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Vector Field Segmentation Based on Integral Curve Attributes

Lei Zhang, Robert S. Laramee, David Thompson, Adrian Sescu, and Guoning Chen

Abstract— We propose a segmentation method for vector fields. Our segmentation is driven by integral curve attributes that are used
to classify different behaviors of integral curves. In particular, we assign an attribute value to each spatio-temporal position based
on the integral curve that passes through it. With this attribute information, our segmentation first performs a region classification.
Then, the connected components are constructed from the derived classification to obtain an initial segmentation. After merging and
filtering small segments, we extract and refine the boundaries of the segments. Because the points that are correlated by the same
integral curves have the same or similar attribute values, the proposed segmentation typically results in segments that are well-aligned
with the flow direction. Therefore, additional processing is not required to generate other geometric descriptors within the individual
segments to illustrate the flow behaviors. We apply our method to a number of synthetic and CFD simulation data sets and compare
it with existing methods to demonstrate its effectiveness.

Index Terms—Vector field data, integral curves, flow visualization, flow segmentation.

1 INTRODUCTION

Vector field analysis is a ubiquitous tool employed to study a wide
range of dynamical systems involved in applications including auto-
mobile and aircraft engineering, climate study, combustion dynamics,
earthquake engineering, and medicine, among others. With the contin-
uous increase in size and complexity of the generated vector field data
sets, many partition-based techniques have been developed to present
an overview of the behavior of the vector fields.

Existing techniques typically partition the flow domain based on ei-
ther certain local flow characteristics, such as vector magnitude and
orientation, or via its topological structure [29]. Specifically, segmen-
tation techniques that are based on local flow information usually per-
form vector field clustering in a hierarchical fashion, i.e., either top-
down [9] or bottom-up [21, 33]. Since this clustering is based on the
local flow information, the segments and their boundaries need not
to be aligned with the flow direction (see Figure 9(b) for an exam-
ple). Therefore, additional computation is needed in order to generate
other visual primitives, such as stream-lets or glyphs [21], to convey
information about the flow behavior within each segment. In addition,
vector field topology [13, 23] reveals the essential flow structure that
helps partition the flow domain into regions with homogeneous behav-
iors. However, it is yet to be applied to unsteady flow, and its visual
representation in high dimensional space can be too complicated for
the domain experts to comprehend.

Integral curve attributes have been recently applied to cluster [16]
and select [38] integral curves to generate an overview of the vector
fields. However, depending on the dissimilarity metric used for inte-
gral curve comparison, some important features may be overlooked
due to the insufficient sampling of integral curves. To remedy this,
very dense integral curves can be computed as the input, which will
significantly increase the memory and storage consumption in com-
putation. In addition, integral surfaces may be a better descriptor
than integral curves for depicting important flow dynamics in higher-
dimensional spaces, as mentioned in a recent survey [4]. Nonethe-
less, integral surface placement is a much harder problem than integral
curve placement [4].

In this paper, we introduce a segmentation framework based on the
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integral curve attributes applicable to both 2D and 3D vector fields.
Our method combines the advantages of the vector field clustering and
integral curve attribute approaches, and attempts to achieve an intuitive
and expressive segmentation of the flow domain whose resulting seg-
ments are aligned with the flow. Our framework consists of two major
components. First, we derive several attribute fields from the integral
curve attributes. The attribute field value, i.e. a scalar data, at each
spatio-temporal position equals to the attribute value of the integral
curve that passes through this position. The attribute value of an inte-
gral curve is computed by integrating local properties along it [22, 31].
If the integral curve is computed over a long time window, the attribute
field will encode the global behaviors of the vector field [39]. With the
derived attribute fields, the vector field segmentation problem is con-
verted into a scalar field partitioning problem. In fact, a similar idea
has been described in [12]. Different from their goal of generating
implicit clusters induced by semantic dependencies, our method gen-
erates a segmentation based on the flow information only. With the
aid of the derived attribute fields, we first classify the sampled spatial
positions according to their attribute values. Then, the connected com-
ponents of this classification are extracted to provide an initial segmen-
tation. This initial segmentation may contain some smaller segments
due to the numerical error in the attribute field computation. We then
perform dilation operations to remove those small segments. After
cleaning the initial segmentation, the boundaries of the obtained seg-
ments may still be non-smooth. We then further smooth these bound-
aries. Unlike the boundary refinement applied in [15] our method does
not require to compute many contours and compare them to the coarse
segmentation curves. The pipeline of this work is shown in Figure 1.

