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Abstract	

Vibrational	 spectroscopy	 studies	 often	 generate	 datasets	 containing	

multiple	spectra	that	are	categorized	into	distinct	groups	according	to	similarity.	

Principal	 components	 analysis	 (PCA)	 is	 one	 of	 the	 most	 frequently	 used	

multivariate	 analysis	 methods	 for	 data	 reduction	 of	 vibrational	 spectra	 and	

visualization	 of	 potential	 groupings	 between	 subjects.	 Vibrational	 spectra	

usually	display	unimodal	or	multimodal	distribution	patterns	of	absorbance	or	

transmittance	 across	 wavenumbers.	 PCA,	 requires	 that	 a	 linear	 relationship	

exists	 between	 data	 distributions	 of	 the	 objects	 under	 analysis	 otherwise	 the	

method	 is	 prone	 to	 a	 serious	 artifact	 known	 as	 the	 ‘horseshoe	 effect’.	 This	

artifact,	well	known	in	other	fields	of	science,	manifests	as	a	serious	distortion	of	

the	 pattern	 of	 how	 objects	 group	 according	 to	 the	 most	 important	 principal	

components	 leading	 to	 misinterpretation	 of	 the	 relationships	 between	 the	

samples	 from	 which	 they	 are	 derived.	 In	 this	 paper,	 using	 a	 simulated	 mid‐

infrared	 spectral	 dataset,	we	 investigate	 for	 the	 first	 time	 the	potential	 for	 the	

PCA	horseshoe	effect	on	vibrational	spectra	and	the	why	this	artifact	occurs.	We	

show	that	when	comparing	 large	regions	of	contiguous	wavenumbers	between	

multiple	spectra	there	can	be	a	non‐linear	relationship	between	distributions	of	

different	 spectra.	 Such	 non‐linearity	 causes	 the	 horseshoe	 effect	 and	 we	

demonstrate	 that	 the	degree	of	distortion	of	how	spectra	map	on	 the	 first	 two	

components	is	related	to	the	region	size.	We	further	show	that	reducing	the	size	

of	spectra	analyzed	by	PCA	can	minimize	the	horseshoe	effect.	We	conclude	that	

PCA	should	be	used	with	caution	in	the	analysis	and	interpretation	of	vibrational	

spectra	and	the	application	of	more	robust	methods	should	be	explored.	
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1.	Introduction	

Vibrational	 spectroscopy	 studies	 often	 generate	 datasets	 containing	

multiple	spectra	that	are	categorized	into	distinct	groups	according	to	similarity.	

This	is	especially	true	of	studies	using	mid/near‐infrared	or	raman	spectroscopy	

for	 characterization	 of	 molecular	 composition	 or	 structure	 and	 biomedical	

diagnosis	 using	 fluids	 or	 solid	 tissue	[1].	 Simple	 statistical	 analysis	 of	 complex	

biological	 sample	 spectra	 is	 often	 not	 appropriate	 due	 to	 the	 sampling	 of	

multiple	 spectra,	 differentiation	 of	 spectra	 by	 group	 and	 strong	 overlapping	

spectral	features.	Therefore,	multivariate	analysis	methods	are	usually	deployed	

to	 large	 datasets	 to	 assist	 in	 visualization	 of	 relationships	 of	 spectral	 features	

either	within	or	between	groups	of	spectra.	

Multivariate	analysis	methods	are	a	group	of	statistical	procedures	used	

to	 simultaneously	analyze	 three	or	more	variables.	One	of	 the	oldest	 and	most	

commonly	 used	 of	 these	 methods	 is	 principal	 components	 analysis	 (PCA).	

Although	a	major	data	reduction	tool	 in	chemometrics,	 this	technique	has	been	

widely	 used	 in	 many	 scientific	 fields	 as	 diverse	 as	 molecular	 biology	 [2],	 the	

behavioural	 sciences	 [3]	 computational	 toxicology	 [4],	 industrial	 chemistry	 [5]	

and	ecology	 [6].	We	can	cite	but	a	 few	of	many	studies	 in	 the	 literature	where	

PCA	has	been	used	on	vibrational	spectroscopic	data	to	develop	discriminatory	

models	 for	 diverse	 objectives	 such	 as	 disease	 diagnosis	 [7,8],	 cell	 type	

characterization	[9],	bacterial	strain	differentiation	[10]	as	well	as	seed	varieties	

[11].	 Another	 important	 application	 of	 vibrational	 spectroscopy	 is	 in	

determination	 of	 single	 biomolecule	 structure,	 particularly	 protein	 secondary	

structure	 [12‐14].	 PCA	 has	 been	 used	 to	 associate	 protein	 absorbance	 change	

and	 shift	 in	 frequencies	 due	 to	 altering	 environmental	 conditions	 such	 as	

temperature	for	both	near	[15]	and	mid	infrared	spectroscopy	[16].	

