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Abstract 

In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles 

dispersible in water and dimethylsulfoxide (DMSO) for their potential use in biomedical 

applications. All the cationic-functionalising ligands currently reported in the literature are 

ammonium-based species. Here, the synthesis and characterisation of an alternative system, 

based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried 

out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily 

disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold 

nanoparticles produced by the borohydride reduction of gold (III) salts. The synthesis of the 

cationic gold nanoparticles using these phosphonium ligands were carried out in water and 

DMSO. UV-Visible spectroscopic and TEM studies have shown that the 

phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 

10nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in 

aqueous medium and in DMSO, which is the only organic solvent approved by the U.S. Food 

and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use 

in biological applications. This work shows the synthesis of a new family of phosphonium-
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based ligands, which behave as cationic masked thiolate ligands in the functionalisation of 

gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles 

dispersed in water and DMSO can offer a great opportunity for the design of novel 

biorecognition and drug delivery systems. 

1. Introduction 

The ability of modifying noble metal nanoparticles, such as gold nanoparticles with various 

organic thiolate ligands makes them versatile systems and opens a range of possibilities for 

their use as drug delivery systems,
1-3

 and biosensing
4-6

 applications. Even though the use of 

these nanoparticles in therapeutic purposes is promising, challenges still remain and when 

designing drug nanocarriers, the following considerations are usually taking into account: (i) 

possible drawbacks due to free drugs, (ii) tissue permeation and cellular uptake, and (iii) 

homogenous distribution within the target tissues and organs.
7-13

 Therefore, for any 

biomedical application the main requirements are the affinity to aqueous media and 

compatibility with the immediate biological environment or appropriate receptor groups for 

sensing or diagnostic applications.  

Ligands are introduced to the surface of the nanoparticle either to stabilise the particle and 

avoid uncontrolled aggregation, or to add functionality to the particle for biomolecular 

recognition, enhance transport and anchoring properties.
7
 Recent studies have shown that the 

size, shape and surface charge of nanoparticles, in general, play crucial roles in their entry 

and subsequent access of nanoparticles into living cells.
6,13-16

 For instance, cationic 

nanoparticles are more effective penetrating into mammalian cells than anionic 

nanoparticles.
17

 Nanoparticle surface functionalisation plays an important role in the cellular 

uptake and producing cellular responses.
18,19

 However, information published in the literature 

on how functionalised nanoparticle surface characteristics, such as aromaticity and 
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hydrophobicity, affect cellular internalisation processes is still unclear. Al-Hajaj et al. have 

shown that the functionalised quantum dots they produced with non-specified ligands were 

taken up by lipid host mediated endocytosis in human kidney and liver cells.
20

 Designing and 

tailoring the surface of inorganic nanoparticles with suitable ligands may potentially offer 

long-term stability under a wide-range of conditions such as, high electrolyte concentration, a 

broad pH range, and biogenic or naturally occurring thiols.
3
 Zhan et al. have shown that 

quantum dots modified with multidentate lipoic ligand containing a zwitterionic head group 

can be highly biocompatible nanomaterials,
21-22

 making them attractive nanodevices for 

clinical in vitro and in vivo imaging applications.
23-25

  More recently, Rotello et al. have 

studied the behaviour of gold nanoparticles with different hydrophobicities and the effect of 

surface functionality on hemolysis.
26

 They observed a linear haemolytic behaviour with 

increasing hydrophobicity in the absence of serum media. McIntosh et al. synthesised gold 

nanoparticles capped with a mixture of octanethiol and 11-trimethylammonium-

undecanethiol, and others functionalised with trimethylammonium cationic head groups on 

the surface can interact electrostatically and bind with the negatively charged phosphate 

backbone of 37mer duplex DNA.
27

 As in these studies reported in the literature, the majority 

of the cationic species investigates and used are ammonium -based groups. Here in this work, 

we are proposing the use of cationic phosphonium-based groups as alternatives to the 

ammonium ones.  The phosphonium groups can offer a range of advantages including the 

availability of a broad range of organic derivatives, which allows of designing and producing 

a wide variety of functionalised gold nanoparticles. Their ability of triphenylphosphonium 

head groups to travel across cell membranes is well-known.
28-30

 There are also several studies 

on the use of phosphines and phosphine oxides to stabilise nanoparticles. However, there 

have been far fewer studies of the use of organophosphorus ligands.
31-33
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Additional to imparting specific functionalities to nanoparticles, their dispersion in water or 

any other biocompatible solvent is crucial for their use in biomedical or biological 

applications. Therefore, water should be the primary solvent to be used to disperse 

functionalised nanoparticles. However, in many cases, the ligands used to protect and provide 

functionality to nanoparticles, and the corresponding nanomaterials produced are not soluble 

or dispersible in water. It would be highly beneficial to have a range of other biocompatible 

solvents. One potential alternative to water may be dimethyl sulfoxide (DMSO). According 

to the FDA, DMSO is a solvent derived from wood, which has been the subject of 

considerable interest for its potential as a drug. At present, the only human use for which 

DMSO has been approved is for interstitial cystitis, a bladder condition. DMSO is also 

known as a "carrier" chemical, it could deliver substances into the bloodstream through the 

skin.
34

 For all the reasons outlined here, DMSO was a chosen solvent to synthesise and 

disperse our nanoparticles. 