In summary, the contributions are as follows:

• We introduce an integral curve attribute based flow segmenta-
tion framework, which generates segments that are better aligned
with the flow than those produced by existing local methods. In
addition, our framework is flexible and efficient so that various
attribute fields can be used to guide the segmentation and help
users inspect different flow behaviors.

• We present a complete pipeline for generating the initial seg-
mentation and filtering for both 2D and 3D vector fields. This
includes a dilation operation for removing small segments and
an effective boundary refinement algorithm for removing noise
at segment boundaries. Our framework is simple to implement
and computationally efficient. We demonstrate its effectiveness
via applications to a number of synthetic and CFD simulation
data. In particular, we wish to point out that our segmentation
approach can aid the visualization of high dimensional vector
fields without explicitly placing stream surfaces (Figure 13(b)).

The rest of the paper is structured as follows. Section 2 reviews



Fig. 1: The pipeline of our method.

the previous work related to the proposed method. Section 3 briefly
reviews the important concepts of vector fields and the attribute fields
and their computation. Section 4 describes the segmentation algorithm
based on the integral curves and the boundary refinement. The appli-
cations of the segmentation algorithm to a number of steady and un-
steady flows are reported in Section 5. Section 6 summarizes out work
and discusses its limitations.

2 RELATED WORK

There is a large body of literature on the analysis and visualization
of flow data. Interested readers are encouraged to refer to recent sur-
veys [4, 11, 13, 23] that provide systematic classifications of various
analysis and visualization techniques. In this section, we focus on
the most relevant work on integral curve attributes and partition-based
flow visualization.

Vector field topological analysis Vector field topology provides a
streamline classification strategy based on the origin and destination
of individual streamlines. Since its introduction to the visualization
community [10], vector field topology has received extensive atten-
tion. A large body of work has been introduced to identify differ-
ent topological features, including fixed points [24, 35] and periodic
orbits [1, 34, 37]. Recently, Chen et al.[2] studied the instability of
trajectory-based vector field topology and, for the first time, proposed
Morse decomposition for vector field topology computation, which
leads to a more reliable interpretation of the resulting topological rep-
resentation of the vector field.

The success of vector field topology for the analysis of steady vector
fields has inspired efforts to extend it to the analysis of unsteady vector
fields. The most successful strategies are based on the Lyapunov expo-
nent. Specifically, Lagrangian Coherent structures (LCS) were intro-
duced to identify separation structure for pathlines for time-dependent
flow. The identification of LCSs was first introduced by Haller [8]
by computing the Finite Time Lyapunov Exponent (FTLE) of the flow.
Using FTLE fields computed from forward and backward time integra-
tions of pathlines, two scalar fields are derived whose values are large
in magnitude in areas of diverging and converging flow, respectively.
LCSs are then defined as the ridge-lines/-surfaces of the two FTLE
fields with negligible flux [14, 30]. Since its introduction, FTLE has
been compared with the separatrices in the steady cases [26], and its
computational efficiency has been improved substantially [5].

