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A semantically constrained Bayesian network for manufacturing
diagnosis

R. W. LEWIS ² ³ and R. S. RANSING²

The diagnostic problem is posed as recognizing patterns in rejection data and the
subsequent mapping to causes. A new network architecture has been proposed
which should overcome many of the disadvantages of the existing diagnostic
tools. The network is based on the authors’ earlier work (Ransing et al. 1995)
on representing the causal relationship in the defect-metacause-rootcause form.
Although the algorithm is based on the Bayesian analysis, many of the laws of
probability have been altered to suit the complexities involved. For example, the
notion of conditional probability has been generalized to enable the belief revision
even in the presence of partial evidence. The inherent presence of the degree of
ignorance or uncertainty in the quanti® cation of a relationship has also been
considered. Rigorous constraints, again based on the laws of probability, have
been developed to check the consistency among the network values. The network
is required to be initialized with only a few values or the range for the same and
then a set of globally consistent values is generated automatically and e� ciently.
Using the most suitable set of consistent values, the diagnosis is performed using
the generalized Bayesian analysis. The network has been tested for a pressure die
casting process, however, it is generic in nature and can also be applied to other
manufacturing processes.

1. Introduction

Diagnosis has always been a prime area of research in Arti® cial Intelligence and
related ® elds. New methodologies have evolved to solve such problems and older
techniques have been re® ned to perform better. The computer programs which per-
form these tasks are referred to by a variety of names in the open literature e.g.
expert systems, knowledge based systems, decision support systems, rule based
systems, model based systems etc.

Many of the diagnostic paradigms were ® rst developed for medical diagnosis and
were later applied to engineering problems. The use of rules as knowledge repre-
sentation can be traced back to the mid seventies (Davis et al. 1977). In those days,
the program in question was simply a collection of conditional statements and the
rules were deterministic in nature. Later, uncertainty was introduced into the systems
by using either probabilistic models or other theories such as certainty factor
(Shortli� e 1976, Patterson 1990). Currently, many commercial shells are available
which do the inferencing, uncertainty handling and a user is required only to feed in
rules. In the late eighties the application of this approach to manufacturing diag-
nostic problems was reported by Creese (1988) and Piwonka (1989). In these systems
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causal knowledge was stored in the form of rules and the computer program identi-
® ed causes for a single defect type.

Often a production engineer will form an opinion based on control charts (Juran
1964). In such cases, heuristics are captured in the form of rules which are coupled
with rule based diagnostic systems (Ward et al. 1991, Kuro and Mital 1993).
However, in machining processes such as turning, milling, drilling etc. the causal
relationships are not as complex or highly interlinked when compared to those
occurring for metal forming processes such as sand casting, die casting and injection
moulding. There is a distinct feature in the causal relationships which exist for metal
forming processes that, apart from the fact that they are highly interlinked, con-
strains the ability of rule base architecture to capture the knowledge. This may be
stated as follows:

A certain combination of defects generally occur as a result of a combination of
assignable causes. The reduction in the belief value in an assignable cause, due to the
non-occurrence or the partial occurrence of a related defect, depends on:

(1) the relative occurrence of a defect w.r.t. to other defects and
(2) the assignable cause under consideration.

The work proposed in this paper is based on this axiom. The existence of such a
highly interlinked causal relationship makes such reductions in belief values at all
possible. Also, the common occurrence of two or three defects may strengthen the
belief in some of the common assignable causes. The term partial occurrence of a
defect implies that the proportion of components rejected due to this defect, among
the total rejected components, is neither signi® cantly low nor signi® cantly high.
Occurrence or non-occurrence of a defect means that the proportion of components
rejected due to the defects is either signi® cantly high or signi® cantly low.

2. Current diagnostic approaches

The advantages and limitations of existing approaches in attempting to solve the
class of diagnostic problems de® ned above are discussed in this section.

2.1. Rule based systems
The above axiom requires the association of a fraction indicating the strength of

occurrence, with each symptom (or defect). The values zero and one correspond to
the non-occurrence and the occurrence of a symptom, respectively. Then, a typical
rule would be formed as follows:

IF Symptom 1 (s1%) and Symptom 2 (s2%) and Symptom 3 (s3%) . . .
THEN Cause 1 (c1%) and Cause 2 (c2%) and Cause 5 (c5%).
where, si is the strength of occurrence of the ith symptom
and cj would be the certainty factor in the j th cause.

This approach has two major limitations.

(1) The number of rules can increase dramatically as every combination of
defects, with varying degrees of strengths, requires mapping to a combination
of causes.