The	 main	 objective	 of	 PCA	 is	 to	 extract	 important	 information	 from	 a	

table	 of	 high	 dimensional	 data	 with	 inter‐correlated	 variables	 into	 new	 and	

fewer	uncorrelated	variables.		These	reduced	variables	reveal	trends	in	the	data	

that	 are	 otherwise	difficult	 to	 visualize.	 For	 vibrational	 spectroscopy	data,	 this	

table	 of	 absorbance	 would	 be	 comprised	 of	 rows	 of	 individual	 spectra	 where	

each	 column	 represented	 the	 wavenumbers	 in	 the	 spectra.	 The	 table	 is	 often	

mean	centred	prior	to	PCA.	A	covariance	matrix	is	calculated	from	the	data	table	



from	 which	 eigenvalues	 (variance	 explained)	 and	 eigenvectors	 are	 found	 and	

eigenvectors	ranked	according	to	the	size	of	eigenvalue.	This	new	matrix	of	data	

describes	a	multidimensional	coordinate	system	where	the	axes	are	rotated	so	as	

to	 align	 with	 the	 greatest	 variation	 of	 the	 data.	 The	 first	 axis,	 or	 principal	

component,	 captures	 the	 most	 variation	 as	 this	 eigenvector	 has	 the	 largest	

eigenvalue.	 The	 second	 component	 captures	 the	 second	 highest	 variance,	

independent	 from	 the	 first,	 and	 so	 on.	 The	 eigenvector	 is	 a	 series	 of	 weights	

(loadings)	for	each	wavenumber	on	a	component.	Linear	combinations	of	these	

weights	with	the	original	data	can	be	summed	to	give	scores	for	each	spectrum	

on	a	component.	Thus,	the	relationships	between	spectra	according	to	how	they	

co‐vary	by	wavenumber	absorbance	may	be	visualized	in	this	coordinate	system	

by	plotting	 the	scores	of	each	spectrum	on	the	most	 important	components.	 In	

this	way,	potential	groupings	of	spectra	by	similarity	are	easily	visualized	using	

scatterplots.	For	a	full	introduction	into	the	concepts	and	detailed	steps	of	PCA,	

readers	are	referred	to	some	popular	introductions	[17,	18].	

PCA	 is	 however	 prone	 to	 a	 serious	 artifact	 that	 can	 lead	 to	 false	

interpretation	 of	 how	 objects	 under	 consideration	 could	 group.	 In	 the	 field	 of	

ecology	 it	 is	 well	 known	 that	 when	 species	 abundance	 data	 along	 a	 sampling	

gradient	 (species	 response	 curve)	 are	 analyzed	 by	 PCA	 then	 the	 resulting	

scatterplot	 of	 species	 scores	 on	 the	 first	 two	 components	 will	 often	 show	 a	

distortion	 [19].	 This	 distortion	 occurs	 when	 the	 second	 axis	 is	 curved	 and	

twisted	relative	to	the	first	as	an	arch	or	“horseshoe”	pattern	of	objects	and	is	not	

a	 true	secondary	gradient.	The	cause	of	 the	horseshoe	effect	 relates	 to	 the	 fact	

that	species	response	curves	are	unimodal	in	distribution	(like	a	Gaussian	curve)	

especially	over	a	long	gradient	where	there	are	few	species	sampled	at	the	ends	

of	the	gradient.	Even	though	species	may	be	truly	different	in	abundance	along	a	

gradient,	they	may	all	share	low	or	zero	abundance	at	the	tail	ends.	This	shared	

zero	abundance	 is	meaningless	 in	 terms	of	how	species	vary	but	PCA	assumes	

species	 similarity	 at	 these	 points	 which	 manifests	 in	 similar	 scores	 on	

component	two	and	it’s	arch	over	component	one	[20,	21].	The	horseshoe	effect	

is	also	not	confined	to	unimodal	species	response	curves	in	ecology	but	also	with	

more	 complex	multimodal	models	 [18].	 PCA	 is	 only	 really	useful	when	objects	



are	 linearly	 related	 to	 each	 other	 as	 monotonic	 distributions	 or	 when	 the	

gradient	assessed	is	short.		