Streamline and pathline attributes Sadarjoen and Post introduced
the winding angle concept for streamlines and utilized it to classify
the streamlines within vortical regions [25]. Salzbrunn and Scheuer-
mann introduced streamline predicates, which classifies streamlines
by interrogating them as they pass through certain features, e.g., vor-
tices [28]. Later, this approach was extended to the classification of
pathlines [27]. At the same time, Shi et al. presented a data explo-
ration system to study the different characteristics of pathlines based
on their various attributes, including winding angles [31]. Recently, a
statistics-based method was proposed to help select the proper set of
pathline attributes to improve the interactive flow analysis [22]. Dif-

ferent from the approaches of the pathline predicate and clustering
based on pathline attributes, our work is to segment the flow domain
where pathlines are located. There are other techniques for classifying
streamlines that are constrained to flow separation and vortex struc-
tures. The recently introduced streamline bundling technique [38] is
such an example. More recently, McLoughlin et al. introduced the
idea of a streamline signature based on a set of curve-based attributes
including curvature and torsion [20]. This streamline signature is used
to compute the similarity between streamlines and help domain ex-
perts place and filter streamlines for the creation of an informative and
uncluttered visualization of 3D flow.
Flow segmentation A top-down method and a bottom-up approach
were proposed by Heckel et al. [9] and Telea et al. [33], respectively.
Recently, an image-space mesh-driven vector field clustering algo-
rithm is introduced by Peng et al. [21]. They provided a bottom-up
approach to generate a hierarchical cluster of vector fields defined on
2-manifolds. However, these hierarchical methods only consider local
flow behavior, therefore, global flow behavior may not be revealed.
McKenzie et al. [19] implemented an error-driven approach for vari-
ational clustering. Li et al. [15] proposed an approach for 2D vector
field segmentation based on Hodge decomposition and the normal-
ized cut algorithm. The Green Function Method (GFM) was used to
approximate the curl-free and the divergence-free components to seg-
ment the vector field. Guan et al. [7] introduced a feature-emphasized
clustering method for 2D vector fields. A 3D vector field clustering ap-
proach based on integral curvature was proposed by Kuhn et al. [12].
The authors detected regions of similar geometric properties such as
integral curvature and visualizes them by means of compact cluster
boundaries. More partition-based techniques for flow segmentatoin
are described in the survey by Salzbrunn et al. [29].

3 VECTOR FIELD BACKGROUND AND TRAJECTORY AT-
TRIBUTES

Consider a d-manifold M ⊂ Rd(here d=2 or 3), a vector field can be
expressed as an ordinary differential equation (ODE) ẋ = V (x, t) or a
map ϕ : R×M→ Rd . There are a number of curve descriptors that
depict different aspects of the translational property in vector fields.

• A streamline is a solution to the initial value problem of
the ODE system confined to a given time t0: xt0(t) = p0 +∫ t

t0 V (x(η); t0)dη .
• Pathlines are the paths of the massless particles released in the

flow domain at a given time t0: x(t)= p0+
∫ t

t0 V (x(η); t0+η)dη .
• A streakline, s̃(t), is the connection of the current positions of the

particles, pti(t), that are released from position p0 at consecutive
times ti.

There are a number of features in steady flows, V (x), that are of
interest. A point x0 is a fixed point (or singularity) if V (x0) = 0, and a
trajectory is a periodic orbit if it is closed. Hyperbolic fixed points, pe-
riodic orbits and their connectivity define the vector field topology [1].



Vortices are another important flow feature that are of interest to do-
main experts. Unfortunately, there is no unified definition for vortices.
Informally, a vortex is a region where the flow particles are rotating
around a common axis (reduced to a point in 2D) [17]. In this work, we
consider streamlines with larger winding angles than a user-specified
threshold, e.g. 2π , are within vortices. In unsteady flows, topology is
not well-defined. One typically looks for certain coherent structures
that correspond to structures in the flow that are present for a rela-
tively long time. The LCS, i.e., the ridges of the FTLE field, is one
such coherent structure [8].

3.1 Attribute Fields
Various attributes can be extracted for the analysis and classification
of integral curves [22]. Among these attributes, many of them can
be obtained by accumulating certain local flow properties measured at
the integration points, such as the arc-length and the winding angle of
an integral curve. We adopt the Eulerian representation from texture-
based methods and store the accumulated values at the sampled spatial
positions. The value at each sample is determined by the integral curve
passing through it. This Eulerian representation gives rise to a derived
attribute field.

