinkedTimeMaxInterval), all other simulations will be “slowed459

down” using Settings::GetLinkedTimeStretch. Simulations will run at normal speed for the460

Version February 24, 2015 submitted to Computers 19 of 21

time-interval after the last event. Using this approach, related events occur at the same linked time in all461

simulations, facilitating their comparison as well as the comparison of their temporal context. Fig. 7, 10462

use linked-time with event synchronization feature. The complete interface for using the linked-time463

with event synchronization is in class Settings, member group Time and LinkedTime.464

3.10. Interaction Interaction with the data is an essential feature of our application.465

Navigation is used to select a subset of the data to be viewed, the direction of view, and the level of466

detail [23]. We provide the following navigation operations: rotation around a bounding box center for467

specifying the direction of view, and translation and scaling for specifying the subset of data and the level468

of detail. Navigation operations are implemented in the WidgetGl views in mousePressEvent and469

mouseMoveEvent. These operations are provided by the VTK library in the WidgetVtk views. A470

navigation context (Fig. 11 left) ensures that the user always knows its location and orientation during471

exploration of the data. Focus and context related settings are in ViewSettings, Context view472

member group.473

We can select and/or filter bubbles and center paths based on three distinct criteria: based on474

bubble IDs (WidgetGl::SelectBodiesByIds), to enable data to be related to the simulation475

files and for debugging purposes; based on location of bubbles (WidgetGl::mousePressEvent476

and WidgetGl::mouseMoveEvent), to analyze interesting features at certain locations in the477

data; and based on an interval of attribute values specified using the histogram tool (Fig. 6)478

(The histogram sends WidgetHistogram::selectionChanged signal which is handled in479

MainWindow::SelectionChangedFromHistogram). A composite selection can be specified480

using both location and attribute values.481

Selected bubbles or center paths constitute the focus of our visualization, and the rest of the bubbles482

or center paths provide the context [7]. The context of the visualization is displayed using user-specified483

semi-transparency, or it can be hidden altogether.484

Encoding operations are variations of graphical entities used in a visualization that emphasize485

features of interest [23]. We provide encoding operations to change the color map used, to specify486

the range of values used in the color map and to adjust the opacity of the visualization context. Selection487

of the interval used in color-mapping is guided by the histogram tool (Fig. 14) (the implementation is in488

EditColorMap). This provides essential information for selecting an interval that reveals features of489

interest.490

4. Conclusions and Future Work We present challenges faced by domain scientists and describe491

FoamVis, a software application designed to address some of these challenges. We describe its main492

implementation components and their interactions, and present FoamVis’ main features together with493

implementation notes that describe how and where these features are implemented.494

We see many directions for future work. We would like to add more algorithms for visualization of495

3D foam simulations, enable comparison between foam simulation and experiments and support analysis496

of other kinds of Surface Evolver simulations.497

Version February 24, 2015 submitted to Computers 20 of 21

Figure 14. Color-map clamping guided by the histogram tool (EditColorMap class).
This is a histogram of the constriction simulation which uses a logarithmic height scale. The
histogram is clamped at high values. The dialog also allows the user to choose a different
color palette and to change highlight colors used for vector and tensor glyphs and forces
acting on objects.

Acknowledgments This research was supported in part by the Research Institute of Visual498

Computing (rivic.org) Wales. We thank Ken Brakke for answering our many questions about the Surface499

Evolver.500

The authors declare no conflict of interest501

References502

1. D. Bell. UML basics: The component diagram, 2004. Online document, accessed 25 June 2013,503

http://www.ibm.com/developerworks/rational/library/dec04/bell/index.html.504

2. K. Brakke. The Surface Evolver. Experimental Mathematics, 1(2):141–165, 1992.505

3. C. A. Brewer. ColorBrewer. Online document, http://www.ColorBrewer.org, accessed 3 March.506

2012.507

4. O. Daae Lampe and H. Hauser. Interactive Visualization of Streaming Data with Kernel Density508

Estimation. In Pacific Visualization Symposium (PacificVis), pages 171–178. IEEE, 2011.509