An	absorbance	(or	equally	transmittance)	band	in	a	vibrational	spectrum	

displays	 a	 unimodal	 distribution	 and	 is	 analogous	 to	 a	 unimodal	 species	

response	 curve	 in	 ecology.	 A	 whole	 absorbance	 spectrum	 is	 analogous	 to	 a	

multimodal	species	response	curve.	This	suggests	that	PCA	applied	to	regions	of	

contiguous	 wavenumbers	 across	 a	 series	 of	 spectra	 with	 variable	 band	 peak	

positions	(a	common	practice),	could	be	susceptible	to	the	horseshoe	effect	and	

misinterpretation	of	results.	

In	 this	 paper,	 using	 a	 simulated	 mid‐infrared	 spectral	 dataset,	 we	

investigate	 for	 the	 first	 time	 the	 potential	 for	 the	 PCA	 horseshoe	 effect	 on	

vibrational	spectra	and	the	why	this	artifact	occurs.	We	show	how	use	of	regions	

of	contiguous	spectral	wavenumbers	causes	the	horseshoe	effect	and	the	degree	

of	distortion	is	related	to	the	region	size.		

	

	

2.	Methods	
A	dataset	was	created	 for	15	spectra	 in	 the	mid‐infrared	spectral	 range.		

The	 simulated	 spectra	 were	 loosely	 based	 on	 the	 series	 of	 25	 temperature	
dependent	spectra	for	Bovine	pancreatic	ribonuclease	A	(RNase	A)	reported	by	
Wang	et	al.	[15]	after	that	protein	had	been	subjected	to	2oC	increments	between	
25	 and	70oC.	 In	 that	 study,	 the	RNase	A	 spectra	between	1600	and	1700	 cm¯¹	
showed	 absorbance	 at	 1641	 cm¯¹	 that	weakens	 as	 temperature	 increases	with	
the	 formation	of	 a	band	at	1653	 cm¯¹.	Two	weak	bands	were	also	observed	at	
1615	and	1689	cm¯¹	that	varied	with	temperature.	

In	our	artificial	dataset	we	generated	15	simulated	spectra	between	1600	
and	1700	cm¯¹	at	a	resolution	of	4cm¯¹	for	a	temperature	range	between	15	and	
85oC	and	a	 temperature	 increment	of	5oC.	Thus,	our	dataset	 is	not	 intended	 to	
replicate	 that	published	by	Wang	et	al.	 [15]	but	 to	be	one	 that	 simply	 shows	a	
similar	pattern	of	variable	multimodal	spectra	over	a	72	data	point	wavenumber	
range	of	100	cm¯¹.	Each	spectrum	was	created	by	curve	fitting	at	each	of	the	four	
wavenumbers	described	by	Wang	et	al.	[15],	varying	the	full‐width	at	half‐height	
and	standard	deviation.	

All	 data	 analysis	 was	 performed	 using	 the	 R	 Statistical	 Programming	
Environment	 [22].	 Principal	 components	 analysis	 was	 performed	 using	 the	
‘prcomp’	function	with	default	parameters.		
	

	



3.	Results	and	Discussion	

	

3.1.	Simulated	RNase	A	spectral	dataset	

The	 15	 simulated	 absorbance	 spectra	with	 72	wavenumber	 data	 points	

between	1600	and	1700	cm¯¹	and	of	a	5oC	 increment	between	 the	 range	of	15	

and	85oC	are	 shown	 in	Figure	1.	At	15oC	 the	 spectrum	shows	a	 strong	peak	at	

1641	 cm¯¹	 and	weaker	 peak	within	 the	 shoulder	 at	 around	 1653	 cm¯¹.	 As	 the	

temperature	 increases,	 the	 absorbance	 maximum	 decreases	 and	 shifts	 from	

1641	cm¯¹	whereas	absorbance	at	the	band	peaking	around	1653	cm¯¹	increase	

in	intensity.	Very	small	absorbance	fluctuations	between	spectra	exist	at	the	two	

weak	 bands	 around	 1615	 and	 1689	 cm¯¹.	 There	 are	 a	 number	 of	 important	

observations	 to	 be	 made	 about	 these	 spectra	 regardless	 of	 response	 to	

temperature	 increment.	 Firstly,	 the	 spectra	 have	 a	 multimodal	 distribution	

although	 the	 spectra	 for	 the	 highest	 temperatures	 appear	 almost	 unimodal.	