Considering an integral curve, C , that starts from a given spatio-
temporal point (x, t0), the attribute field value at this point is computed
as [39]:

F (x, t0) = F (C (x)|t0+T
t0 ) (1)

where C (x)|t0+T
t0 denotes an integral curve, i.e., either a streamline

or a pathline starting at time t0 with an integral time window [t0, t0 +
T ]. F (·) indicates a specific attribute of interest of C . Note that,
for the rest of the paper, we consider only forward integration of the
integral curves if an unsteady flow is considered; and both forward and
backward integration if a steady flow is given. Assume that an integral
curve C is represented by N integration points Pi and (N − 1) line
segments (Pi,Pi+1). We then define a number of attribute fields based
on Eq. (1) using the integral curves attributes discussed in [22, 31].
The attribute fields we use to segment the vector fields are as follows.
The reason for selecting the following attributes is partially discussed
in previous work [39].

• Rotation Field Φ: ΦC = ∑
N−1
i=1 dθi, where dθi =

(∠(
−−−→
PiPi+1,

−→
X ) − ∠(

−−−→
Pi−1Pi,

−→
X )) ∈ (−π,π] represents the

angle difference between two consecutive line segments on an
integral curve.

−→
X is the X axis of the XY Cartesian space.

dθi > 0 if the vector field at Pi is rotating counter-clockwise with
respect to the vector field at Pi−1, while dθi < 0 if the rotation is
clockwise. Φ field describes the total signed rotation along the
trajectory in a global view.

• Non Straight Velocity Field nsV : nsVC =
(Ł−seDist)

T , where T
is the time window of the trajectory tracing, Ł is the length of
C , and seDist is the Euclidean distance between the starting and
end points of C . The nsV field encodes the flow rotational (or
curvature) information, which can be used to identify integral
curves that enter vortices.

• Integrated Jacobian properties The spatial gradient of V (x, t)
is called its Jacobian, denoted by Jt = ∇V (x, t). From Jt , a num-
ber of important physical properties can be computed, includ-
ing vorticity (or curl in 2D), divergence, and its determinant that
measures the amount of distortion (e.g, stretching). In this paper
we derived the curl field (Figure 2(a)) and the determinant field
determinant (Figure 2(b)) from the integration of the Jacobian
property curl and determinant along pathlines.

2D and 3D attribute fields For a 2D vector field, if the attribute field
is computed based on streamlines, it is a 2D field. Figure. 3(a) shows
the rotation field of a synthetic steady flow based on streamlines. To
visualize the attribute fields, we utilize a blue-white-red color coding
scheme, unless stated otherwise, with blue corresponding to negative

(a)

(b)

(c)

Fig. 2: A number of attribute fields of a 2D unsteady flow behind a square cylinder (a)curl
field; (b) determinant field; (c) nsV field.

t

(b)(a)

Fig. 3: The rotaion fields Φ of a steady flow and an unsteady flow. (a) the streamline-based
rotation field of a synthetic steady flow; (b) The volume rendering (top) of the pathline-
based Φ field of the Double Gyre flow. The bottom shows one slice at t = 5.

(a) (b)

Fig. 4: The 3D attribute fields of two steady flows. (a)curl field of a Bernard data ; (b)
arc-length field of a Tornado data. Both are visualized with the rainbow color scheme.

values and red for positive values. Pathlines-based attribute fields of a
2D unsteady flow are 3D fields. That is, given any spatio-temporal po-
sition (x, t0), its attribute value is determined by the pathline starting
from this position and following the forward flow direction (Eq. 1).
Figure. 3(b) (top) shows a volume rendering of the pathline-based Φ

field of the Double Gyre flow [30] within the time range [0,10]. Fig-
ure. 3(b) (bottom) shows a 2D attribute field at a specific time step, i.e.,
a cross section of the 3D field shown in Figure. 3(b) (top). Figure. 2
shows a number of attribute fields of the flow behind a cylinder based
on pathline tracing staring at t = 0 with integral time window size
T = 3. For a 3D steady flow, the derived fields are 3D attribute fields.
Figure 4 provides some examples of 3D attribute fields for two 3D
steady flows. The rainbow color coding is applied for the 3D render-
ing of these two 3D attribute fields whose values are always positive.