(2) The precise articulation of each rule is extremely di� cult. Even if such rules
are formed, the level of con® dence in each rule is debatable.
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These limitations are particularly true for the manufacturing processes such as
sand casting, die casting or injection moulding. However, Fujikawa and Ishi (1995)
have shown the successful application of a rule based system using probabilistic
analysis for the diagnosis of the forged components. The important point to note
in their work is the fact that they have proposed an adaptive scheme to update the
probability values. The authors also believe that some means should be developed to
generate the probability values automatically. A great deal of di� culty was experi-
enced by the authors in extracting probability values from the foundrymen.

2.2. Probabilistic model
This model was proposed by the authors (Ransing et al. 1995) during their earlier

work on the development of a robust algorithm for defect analysis. An innovative
way of eliciting knowledge was illustrated by introducing the concept of metacauses
to the causal relationship. The causes are divided into two partitions, ® rstly, meta-
causes i.e. the scienti® c rationale in¯ uencing the occurrence of defects, and secondly,
rootcauses i.e. the process, design and material parameters which in¯ uence the occur-
rence of metacauses.

In their work, Ransing et al. (1995) made the following assumptions.

(1) The prior probability distribution was de® ned on the singletons of S, M and
C respectively i.e. single elements of the corresponding set. The occurrences
of these singletons were not interpreted as mutually exclusive events.

(2) The singletons were considered as statistically independent.
(3) The in¯ uence of metacauses (or rootcauses) on the occurrence of defects (or

metacauses) respectively, was quanti® ed via a conditional probability.

However, in a realistic casting environment, the practical implementation of the
probabilistic approach requires consideration of the following points:

� Laws of probability are deterministic e.g. P(A) + P( Ø A) = 1. It does not
support the concept P(A) when the degree of occurrence of A is between 1
i.e. P(A) and 0 i.e. P( Ø A). Similarly it can be argued for the conditional
probability. Only two conditional probabilities exist. Either P(A | B) or
P(A|Ø B). A real life situation requires concepts such as fuzzy sets to model
this phenomenon.

� The in¯ uence of an assignable cause is quanti® ed for every combination of
defects. The practical drawback of this is that a very large number of prob-
abilities must be known in advance, and the acquisition of these is di� cult.

� The probabilistic model (Ransing et al. 1995) requires fewer probability values
because the occurrence of a defect was assumed independent to the occurrence
of other defects. However, this approach was constrained in its ability to
evaluate the evidence which has been scaled from zero to one. For example,
the proportion of defective components with a particular among the total
number of defective components is be scaled from zero to one.

� The defects± metacause± rootcauses relationships are highly interlinked. Any
change in the probability value propagates to other probability values, and
consistency among all the values is di� cult to maintain if done manually by a
trial and error method.
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2.3. Fuzzy sets
Fuzzy sets (Zadeh 1965, 1978) o� er a promising role as an alternative knowledge

representation scheme. The main advantage lies in the ability to categorize the
membership of a set by introducing a notion of the degree of membership (from
zero to one). In conventional set theory, a member is either included in a set, or
excluded. The concept of membership enables us to capture the notion of partial
evidences as described earlier. Also, for causes, the degree of membership can quan-
tify the associated posterior belief . The use of fuzzy sets as a knowledge representa-
tion scheme has been discussed in detail by Pedrycz (1993).

A diagnostic model based on fuzzy sets has previously been developed by
Pandelidis and Kao (1990). Even though the model has only been validated for
the injection moulding process, it is generic in nature and contains the following
key points.

� It is recognized that the defect-cause relationship is extremely complex. i.e. a
defect can be a manifestation of many causes and a single cause can in¯ uence
the occurrence of many defects. For the many defects observed a combination
of causes which best explains them may be diagnosed using fuzzy sets.

� The strength of the association between a cause and defect is quanti® ed and
stored as a weight. During a diagnostic process, these weights are modi® ed by
a factor which will depend on the current process status.

� The observed defects are quanti® ed according to their ability to re¯ ect the
relative importance of each defect with respect to others. This point streng-
thens the authors’ premise regarding the existence of partial evidences and
their signi® cance on the diagnostic results.

� From all possible lists of causes, only a particular combination of causes will
be selected which is based on a certain prede® ned criterion e.g. a minimum
cover criterion.

However, in order to generate a more robust diagnostic model, consideration should
be given in the following points.

� Only the observed defects were considered in the diagnostic process.
Consideration of the fact that some defects did not occur may help during
the belief revision process.

� Only three discrete categories for the severity of defects were considered. A
uniform scaling of partial evidences from zero to one may improve the quality
of results.

� In any manufacturing environment, the chances are that certain defects will
occur more often than others. Similarly, the chances of some causes being
more responsible than others should be taken into account. A consideration
of these prior beliefs in any diagnostic process is of importance and hence
should be accounted for.