Secondly,	for	each	spectrum,	the	absorbance	values	for	contiguous	wavenumbers	

at	each	end	are	very	similar	to	each	other.	 	Thirdly,	there	is	very	little	variation	

between	spectra	for	absorbance	at	each	end.	

	

3.2.	PCA	and	the	non‐linearity	relationship	between	spectra	

PCA	was	applied	to	the	15	spectra	dataset	using	absorbance	values	for	all	

72	 wavenumbers	 between	 1600	 and	 1700	 cm¯¹.	 A	 plot	 of	 scores	 for	 each	

spectrum	on	principal	components	one	(PC1)	and	two	(PC2)	is	shown	in	Figure	

2A.	 The	 order	 of	 spectra	 by	 scores	 on	 PC1	 appears	 to	mirror	 the	 temperature	

gradient	and	we	can	confidently	interpret	PC1	as	explaining	the	variance	due	to	

temperature.	 The	 spectra	 do	 however	 display	 a	 clear	 horseshoe	 shaped	

distribution	 as	 the	PC2	 axis	 curves	 on	 that	 for	 PC1.	 The	 spectra	 of	 lowest	 and	

highest	temperatures,	i.e.	those	at	the	each	end	of	the	spectral	gradient,	begin	to	

twist	 back	 characteristic	 of	 the	 horseshoe	 effect.	 The	 loadings	 of	 each	

wavenumber	 on	 PC2	 are	 shown	 in	 Figure	 2B.	 The	 negative	 loadings	 of	

wavenumbers	1630	and	1669	cm¯¹	on	PC2	coincide	with	the	negative	scores	of	

the	spectra	at	the	ends	of	the	temperature	gradient.	Taking	all	this	 information	

into	 account	 one	would	 conclude	 from	PCA	 that	 similarities	 exist	 between	 the	

lower	 and	 higher	 temperature	 spectra	 influenced	 by	 a	 similar	 pattern	 of	



absorbance	 around	 1630	 and	 1669	 cm¯¹.	 In	 reality,	 a	 quick	 look	 at	 Figure	 1	

shows	that	spectra	vary	in	opposite	directions	by	absorbance	level	at	these	two	

wavenumbers.	 There	 is	 certainly	 no	 interpretable	 reason	 why	 spectra	

corresponding	to	temperatures	at	55	and	60oC	would	be	at	the	opposite	end	of	a	

gradient,	as	suggested	by	PC2,	to	those	spectra	at	15,	20,	25,	30,	75,	80	and	85oC.	

This	horseshoe	pattern	 results	 from	a	 composition	of	 several	 such	non‐

linear	 relationships	 between	 spectra.	 The	 non‐linear	 relationship	 between	

wavenumbers	at	the	extreme	ends	of	the	spectral	gradient	i.e.	for	15	and	85oC	is	

obvious	when	just	aligning	those	spectra	(Figure	3A).	The	relative	degree	of	non‐

linearity	between	any	two	spectra	can	be	visualized	by	plotting	the	absorbance	

values	 for	 each	wavenumber	 as	 a	 scatterplot.	 Figure	 3B	 shows	 scatterplots	 of	

absorbance	between	the	spectrum	at	15oC	and	each	of	the	remaining	spectra	in	

order	 of	 increasing	 temperature.	 As	 expected,	 a	 scatterplot	 showing	 the	 joint	

distribution	of	wavenumber	absorbance	for	the	two	spectra	of	15C	and	20oC	(i.e.	

very	 similar	 spectral	 shape)	 have	 a	 linear	 relationship.	 As	 the	 temperature	

increases,	we	see	the	scatterplots	between	15	and	25oC	through	the	temperature	

gradient	 to	 85oC	 show	 an	 increasingly	 stronger	 curvilinear	 relationship.	 Thus,	

the	non‐linearity	 increases	as	 the	spectral	distribution	modes	are	shifted	along	

the	wavenumber	axis.		