In our implementation, we employ a regular sampling strategy to



compute the attribute fields and the subsequent segmentation. That is,
for the 2D steady flow, we partition the flow domain into Nx×Ny cells,
and for 2D unsteady and 3D steady flows, we partition the domain
into Nx×Ny×Nz cubes. Here, Nx,Ny,Nz are the sampling resolutions
along the X, Y, Z axes, respectively. From each seed x (at the center
of each cell or cube), an integral curve is computed using a 4th−order
Runge-Kutta integrator. A linear interpolation scheme is applied in
both space and time during integration. In our experiments, Nx, Ny
and Nz typically match the resolution of the data set unless stated oth-
erwise. Using the integral curves, the attribute fields are computed
and stored at each sampled spatial position. We illustrate the storage
of the 2D attribute fields in Figure 5(a), where each cell, i.e. the sam-
ple position at the center of the cell, stores the derived attribute field.
The cells are labeled with the classification information discussed in
Section 4.1.

(a) (b) (c)

Fig. 5: The illustration of the representation of attribute values and segments. (a) An input
attribute field with labels of bin IDs. (b) The segments based on the attribute field. (c) The
boundaries of the segments.

4 SEGMENTATION ALGORITHM

Based on the attribute fields described in Section3.1, we convert the
flow segmentation into a scalar field partition problem. Figure 5 il-
lustrates the output segments of the vector fields and their boundaries.
Our algorithm can be divided into two steps. As illustrated in Figure 6,
the first step is to extract the segments from the region classification
(the top row of Figure 6) based on the attribute field values. The sec-
ond step is to extract and clean the boundaries of the segments (the
bottom row of Figure 6). The details are described in Sections 4.1 and
4.2, respectively.

(c) Dilation for segment 
field-based labeling

 

 

(b) Connected components 

(d) Boundary extraction(e) Boundary refinement(f) Segments with boundaries

(a) computation cleaning

Fig. 6: The pipeline of our segmentation algorithm.

4.1 Segment Extraction and Cleaning
Given a specific attribute field, e.g. the rotation field Φ, our method
consists of the following steps.

Region classification We first partition the value range of the attribute
field Φ, i.e., [Φmin,Φmax], into a finite number of bins Bi, i = 1...m.
Here, m is a user-controllable parameter. The thresholds of the bins
are determined by the distribution of the attribute fields. For sim-
plicity, a uniform distribution is applied so that the bins are evenly
distributed within the value range, i.e., the ith bin corresponds to the
range [Φmin+(i−1)Φmax−Φmin

m ,Φmin+ i Φmax−Φmin
m ]. The sample points

in the domain are assigned to m clusters. As shown in Figure 5(a), the
sample points are classified into 3 clusters. After this step each sample
point is labeled with the ID of the corresponding bin. Those points

with the same label belong to the same cluster, even though they may
not be physically connected. For instance, the clusters that are col-
ored with yellow in Figure 6(a) are disconnected, even though they are
classified into the same bin.

Segment extraction Next, we extract the segments from the clus-
ters. This can be achieved by computing the connected components
of those sample points based on their labeled IDs obtained in the pre-
vious step. A standard breadth first search algorithm can be used to
accomplish this task. The connected components are identified using
4-connectivity in 2D and 6-connectivity in 3D. After identifying the
connected components, the sampled points are re-labeled based on the
index of the connected components to which they belong. This pro-
vides us the initial segmentation of the domain. Figure 6(b) illustrates
the result of this step.

(c) (d)

(a) (b)

Fig. 7: The illustration of the effect of dilation operation and boundary refinement. (a) The
segmentation before dilation operation. (b) The segmentation after dilation operation. (c)
The extracted boundaries of (b) without refinement. (d) The extracted boundaries of (b)
with refinement.

Segment cleaning via dilation Due to the numerical error in the at-
tribute fields, the above initial segmentation may contain some small
segments with little number of sampled points. These small segments
will increase the complexity of the segmentation results and lead to
visual distraction. Therefore, we need to filter these small or noise
segments.