� The precise estimation of all the weights in the linkages is a very di� cult task
for any single person. Even after such an estimation, opinions may di� er from
person to person. However, it is much easier to estimate a range of values and
then automatically seek the best value. The methodology in arriving at the
best choice of weights and other numerical values needs a thorough investi-
gation.
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2.4. Need for alternative algorithms
Hence there is clearly a need to evolve a new algorithm which would overcome

these practical limitations. An attempt is made in this paper to develop a theory to
estimate how strongly a set of evidence (including partial evidence) can favour the
possible existence of a cause. This approach is similar to the Dempster-Shafer theory
(Shafer 1979) in that the provability of a hypothesis is assessed rather than comput-
ing the probability of it being true. At the same time the theory also relies on the
concept of Bayesian analysis whilst revising the prior belief in a cause in the light of a
set of evidence.

In the next section a new network topology has been introduced. To avoid
confusion with the variables used in the probability theory, new variables are intro-
duced. Section 3.1 discusses their physical interpretation. It also describes how to
initialize a semantically constrained Bayesian network from an initial guess. In § 4
the concept of the feasible set is introduced which will incorporate all the consistent
numerical values. The processing of the input vector in the Semantically Constrained
Bayesian Network, i.e. the diagnostic algorithm is detailed in § 5. After the validation
of this approach in § 6, the paper is concluded in § 7.

3. A semantically constrained Bayesian network

A semantically constrained Bayesian network generalizes the simpli® ed probabil-
istic model (Ransing et al. 1995) in the following way.

� It is possible to evaluate the partial evidence i.e. the strength of the evidence is
scaled from 0 to 1.

� The notions of conditional probability are generalized.

� It accepts incomplete information regarding the probability values i.e.
P(A) + P( Ø A) does not necessarily equal 1. In other words it allows to account
for the presence of some degree of ignorance in the quanti® cation process of
the causal relationship.

� From the approximate guess of the probabilistic values, consistent and more
accurate values are generated automatically.

3.1. Construction of the network
Figure 1 shows the three layered knowledge elicitation scheme developed by the

authors (Ransing et al. 1995). Readers are referred to this publication for more
details on generating a defect-metacause-rootcause relationship for a manufacturing
process. The semantically constrained Bayesian network is based on this network.
Thus this network will have defect nodes, metacause nodes and rootcause nodes
interlinked in the same way as in the corresponding defect-metacause-rootcause
relationship.

3.2. Notation with physical interpretation
3.2.1. Degree of activation

The partial evidence described in the previous section is quanti® ed by introducing
the concept of degree of activation.

De® nition: The strength of occurrence of a defect, metacause or rootcause is quan-
ti® ed by a fraction a which is de® ned as the degree of activation.
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Remarks:

(1) a = 0, indicates the non-occurrence of a corresponding defect, metacause or
rootcause;

(2) a = 1, indicates the occurrence of a corresponding evidence defect, metacause
or rootcause with maximum certainty;

(3) a = 0.5, represents uncertainty regarding the occurrence of corresponding
defect, metacause or rootcause. As a result, no conclusions would be
drawn on the occurrence/non-occurrence of the respective defect, metacause,
or rootcause.

The activation for defect nodes, input to the semantically constrained Bayesian
network, is calculated from the rejection data. A small degree of preprocessing
work is done to convert this data into an input vector. First, the rejection data is
normalized as follows:

For the ith defect node, the normalized rejection fraction ni is

ni =
No. of defective components due to the defect type i

Total number of defective components
(1)

The normalized rejection fractions are then mapped onto the set [0,1]to generate the
input vector of degrees of activation.

ai = ni
1

max(ni)
(2)

2176 R. W. Lewis and R. S. Ransing

Figure 1. Causal relationship in the Defect-Metacause-Rootcause form.
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The output of the network is the degree of activation for metacause and rootcause
nodes. Section 6 will detail how to generate the output from the input.

3.2.2. Belief vectors Bd ,Bm and Br

The degree of certainty associated in the prior estimation of beliefs for the occur-
rence of defects, metacauses and rootcauses are represented by the belief vectors
(Bd ,Bm and Br). These di� er from prior probabilities in probability theory where
the probability of the occurrence and non-occurrence of an event sums to unity. This
point will be considered further in the next section. However, as a result, the com-
plementary belief vectors are required to be explicitly de® ned as follows.

The complementary belief vectors, B
c
d,B

c
m and B

c
r represent the degree of cer-

tainty associated in the prior estimation of beliefs in the non-occurrence evidence
and hypotheses respectively. The belief vectors for defect, metacause and rootcause
nodes respectively, are represented as follows:

Bd = [Bd1,Bd2,Bd3 , . . . ,Bdi , . . . ,Bdo]T B
c
d = [Bc

d1,Bc
d2,B

c
d3 , . . . ,B

c
di , . . . ,Bc

do]T
Bm = [Bm1,Bm2,Bm3, . . . ,Bmj , . . . ,Bmp]T B

c
m = [Bc

m1,Bc
m2,Bc

m3 , . . . ,Bc
m j , . . . ,Bc

mp]T

Br = [Br1,Br2,Br3, . . . ,Brj , . . . ,Brq]T B
c
r = [Bc

r1 ,Bc
r2,Bc

r3, . . . ,Bc
rk , . . . ,Bc

rq]T
where o,p,q are the number of defect, metacause and rootcause nodes respectively.