	

3.3.	Relationship	between	horseshoe	effect	and	spectrum	length	

To	 examine	 the	 contribution	 of	 wavenumbers	 at	 the	 end	 of	 spectral	

regions	to	the	horseshoe	effect,	PCA	was	carried	out	on	spectra	with	decreasing	

lengths.	 Starting	 with	 a	 full	 length	 of	 72	 wavenumbers,	 all	 spectra	 were	

iteratively	 shortened	 by	 a	 wavenumber	 at	 each	 end	 and	 the	 remaining	

contiguous	wavenumbers	entered	into	PCA.	This	shortening	was	repeated	until	

30	wavenumber	data	points	had	been	removed	from	each	end	leaving	a	shortest	

spectrum	of	11	data	points	spanning	the	middle	of	the	original	spectra.	Figure	4	

shows	 scatterplots	 of	 spectral	 scores	 on	 PC1	 and	 PC2	 for	 the	 range	 of	

increasingly	shortened	spectra.	The	first	plot	shows	the	characteristic	horseshoe	

as	observed	in	Figure	2A	when	the	spectral	range	comprised	of	all	wavenumbers.	

As	the	range	decreases,	it	appears	that	the	horseshoe	effect	remains	until	at	least	



25	 wavenumbers	 have	 been	 removed	 from	 either	 end	 (a	 total	 of	 50)	 of	 the	

spectral	data	points.	

To	test	whether	the	PCA	scores	for	the	variable	length	spectra	on	PC1	and	

PC2	conformed	to	a	horseshoe	or	arch	shape,	both	quadratic	and	 linear	curves	

were	fitted	to	the	data.	A	one‐way	ANOVA	was	used	to	determine	if	a	quadratic	

model	fit	was	a	significant	improvement	on	a	linear	model	fit	in	each	case.	If	the	

P‐value	was	 greater	 than	 0.05	 then	 the	 score	 distribution	was	 assumed	 to	 not	

follow	a	quadratic	curve	and	thus	the	horseshoe	effect	was	rejected.	The	line	plot	

in	Figure	5	shows	the	P‐values	generated	for	each	length	decrease.	A	quadratic	is	

a	 significantly	 better	 fit	 until	 the	 spectral	 length	 is	 decreased	 by	 26	

wavenumbers	from	each	end.	This	range	corresponds	to	wavenumbers	between	

1636	 to	 1664	 cm¯¹	 meaning	 that	 the	 horseshoe	 effect	 was	 minimized	 by	

analysing	 a	 shorter	 range	 of	 20	 wavenumbers.	 Interestingly,	 when	 the	

proportion	 of	 variance	 explained	 by	 PC2	 was	 assessed	 for	 the	 varying	 length	

spectra	 the	 values	 remained	 constant	 at	 around	 0.017	 until	 the	 end	 length	

decrease	 of	 26	 wavenumbers	 after	 which	 the	 variance	 increases.	 On	 this	

evidence	we	can	further	conclude	that	inclusion	of	long	wavenumber	ranges	for	

PCA	does	not	increase	the	information	explained	by	PCA.	

	

	

4.	Conclusion	

Vibrational	 spectra	 have	 unimodal	 or	 multimodal	 distributions	 of	

absorbance	across	wavenumbers.	As	such,	there	can	often	be	a	shape	dependent	

non‐linear	relationship	between	different	spectra	from	different	sources.	In	this	

paper,	we’ve	highlighted	how	application	of	PCA,	a	widely	used	data	 reduction	

technique,	to	regions	of	contiguous	wavenumbers	in	vibrational	spectra	can	lead	

to	 artifacts	which	 could	 lead	 to	misinterpretation	of	 the	 relationships	between	

the	samples	from	which	they	are	derived.	The	length	of	the	spectral	wavenumber	

region	analyzed	by	PCA	is	clearly	critical.	Long,	approximately	unimodal	spectra	

entered	into	PCA	with	little	variation	at	the	ends	will	lead	to	the	horseshoe	effect.	

Shorter	wavenumber	ranges	are	more	likely	to	approximate	a	linear	relationship	

between	 spectra	 and	 reduce	 distortion	 of	 the	 inter‐spectral	 similarities.	 It	 is	 a	



simple	process	to	iteratively	shorten	the	spectra	to	the	point	where	a	quadratic	

model	is	not	a	significantly	better	fit	than	a	linear	model.	

In	 practice,	 many	 vibrational	 spectroscopy	 datasets	 of	 multiple	 spectra	

display	a	more	complex	pattern	of	absorbance	distribution	across	wavenumbers.	