In order to determine whether a small segment is noise or not, we
introduce a noise segment threshold γ , which is the percentage of the
size of the bins. A noise segment is a segment who satisfies both of the
following conditions: (1) Its size, the number of sample points in this
segment, is smaller than the product of γ and the size of the bins in the
initial clustering; (2) The attribute value in this segment is close to that
in its neighboring segments. In implementation, this can be identified
by the difference of their corresponding bin IDs. Figure 7(a) shows a
number of noise segments highlighted by arrows. We apply the dila-
tion operation to remove theses noise segments, which is one of the
basic morphological operations in image processing [6]. Specifically,
we first convert the flow domain into a gray scale image. The inten-
sity of each sample point is determined by the size of the segment it
belongs to. The larger the size is, the larger the intensity is. Then, the
standard dilation operation is applied to this gray scale image. After
dilation operation, the segment ID of each point in the noise segment
is changed to the ID of one of its neighboring segments who has the
largest size, i.e., with the largest number of sampled points within it.
We also extend the dilation to 3D to remove the noise segments in the
3D vector field. Here, we assume a 3D uniform sampling strategy.
Given a 3D noise segment, the spatio-temporal point on the boundary
is relabeled with the ID of one of the six neighboring segments whose
segment size is the largest. Figure 7(b) illustrates the segmentation
result after applying dilation to Figure 7(a), where the noise segments



are removed.

4.2 Boundary Extraction

After filtering noise segments, the boundaries of the remaining seg-
ments may not be smooth and aligned with the flow direction. A simi-
lar issue has been reported by Li et al. [15]. They proposed a boundary
refinement method via contours computed from various derived scalar
fields or streamlines from the original discrete vector field. However,
it requires to compute a large number of contours or streamlines and
then select an optimal one with additional computation. Based on the
output of our segmentation algorithm, we propose a boundary extrac-
tion algorithm which consists of the following two steps.

Extract coarse segment boundaries We describe the extraction of the
boundaries for 2D and 3D segmentation separately. In 2D cases, given
the unique label for each sample point based on the above segmenta-
tion, a well-known normal cut technique [3] can be applied to identify
the boundaries between segments. In practice, we estimate the bound-
ary curves between segments using the boundary points of one of the
two neighboring segments. In order to smooth the boundary curve, we
need to connect these boundary pixels in the correct order.

To achieve that, we first distribute these boundary points into an ar-
ray. Starting from any point in the array, we trace in two directions
along which the boundary is constructed. The tracing is stopped when
the next point is on the boundary of the flow domain or when the point
has more than one neighboring segment. If a boundary point is next to
two neighboring segments, it indicates that one boundary curve of the
segment is generated. The four points highlighted in the circle in Fig-
ure 5(a) are the ends of several boundary curves (Figure 5(c)). All the
boundary curves of a segment have been identified when all the points
in the array are traced. However, since the boundary curves of each
segment are generated independently, two neighboring segments may
share two boundary curves rather than one, as shown in Figure 8(a). So
we also need to refine the coarse segment boundaries. For the 3D vec-
tor field, we utilize an iso-surface to estimate the boundaries of the 3D
segments. Specifically, we first re-assign the ID of a selected 3D seg-
ment as 1, and the rest as 0. Therefore, an iso-surface of the value 0.99
would be a close estimation of the boundary of the segment. Some
estimated boundaries of the 3D segments are shown in Figure 13(b).

Fig. 8: Boundary refinement.

Refine boundaries A Laplacian smoothing algorithm is applied to re-
fine the boundaries. Each point x on the two boundary curves is re-
placed with the average position of x and its adjacent neighbors that
are also on the boundary curves. As illustrated in Figure 8(right),
two shared boundary curves are merged into one with the Laplacian
smoothing algorithm. Dilation only removes the noise inside a seg-
ment, while there may be noise at or near the boundary of the segment,
which is caused by the initial clustering based on the simple range clas-
sification of the attribute fields. This can be adjusted according to the
flow direction. Figure 7 (c) and (d) illustrates the extracted boundaries
of Figure 7 (b). With the adjustment, the extracted boundaries are
smoother as highlighted with the red arrows. This Laplacian smooth-
ing can be extended to 3D to smooth the extracted iso-surfaces that
correspond to the boundaries of different segments.