Each node is associated with a threshold value (µ) which is analogous to the prior
odds in a Bayesian analysis i.e. a ratio of the belief value to the complementary belief
value.

µmj = Bmj /Bc
m j

µrk = Brk /Bc
rk

3.2.3. Initial guess for belief vectors
The rationale used for the prior estimation of both the belief vectors (Bdi ,Bmj and

Brk ) and the respective in¯ uence factors (Idim ja= 1 and Imjrka= 1) is identical to the one
used in ICADA (Ransing et al. 1995). The prior belief in the occurrence of a defect,
metacause or rootcause is arrived at by taking the ratio of the frequency of occur-
rence defects, metacauses or rootcauses respectively (with activation greater than
0.6) to the total number of diagnostic sessions. Note that in the case where two
di� erent defects manifest themselves for a single component, this should be
marked under both defect types. Clearly, the sum of all components marked as
rejected under each defect type may exceed the actual number of rejected com-
ponents. This also means that the following laws of probability are not obeyed.

A semantically constrained Bayesian network 2177

Laws of probability Semantically constrained Bayesian network

å i P(di) = 1 å i Bdi
/= 1

å j P(mj) = 1 å j Bmj
/= 1

å k P(rk) = 1 å k Brk
/= 1

Table 1.
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The initial guess in in¯ uence factors is estimated by treating them as conditional
probabilities. In these predictions, the term occurrence is broadly interpreted to
cover all the cases when the respective activation is greater than 0.6. It is assumed
that only 60% of the guess can be attributed to the case with activation equal to
unity.

In short, " i, j,k
Bdi = 0.6 (initial guess for ith defect node)
Bmj = 0.6 (initial guess for jth metacause node)
Brk = 0.6 (initial guess for kth rootcause node)
Idimja= 1 = 0.6 (initial guess for the respective defect-metacause relationship)
Imjrka= 1 = 0.6 (initial guess for the respective metacause-rootcause relationship)

In a probabilistic model, complementary belief values (e.g. P( Ø di) get de® ned impli-
citly through the laws of probability. These laws of probability assume the existence
of the complete knowledge regarding the occurrence or non-occurrence of defects,
metacauses or rootcauses in a manufacturing setup. However, it has been observed
by the authors that at least 50% degree of uncertainty could prevail in such precise
quanti® cation. If the same expert is asked to quantity the prior belief in the occur-
rence and non-occurrence of a defect or a cause separately, it is extremely likely that
the sum would be less than unity. This is due to the presence of certain degree
of ignorance or uncertainty in such quanti® cations. The Dempster-Shafer theory
(Shafer 1979) also allows us to model such a degree of ignorance. Therefore, it
would be wrong to apply such laws of probability for this problem. Based on the
experience of the authors in this ® eld, the following range for the summation of the
belief and complementary belief values is proposed.

where, di,mj and ck represent defect, metacause and rootcauses nodes respectively.

3.2.4. In¯ uence factors

De® nition:
If the jth node (Bmj ) in¯ uences the occurence of the ith node in the previous layer

(Bdi) with activation a = 1, then

(a) the degree of in¯ uence of the occurrence of the jth node (Bmj ) on the occur-
ence of the ith node (Bdi ) is de® ned by an ìn¯ uence factor’ , Idim ja= 1.

(b) the degree of infuence of the non-occurrence of the jth node (Bmj ) on the
occurrence of the ith node (Bdi ) is de® ned by an àdjoint in¯ uence factor’ ,
I Âdi,m ja= 1.

2178 R. W. Lewis and R. S. Ransing

Laws of probability Semantically constrained Bayesian network

P(di) + P( Ø di) = 1 Bdi + B
c
di < 0.45 - 0.5

P(mj) + P( Ø mj) = 1 Bmj + B
c
mj < 0.45 - 0.5

P(rk) + P( Ø rk) = 1 Brk + B
c
rk < 0.45 - 0.5

Table 2.
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Complementary in¯ uence factors: The complementary in¯ uence factors Idimja= 0 quan-
tify the in¯ uence of the occurrence of the jth node (Bmj ) on the non-occurence of the
ith node (Bdi). Similarly, complementary adjoint in¯ uence factors I Âdimja= 0 would
quantify the in¯ uence of the non-occurrence of the ith node (Bdi ).