Such	spectra	are	multimodal	and	this	will	add	further	complexity	to	the	pattern	

of	 distortion	 observed	 when	 plotting	 component	 scores	 and	 loadings.	 Such	

complexity	renders	these	artifacts	difficult	to	detect.	There	are	modifications	of	

PCA	 that	 attempt	 to	 limit	 the	 horseshoe	 effect	 and	 other	multivariate	 analysis	

techniques	 that	 are	 applicable	 to	 unimodal	 data.	 Detrended	 principal	

components	analysis	attempts	to	correct	the	horseshoe	pattern	by	projecting	the	

objects	onto	a	single	axis	following	a	regression	of	component	1	onto	component	

2	[6].	In	his	study	comparing	different	multivariate	analysis	methods	applied	to	

artificial	 species	 response	 data,	 Minchin	 concludes	 that	 non‐multidimensional	

scaling	(NMDS),	using	 the	Bray‐Curtis	dissimilarity	coefficient,	despite	showing	

some	 curvilinear	 distortion,	 is	 the	 most	 robust	 and	 effective	 of	 the	 methods	

compared	 to	 PCA,	 principal	 co‐ordinates	 analysis,	 detrended	 correspondence	

analysis	 and	 Gaussian	 ordination	 [19].	 Other	methods	 should	 be	 evaluated	 on	

vibrational	spectra.	

We	 conclude	 that	 PCA	 should	 be	 used	 with	 extreme	 caution	 in	 the	

analysis	 and	 interpretation	 of	 vibrational	 spectra	 when	 using	 contiguous	

wavenumbers.	 	Further	work	is	required	to	determine	best	practice	of	applying	

multivariate	statistical	methods	to	vibrational	spectra	for	optimal	interpretation	

of	results.	
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Figure	Legends	

	

Figure	1.	The	15	absorbance	spectra	simulating	absorbance	of	RNase	A	between	

1600	and	1700	cm¯¹	with	a	2oC	increment	between	the	range	of	25	and	70oC.	As	

the	 temperature	 increases	 the	 absorbance	maximum	weakens	 and	 shifts	 from	

1641	cm¯¹	to	around	1653	cm¯¹.	

	



Figure	2.	 PCA	of	 simulated	 spectra.	 A.	 Scatterplot	 of	 scores	 for	 each	 spectrum	

(labeled	 as	 15	 to	 85)	 on	 principal	 components	 one	 (PC1)	 and	 two	 (PC2).	 The	

horseshoe	shape	can	be	observed	as	the	PC2	axis	curves	on	that	for	PC1.	B.	Line	

plot	of	the	loadings	of	each	wavenumber	on	PC2.	

	



Figure	 3.	 The	 non‐linear	 relationship	 between	 spectra.	 A.	 The	 non‐linear	

relationship	between	wavenumbers	at	the	extreme	ends	of	the	spectral	gradient	

for	15	and	85oC.	B.	Scatterplots	of	absorbance	between	the	spectrum	at	15oC	(x‐

axis)	 and	 each	 of	 the	 remaining	 spectra	 (y‐axis	 for	 each	 plot),	 in	 order	 of	

increasing	temperature,	highlighting	the	relative	degree	of	non‐linearity.	

	



Figure	4.	Series	of	plots	of	PCA	scores	for	spectra	on	component	1	(x‐axis)	and	

component	2	(y‐axis)	as	the	length	of	wavenumbers	input	into	PCA	is	decreased.	

The	first	plot	shows	scores	for	full	length	spectra.	Each	plot	then	shows	scores	as	

the	spectra	decrease	in	length	at	each	end.	Numbers	indicate	the	number	of	data	

points	removed	at	each	end.	

	



Figure	5.	Plot	to	show	the	significance	of	the	fit	of	a	quadratic	line	through	the	

data	plotted	in	Figure	4.		The	y‐axis	represents	the	P‐value	of	a	one‐way	ANOVA	

applied	 to	 a	 quadratic	 model	 fit	 for	 every	 spectrum	 of	 decreasing	 size	 to	

determine	 if	 the	 quadratic	 model	 was	 a	 significant	 improvement	 on	 a	 linear	

model	 fit.	The	x‐axis	 represents	 the	decrease	 in	 spectral	 length	 from	each	end.	

The	horizontal	dashed	line	signifies	a	P‐value	of	0.05	and	the	vertical	dashed	line	

the	length	of	decrease	where	a	linear	fit	is	better	than	a	quadratic.	C.	The	dashed	

lines	 enclose	 the	 region	 of	 spectra	where	 a	 quadratic	 fit	 was	 not	 a	 significant	

improvement	on	a	linear	fit.	

	