(a) (b)

(c) (d)

Fig. 9: Comparison between the bottom-up algorithm and our method with a synthetic
flow . (a) The LIC of the flow; (b) The segmentation result of the bottom-up algorithm
based on the direction of the flow. (c) The segmentation result of our algorithm based on
the rotation field. (d) The boundaries of the segments in (c).

5 RESULTS

We have applied our method to a number of synthetic and real-world
vector field datasets. The first one is the 2D steady vector field taken
from the top layer of a 3D simulation of global oceanic eddies for 350
days of the year 2002 [32]. Each time step corresponds to one day.
The 2D unsteady vector field has a spatial resolution of 3600×2400.
We extract tiles from the central Atlantic Ocean (60× 60). We select
the first time step of the dataset, i.e., slice #20106, to generate the 2D
steady vector field. In our implementation, the sampling resolution is
600× 600. The second example of real-world dataset is a simulation
of a 2D unsteady flow behind a square cylinder with a Reynolds num-
ber of 160 [36]. This simulation with covers a subset of the spatio-
temporal domain, i.e., [−0.5,7.5]× [−0.5,0.5]× [15,23]. The res-
olution of the dataset is 400× 50× 1001 (number of grid points in
x,y,t-direction ). We choose the first 200 time steps and use the resolu-
tion 400×50×200 to compute the attribute fields based on pathlines.
The time window for pathline computation is 3. Our third read-world
dataset is a simulation of a 3D steady flow behind a square cylinder
with a Reynolds number of 160 [36]. It covers the spatial domain
[−12,20]× [−4,4]× [0,6]. The spatial resolution of this dataset is
192× 64× 48. We compute the attribute fields based on 3D stream-
lines. With the pre-computed attribute fields, the speed of our seg-
mentation algorithm depends on the resolution of the spatio-temporal
domain. It typically takes 2.5 seconds for a 2D steady vector field with
600×600 resolution and 4.25 seconds for a 3D steady vector field with
192×64×48 resolution on a PC with an Intel Core i7-3537U CPU and
8GB RAM.

5.1 2D steady vector fields
Figure 1(right), Figure 9(c) and Figure 10(column (a)) show the seg-
mentation results for a number of synthetic and real-world 2D steady
flows, respectively.

As a comparison, we compute the segmentation using the image-
space vector field clustering technique introduced by [21]. It adopts a
bottom-up strategy and aggregates two most similar clusters into one
each time until only one cluster is left. Figure 9(b) shows the result



of the image-space clustering of a 2D synthetic steady vector field
with an error threshold of 0.081. Only showing these segments cannot
provide insights into the flow behavior. In comparison, our result as
shown in Figure 9(c) generates segments that are better aligned with
the flow. By looking at the segments or the boundaries of the segments
(Figure 9(d)), one can easily understand the flow behavior. In order to
quantify how well the boundaries of the obtained segments are aligned
with the input flow, one can adapt the work by [18], which is beyond
the scope of this work.

Effects of the number of bins m Figure 10(a) shows the effects
of using different numbers of bins for the initial region classification
for the Atlantic Ocean dataset. As we can see, with a larger m, more
details of the flow are revealed. For example, as highlighted in the
dashed area, there are more segments when m is larger and the flow
direction, including the sharp turn in the flow, is gradually revealed.

Extracted boundaries v.s. Seeded streamlines Column (b) of Fig-
ure 10 shows the extracted boundaries of the corresponding segmenta-
tions shown in column (a) of Figure 10. These boundaries are similar
to the streamlines seeded on the boundaries, as shown in Figure 10(c).
The points on a streamline have the same or similar attribute field
value, while those on a boundary of one segment have the same range
rather than a specific attribute field value. Therefore, the streamlines
seeded on the boundaries need not exactly match the boundaries of the
segments, but they are sufficiently close to each other.