Remarks:

(1) Clearly, the in¯ uence factor Idimja= 1 and the adjoint in¯ uence factor I Âdimja= 1

are a generalization of the conditional probability values in probability
theory P(Ei | Hj) and P(Ei | Ø Hj) respectively. They are a measure of the
strength of the relationship between two nodes in consecutive layers corre-
sponding to the respective degree of activation.

(2) Idi m ja and I Âdimja Î [0,1].
(3) If the occurrence and non-occurrence of the jth node (Bmj ), does not in-

¯ uence the occurrence and non-occurrence of the ith node (Bdi) in the
previous layer then, Idim ja= 1 = I Âdimja= 1 = Bdi and Idim ja= 0 = I Âdim ja= 0 = B

c
di .

(4) The values stored in the semantically constrained Bayesian network are
always was associated with a unit activation unless and otherwise speci® cally
mentioned.

(5) The causal relationship has been characterized by four independent values
viz. Idimja= 1, Idimja= 0, I Âdim ja= 1 and I Âdimja= 0 which correspond to P(Ei | Hj),
P(Ei | Ø Hj), P(Ei | Ø Hj) and P( Ø Ei | Ø Hj) respectively. However, the follow-
ing law of probability is again relaxed.

These remarks constitute the following changes in the laws of probability.

3.2.5. Initial guess for in¯ uence factors
The discussion on the laws of probability involving belief values and comple-

mentary belief values also holds for the in¯ uence factors. In the case of in¯ uence
factors, the uncertainty amounts to only 40% i.e. less than the value associated with
the degree of uncertainty for belief vectors. In the opinion of the authors, this is
because a greater certainty can be attributed in this case as the occurrence of the
metacause or rootcause nodes, respectively, is assumed. Whereas for the case of
adjoint in¯ uence factors, the non-occurrence of the metacause or rootcause node,
respectively, is assumed, hence the degree of uncertainty would be approximately
60%.

This yields the following modi® cation in the laws of probability.

A semantically constrained Bayesian network 2179

Laws of probability
Semantically constrained

Bayesian network

P(di | mj)P(mj) + P(di|Ø mj)P( Ø mj) = P(di) I dimja=1Bmj + I Âdim ja= 1B
c
mj £ Bdi

P( Ø di | mj)P(mj) + P( Ø di | Ø mj)P( Ø mj) = P( Ø di) I dimja=0Bmj + I Âdim ja= 0B
c
mj £ B

c
di

P(mj | rk)P(rk) + P(mj |Ø rk)P( Ø rk) = P(mj) Imjrka=1Brk + I Âmj rka= 1B
c
rk £ Bmk

P( Ø mj | rk)P(rk) + P( Ø mj | Ø rk)P( Ø rk) = P( Ø mj) Imjrka=0Brk + I Âmj rka= 0B
c
rk £ B

c
mk

Table 3.
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4. The feasible set

In the light of the previous section it is evident that rigorous consistency checks
need to be developed if this modi® ed probabilistic approach is to work properly.
Generating consistent and accurate probability values has always been a bottleneck
in all such decision making approaches. In manufacturing processes such as sand
casting, pressure die casting or injection moulding, the total number of probability
values required would be of the order of thousands. In the particular case of pressure
die casting process with 14 defect nodes, 18 metacause nodes and 43 rootcause nodes
the total number of connections are around 250. (Assuming that one defect node is
connected to at least 5 metacause nodes and one metacause node to at least 10
rootcause nodes.) The cost to be paid for the generalization of these probability
values is four independent values get associated with each link in the network
rather than the two. Also, two independent values are associated with each node
rather than just one in the case of probabilistic analysis. As a result the program
needs to check more than 1000 values which quantify the causal relationship.
Certainly it is beyond doubt that it is unrealistic to expect production personnel
to estimate all these values.

It is much easier to estimate a range for the likelihood ratios (Idimja= 1 /I Âdimja= 1)
and (Idim ja= 0 /I Âdim ja= 0) respectively and an approximate guess for Idim ja= 1. The other
values required to be guessed are Bdi and Bmj , respectively to quantify a defect-
metacause relationship. The program then generates, automatically, suitable
values for I Âdimja= 1, Idimja= 0, I Âdimja= 0, B

c
di and B

c
mj such that all the values are globally

consistent. Similar discussion holds for a metacause-rootcause relationship. This
enumeration of consistent values is done based on the constraints developed earlier
along with some more heuristics. Thus, a defect-metacause-rootcause relationship
would be represented by only the following ® ve values: Bdi , Idim ja= 1, Bm j , Imjrka= 1, Brk

and all other values would be generated by the program consistent with these
guesses. A particular assignment of consistent values to all these variables in a net-
work represents one instance of the network. The feasible set de® ned in the following
way stores all the possible instances of the network. Then a criterion is presented
which selects only a couple of instances as the most plausible. The diagnosis is then
done on the given example set using the selected instances of the network and the
best instance is determined by judging the performance of the network on the
example set. That particular instance is then saved and used for further diagnoses
until any modi® cation is deemed to be necessary.