5. flex - The Fast Lexical Analyzer. Online document, http://flex.sourceforge.net/, accessed 29 Nov.510

2010.511

6. Bison - GNU Parser Generator. Online document, http://www.gnu.org/software/bison/, accessed 29512

Nov. 2010.513

Version February 24, 2015 submitted to Computers 21 of 21

7. H. Hauser. Generalizing Focus+context Visualization. Scientific visualization: The visual extraction514

of knowledge from data, pages 305–327, 2006.515

8. K. Inc. The VTK User’s Guide Version 5 (Paperback). Kitware Inc., 2006.516

9. D. Lipsa. FoamVis, 2013. Online document, accessed 25 June 2013, http:http://cs.swan.ac.uk/517

~csbob/research/foamVis/design/html/.518

10. D. R. Lipşa, R. S. Laramee, S. Cox, and I. T. Davies. Visualizing 3D Time-Dependent Foam519

Simulation Data. In Lecture Notes in Computer Science, International Symposium on Visual520

Computing (ISVC), Rethymnon, Crete, Greece, July 2013.521

11. D. R. Lipşa, R. S. Laramee, S. J. Cox, and I. T. Davies. FoamVis: Visualization of 2D Foam522

Simulation Data. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2096–2105,523

Oct. 2011.524

12. D. R. Lipşa, R. S. Laramee, S. J. Cox, and I. T. Davies. A Visualization Tool For Foam Research.525

In NAFEMS World Congress (NWC) Conference Proceedings, page 141, Salzburg, Austria, June526

2013.527

13. D. R. Lipşa, R. S. Laramee, S. J. Cox, and I. T. Davies. Comparative Visualization and Analysis of528

Time-Dependent, 2D Foam Simulation Data. Technical report, Swansea University, 2013.529

14. Microsoft. Model-View-Controller, 2013. Online document, accessed 25 June 2013, http://msdn.530

microsoft.com/en-us/library/ff649643.aspx.531

15. R. Prud’homme and G. Warr. Foams in Mineral Flotation and Separation Processes, pages532

511–554. Volume 57 of prud1996foams [16], 1996.533

16. R. K. Prud’Homme and S. A. Khan. Foams: theory, measurements, and applications, volume 57.534

CRC PressI Llc, 1996.535

17. W. Rossen. Foams in Enhanced Oil Recovery, pages 413–464. Volume 57 of prud1996foams [16],536

1996.537

18. D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide, Fifth Edition. Addison538

Wesley, 2006.539

19. B. Silverman. Density Estimation for Statistics and Data Analysis, volume 26 of Monographs on540

Statistics and Applied Probability. Chapman & Hall/CRC, 1986.541

20. The Surface Evolver, Jan. 2008. Online document, accessed 29 Nov. 2010, http://www.susqu.edu/542

brakke/evolver/html/evolver.htm.543

21. Surface Evolver Workshop, Apr. 2004. Online document, accessed 1 Dec. 2010, http://www.susqu.544

edu/brakke/evolver/workshop/workshop.htm.545

22. D. van Heesch. Doxygen, 2013. Online document, accessed 26 June 2013, http://www.stack.nl/546

~dimitri/doxygen/.547

23. M. Ward, G. Grinstein, and D. Keim. Interactive Data Visualization. Foundations, Techniques, and548

Applications, chapter 10, pages 315–334. A K Peters, Ltd., Natick, Massachussetts, 2010.549

24. D. Weaire and S. Hutzler. The Physics of Foams. Oxford University Press, Oxford, 1999.550

c⃝ February 24, 2015 by the authors; submitted to Computers for possible open access551

publication under the terms and conditions of the Creative Commons Attribution license552

http://creativecommons.org/licenses/by/4.0/.553