5.2 2D unsteady vector fields
Figure 11 shows the segmentation results for different attribute fields
for a 2D unsteady flow behind a square cylinder, i.e., rotation field,
curl field, non straight velocity field nsV and determinant field, respec-
tively. The initial bin number m is 5, and the noise segment threshold
γ is 0.01. The segments from the rotation field (Figure 11(a)) encode
the LCS of the flow, and those from the non straight velocity field nsV
(Figure 11(c)) reveal the Von Karman vortex street.
Noise segment threshold γ analysis Figure 12 shows the segmen-
tation of the double gyre flow based on the rotation field. When γ

increases from 0.01 to 0.05, the four segments in Figure 12(a), high-
lighted in black, are merged with their neighboring segments after
dilation (Figure 12(b)). Interestingly, these four long thin segments
have rather different attribute values compared to their neighboring
segments. They form two pairs and reveal certain helix and symmetric
configuration of the pathlines in the Double gyre flow that are not easy
to see with other methods. As shown in Figure 12(d), the pathlines
seeded in those segments display similar behaviors in each compo-
nent.

5.3 3D steady vector fields
Figure 13(a) shows the segmentation of a 3D steady flow behind cylin-
der based on the rotation field. Eight segments are generated with the
initial m as 5. Figure 13(b) shows the estimated boundaries of four
segments. The left two are for the segments near the flow domain
boundaries and the cylinder, while the right two are for two segments
inside the flow domain and far away from the cylinder. As discussed
earlier, the boundaries of the segments generated by our method are
closely aligned with the flow. This is also applied to 3D segmentation
results. Even though a comprehensive comparison is beyond the scope
of this work, we believe our 3D segmentation results can be potentially
utilized to describe the complex 3D flow behavior in a similar way to
stream-surfaces without explicitly placing stream surfaces. We plan to
assess this in an extended work.

6 CONCLUSION

In this work, we propose a vector field segmentation algorithm based
on derived attribute fields. A number of attribute fields are firstly com-
puted based on the accumulation of local properties along the integral
curves. We then extract the connected components based on the clas-
sification of the attribute values and apply dilation to filter the noise
segments in the segmentation results. Finally we extract and smooth

(a)

(c)

(d)

(b)

Fig. 11: Segmentation of a 2D unsteady flow behind a square cylinder based on different
attribute fields: rotation field (a), determinant field (b), nsV field (c) and curl field (d),
respectively.

(b)(a)

(d)
(c)

Fig. 12: The segmentation result of an unsteady Double Gyre flow with different noise
segment threshold γ . (a) γ = 0.01; (b)γ = 0.05; (c) The four γ-sensitive segments; (d) The
estimated boundaries of the four γ-sensitive segments with sampled pathlines (red).

the boundaries of the segments in order to obtain a cleaner segmen-
tation for visualization. The segments generated by our algorithm are
better aligned with the flow than those obtained from existing local
methods. The domain experts can employ various attribute fields to
explore different flow behaviors. Our segmentation can be applied to
3D steady flows, where we use iso-surfaces to estimate the boundaries
of the segments. We show that these iso-surfaces could potentially be
used to visualize high dimensional flows in a similar fashion to integral



(a) (b) (c)

Fig. 10: The effect of the number of bins m for the initial region classification. Column (a) shows the segmentation results based on the rotation field with m as 5, 8 and 15 from top to
bottom, respectively. Column (b) are the extracted boundaries of the corresponding segmentation in (a). Column (c) shows the streamlines seeded on the extracted boundaries.

surfaces.

Limitations Since we use a uniform distribution of the attribute fields
to partition the range of the attribute field into a number of bins, the
initial clusters are sensitive to the number of bins m, especially near
the boundaries of the bins. Also, the boundaries of 3D vector field
segments are estimated iso-surfaces rather than the real boundaries of
the segments. In addition, the criteria to identify noise components
should also consider the shape a component besides its size. Finally,
the current framework does not apply to large scale 3D unsteady vector
fields. We plan to address these limitations in the future.
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