For the sake of mathematical convenience, the feasible set is de® ned in the
following way.

2180 R. W. Lewis and R. S. Ransing

Laws of probability Semantically constrained Bayesian network

P(di | mj) + P( Ø di | mj) = 1 I dimja=1 + I dim ja=0 < 0.55 - 0.6
P(di | Ø mj) + P( Ø di | Ø mj) = 1 I Âdimja=1 + I Âdim ja=0 < 0.35 - 0.4

P(mj | rk) + P( Ø mj | rk) = 1 Imjrka=1 + Imjrka=0 < 0.55 - 0.6
P(mj | Ø rk) + P( Ø mj | Ø rk) = 1 I Âmjrka=1 + I Âmjrka=0 < 0.35 - 0.4

Table 4.
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De® nition:
The set of n-tuples k Bdi , Idim ja= 1, Bm j , Imjrka= 1, Brk l , " i, j,k where i = 1, . . . ,o;

j = 1, . . . ,p; k = 1, . . . ,q; n = o + p + q + op + pq, satisfying the following con-
straints is de® ned as a feasible set FB.

Constraint set I:

1 £ a 1 £ Idim ja= 1 /I Âdim ja= 1 £ b 1 £ ¥ 1 £ a 2 £ Im jrk a= 1 /I Âmjrka= 1 £ b 2 £ ¥
1 £ a 3 £ Idim ja= 0 /I Âdim ja= 0 £ b 3 £ ¥ 1 £ a 4 £ Im jrk a= 0 /I Âmjrka= 0 £ b 4 £ ¥

Idimja= 1 + Idim ja= 0 < 0.55 - 0.6 Im jrka= 1 + Imjrka= 0 < 0.55 - 0.6

I Âdimja= 1 + I Âdim ja= 0 < 0.35 - 0.4 I Âm jrka= 1 + I Âmjrka= 0 < 0.35 - 0.4

Bdi + B
c
di < 0.45 - 0.5 Bm j + B

c
mj < 0.45 - 0.5

Brk + B
c
rk < 0.45 - 0.5

Constraint set II:

0 £ I Âdimja= 1 £ Bdi £ Idim ja= 1 £ 1 0 £ I Âmjrka= 1 £ Bm j £ Im jrka= 1 £ 1

0 £ I Âdimja= 0 £ B
c
di £ Idim ja= 0 £ 1 0 £ I Âmjrka= 0 £ B

c
m j £ Im jrka= 0 £ 1

Bdi ³ Idim ja= 1Bmj + I Âdimja= 1B
c
mj Bm j ³ Im jrka= 1Brk + I Âmjrka= 1B

c
rk

B
c
di ³ Idim ja= 0Bmj + I Âdimja= 0B

c
mj B

c
m j ³ Im jrka= 0Brk + I Âmjrka= 0B

c
rk

where a i and b 1 Î R are user de® ned.
The problem of generating the feasible set and ® nding the best instance of the

network can be viewed as a general optimization problem. However, such general
treatment does not appear promising as the total number of equality and inequality
constraints total to around 3000. It is also not very easy to de® ne a suitable objective
function. Therefore, the following simple and useful modi® ed backtrack algorithm is
suggested to enumerate the consistent values to generate the feasible set.

A simple way to enumerate the consistent belief values and in¯ uence factors:

Step 1. From the initial guess of Bdi , Bm j , Brk , Idimja= 1 and Imjrka= 1 generate couple of
prospective candidates close to the given initial guess (e.g. for the initial
guess of 0.4, the program would generate values 0.3, 0.35, 0.4, 0.45, 0.5).
The enumerator would attempt to assign the consistent values to the rest of
the variables.

Step 2. For each value of the initial guess, use the constraint set I to generate couple
of possible values (say 4 to 5) for each of the remaining variables.

Step 3. Delete those values for each variable which does not satisfy the constraint set
II. This would generate the feasible set.

Step 4. For each set of values in the feasible set, test the performance of the diag-
nostic algorithm on the available example sets and select the best set of
values as the ® nal set.

5. The diagnostic algorithm

In the last section an enumerator is developed which will supply the consistent
values enabling an execution of the diagnosis. The performance of the network

A semantically constrained Bayesian network 2181
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should be checked on the given example set to decide which instance of the network
gives the best results. The best instance of the network should then be stored and
used for future diagnoses.

The diagnostic algorithm can be perceived as a generalization of the Bayesian
analysis. The notions of likelihood ratio, and prior odds are generalized to incorpo-
rate all the enhancements as well as complexities discussed earlier in the paper.
Again, the probability theory is modi® ed in the following way.

However, the similarity to the Bayesian analysis ends here. As seen in the third
point, the decision on the occurrence or non-occurrence of a particular metacause or
rootcause node is not based on the generalized posterior odds. Instead, the notions
of input activation and output activation of the node are introduced. The input
activation to a metacause or rootcause mode is de® ned as the product of generalized
likelihood ratios of all the preceding links. Figure 2 shows the way activation is
computed in a successor node.

Ain is the input activation function which combines weighted activations from the
earlier layers to decide on the activation of the node under consideration.

Ain(ai, I ija= 1, I Âija= 1, I ija= 0, I Â ija= 0) = Õ
i

L*
ij(ai, I ija= 1, I Âija= 1, I ija= 0, I Âija= 0) (3)

where L*
ij is a generalized likelihood ratio for a link between nodes i and j. This is

de® ned as follows (Fig. 3):

L*
ij =

L
c
ij if 0 £ ai < 0.1

L
c
ij + (1 - L

c
ij)(ai - 0.1) /0.3 if 0.1 £ ai £ 0.4

1.0 if 0.4 < ai < 0.6
1 + (Lij - 1)(ai - 0.6) /0.3 if 0.6 £ ai < 0.9
Lij if 0.9 £ ai £ 1.0

ìïïïïïï
íïïïïïïî

(4)

where L
c
ij =

I eihja= 0

I Âeihja= 0
and Lij =

I eihja= 1

I eihja= 1
.

The output activation function converts the impulse ain,j into the activation level
for the node under consideration. When the output activation of a node approaches
unity, it is believed as to be occurring. Thus the occurrence and non-occurrence of a
node gets scaled between 0 to 1.

2182 R. W. Lewis and R. S. Ransing

Laws of probability Semantically constrained Bayesian network

O(H) =
P(H)

1 - P(H)
µj = Bj /Bc

j

L (e|H) =
P(e|H)

P(e|Ø H) L*
ij =

Iija

IÂ ija

Occurrence or non-occurrence of
a hypothesis (H) ~

Occurrence or non-occurrence
of a node ~

P(H | e1, e2, e3, . . . , en) Aout(ain,j)

Table 5.
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Aout(ain,j) =

1.0 if 5.0 £ ain,j < ¥
0.95 if 4.5 £ ain,j < 5.0
0.90 if 4.0 £ ain,j < 4.5
0.85 if 3.5 £ ain,j < 4.0
0.80 if 3.0 £ ain,j < 3.5
0.75 if 2.5 £ ain,j < 3.0
0.70 if 2.0 £ ain,j < 2.5
0.65 if 1.5 £ ain,j < 2.0
0.60 if 1.0 < ain,j < 1.5
0.50 if ain,j = 1.0
0.40 if 0.95 £ ain,j < 1.0
0.35 if 0.85 £ ain,j < 0.95
0.30 if 0.75 £ ain,j < 0.85
0.20 if 0.65 < ain,j < 0.75
0.10 if 0.55 £ ain,j < 0.65
0.0 if 0.0 £ ain,j < 0.55

ìïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
íïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïî

(5)

The posterior belief values are calculated only for user’s information. For the jth
node PBj , it is de® ned as follows:

PBj = O(ain,j,µj) (6)
where µj is the generalized posterior odds for the node j.

µj = Bj /B
c
j (7)

O(ain,j,µ) = (ain,j ´ µj) /(1 + (ain,j ´ µj) (8)

6. Validation

The validation of the semantically constrained Bayesian network is actually
implied by the successful validation of ICADA (Ransing et al. 1995) in a realistic

A semantically constrained Bayesian network 2183

Figure 2. Activation in a successor node.
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environment. Because, it not only retains all the advantages of ICADA due to its
innovative knowledge elicitation scheme but also o� ers following extra capabilities.

� Generation of consistent numerical values is automatic.

� Partial evidence is also considered during the analysis.

� More ¯ exibility is available while calculating the posterior belief in the case
of con¯ icting evidence, leading to a better control on the belief revision
process.

� The constraints are more rigorous.

The best instance of the network was selected which gave the most satisfactory
diagnoses on the given example set constituting 25 examples for a pressure die
casting process manufacturing aluminium castings. This network, equipped with
the most suitable belief values and in¯ uence factors, was then validated on another
test data set comprising 20 diagnostic examples. One typical example has been illu-
strated below.

In all a total of 14 defect, 18 metacause and 43 rootcause nodes were identi® ed.
From the rejection data the input vector of activations was determined and is given
as

adefect = [0 0 0 0 0 0 0 0 1.0 1.0 0 0 0 0]
The activation of defect nodes Build Up and Dimensional is 1. The remaining defects
do not occur i.e. Porosity, Pin Holes, Blisters, Mismakes, Stains, Cold Shuts, Drags,
Cracks, Flash Overlap, Die Damage, Bending and Broken Core. For this input vector
the activation in metacause nodes was:

ametacause = [0 0.75 0 0.6 0.75 0.6 0 0.6 0 0.6 0 0 0.65 0.65 1.0 0 0 0]

2184 R. W. Lewis and R. S. Ransing

Figure 3. Generalized likelihood ratio variation.
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The nodes with activation 0.75 and above are cooling rate of casting± inadequate
(0.75), L ubrication± Inadequate (0.75), Overheating of the die (1.0). Some of the
nodes show some positive indication whereas others are with zero activation.
Activations in rootcause nodes are then determined. Rootcauses with activation
close to unity (values in the round brackets) were as follows:

� Cycle time (1.0) with posterior belief Ð 95%

� Quantity of die lubricant ± less (0.95) Ð 98%

� Metal too hot (0.8) with posterior belief Ð 85%

� Mixing ratio of die lubricant (0.7) with posterior belief Ð 90%

� Temperature and ¯ ow rate of the cooling system (0.7) with posterior belief Ð
84%

� Number of the cavities (0.7) with posterior belief Ð 89%

� Kind and number of cooling systems (0.65) with posterior belief Ð 78%

The production personnel agreed to scrutinize the following three causes ® rst:

� Whether the cycle time was correct.

� Temperature of the molten metal.

� Temperature of the die, whether it cooled adequately or not.

Remarks:

(1) It is to be noted that the activation decides the occurrence of a particular
node and not the posterior belief as in the case of ICADA.

(2) As a result of more control on the belief revision, the diagnosis can closely
match reality.

(3) The semantically constrained Bayesian network has been validated on 20
representative data sets with di� erent dies and time frames.

The sample calculation of the activation in the metacause node Overheating of the die
is given below.

A semantically constrained Bayesian network 2185

Defect nodes ai I ija=1 /I Â ija=1 = Lij I ija=0 /I Â ija=0 = L
c
ij L*

ij

Porosity 0 0.44 /0.44 = 1 0.16 /0.16 = 1 1
Pin holes 0 0.34 /0.10 = 3.4 0.26 /0.31 = 0.83 0.85
Blisters 0 0.14 /0.14 = 1 0.36 /0.36 = 1 1
Mismakes 0 0.32 /0.32 = 1 0.18 /0.18 = 1 1
Stains 0 0.11 /0.11 = 1 0.39 /0.39 = 1 1
Cold shuts 0 0.2/0.2 = 1 0.3/0.3 = 1 1
Drags 0 0.26 /0.26 = 1 0.24 /0.24 = 1 1
Cracks 0 0.32 /0.32 = 1 0.18 /0.18 = 1 1
Build up 1 0.30 /0.07 = 4.29 0.24 /0.30 = 0.8 4.29
Dimensional 1 0.42 /0.05 = 8.40 0.18 /0.26 = 0.69 8.4
Flash overlap 0 0.29 /0.29 = 1 0.21 /0.21 = 1 1
Die damage 0 0.28 /0.04 = 7 0.28 /0.37 = 0.76 0.75
Bending 0 0.26 /0.26 = 1 0.24 /0.24 = 1 1
Broken core 0 0.20 /0.20 = 1 0.30 /0.30 = 1 1

Table 6.
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The activation and the posterior belief are calculated as follows:

ain,j = Õ
i

L*
ij(ai, I ija= 1, I Âija= 1, I ija= 0, I Âija= 0

= 0.85 ´ 4.29 ´ 8.4 ´ 0.75 ´ 1
= 22.97

aj = Aout(ain,j)
= 1.0

µj = Bj /B
c
j

= 0.29 /0.21
= 1.38

PBj = O(ain,j,µj)
= (ain,j ´ µj) /(1 + (ain,j ´ µj)
= (22.97 ´ 1.38) /(1 + (22.97 ´ 1.38))
= 0.97

7. Conclusions

The semantically constrained Bayesian network is proposed as a diagnostic tool.
The overall objective in developing this network can be categorized as follows:

Represent causal relationship in the form of a directed network such that it is easy to
quantify the links with local, conceptually meaningful parameters that turn the net-
work as a whole into a globally consistent knowledge base.

The notion of Bayesian analysis has been utilized while quantifying the causal
relationship as well as the belief revision process (i.e. estimating activation in the
respective nodes.) However, instead of assessing the probability of meta/root cause
being true, the level of con® dence that can be imparted in a meta/root cause is
assessed and estimated. As a result, the complete knowledge regarding causal rela-
tionships ± a must in the case of probabilistic models ± is not necessary.
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