Here in this paper we are reporting for the first time the syntheses cationic gold nanoparticles 

by reducing gold (III) salt in the presence of our cationic phosphonium ligands in DMSO. We 

also describe the synthesis of a new cationic phosphonium ligand, tri(p-

tolyl)phosphoniopropylthiosulfate zwitterion used to functionalise the gold nanoparticle 

surface in DMSO. Two previously reported phosphonium ligands, 

triphenylphosphoniopropylthiosulfate zwitterion
35

 and (3-

thioacetylpropyl)triphenylphosphonium bromide,
36

 were used for this work to produce the 

cationic phosphonium gold nanoparticles in DMSO and comparison purposes with the new 

ligand synthesised, tri(p-tolyl)phosphoniopropylthiosulfate.  
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2. Materials and Methods 

(a) General 

All chemicals and solvents were purchased from Sigma-Aldrich and Fisher Scientific Ltd. 

For the characterisation of the ligands and functionalised gold nanoparticles several analytical 

techniques were used. TLC, ATR-FTIR, NMR, ESI-MS techniques were employed to 

characterise the phosphonium containing ligands. UV-Visible spectroscopy and TEM were 

used to characterise and obtain the size of the cationic phosphonium gold nanoparticles. The 

stability of the colloidal gold nanoparticle solutions were monitored using UV-Visible 

technique. 

Thin Layer Chromatography (TLC): Analytical thin layer chromatography was carried out 

on Merck silica gel 60 F254 plates by using mixtures of methanol: dichloromethane (DCM) 

as eluent system. 

Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) Spectroscopy: 

IR spectra acquisition was performed on solid samples using a Nicolet 5700 FT-IR 

spectrometer equipped with Omnic software (version 7.1) and a Smart Omni-Sampler (ATR 

cell with single reflectance germanium crystal). Each recorded spectrum is the average of 32 

scans with a spectral resolution of 4 cm
−1

 from 400 to 4000 cm
−1

 on a dried sample, with a 

background spectrum recorded before each analysis. Spectra were measured and analysed 

and fitted using Origin software (Version 7.5) equipped with Peak-Fitting Module (PFM). 

Nuclear Magnetic Resonance Spectroscopy (NMR): 
1
H NMR spectra were acquired on a 

JEOL 400MHz spectrometer. Data are reported as follows: s, singlet; d, doublet; t, triplet; q, 

quartet; m, multiplet. Appropriate solvents such as dimethylsulfoxide, chloroform, diethyl 
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ether were used to dissolve the samples to a concentration of 15 to 40 mg ml
-1

 for 
1
H 

experiments.  

Electrospray Ionisation – Mass Spectrometry (ESI-MS): ESI-MS analyses were generally 

performed on the Orbitrap XL using nano- electrospray in positive or negative ionisation 

mode. Orbitrap XL High resolution instrument gives accurate mass measurement over the 

full mass range in electrospray resolution: up to 100,000 (FWHM). Mass Range: m/z 50–

2000 or m/z 200–4000. Mass Accuracy: <3 ppm RMS with external calibration; <2 ppm 

RMS with internal calibration. 

All samples were initially solvated in 250µl of DCM before approximately 10µl of the 

solutions were added to 1ml of methanol with NH4OAc. A portion of these samples were 

added to a 96 well plate to be analysed by positive nano-electrospray.  

Ultraviolet-Visible Absorption Spectroscopy (UV-visible):  UV-visible spectra were 

obtained on a HITACHI U-2900 spectrophotometer with double beam principle system with 

data recording using Vision software version on Windows XP/2000. Samples were analysed 

in a UV-quartz cuvette of a 1 cm optical path. Appropriate dilutions to the original samples 

were carried out using either water or DMSO. 

Transmission Electron Microscopy (TEM): A JEOL2100 field emission gun transmission 

electron microscope (FEG TEM) set at 100 KV was used for the analyses of the particles and 

obtained the TEM micrographs. Size distribution was obtained by counting and measuring 

over 150 gold nanoparticles. Deposition method was used to prepare the samples for TEM 

analyses. A drop of a diluted colloidal solution of the functionalised gold nanoparticles was 

placed and suspended on a Holey carbon coated copper grid. Then the grids were left to dry 

at room temperature.  
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(b) Synthesis of Cationic Phosphonium Ligands 

The tri(p-tolyl)phosphoniopropylthiosulfate zwitterion synthesis and characterisation are 

reported for the first time in this work. The syntheses of the 

triphenylphosphoniopropylthiosulfate zwitterion and ω-thioacetylpropylphosphonium salt 

were carried out following previously reported methods.
35,36 

The synthetic protocols used to 

produce the three ligands are outlined in this section.  

Synthesis of tri(p-tolyl)phosphoniopropylthiosulfate  zwitterion 

The synthesis of the tri(p-tolyl)phosphoniopropylthiosulfate zwitterion was carried out 

following the reactions showed in Scheme 1. In a round bottom flask with a reflux condenser 

a mixture of tri(p-tolyl)phosphine (1) (3.8mmol) with approximately bromo-propanol (15 

mmol) were refluxed for five hours in acetonitrile (0.024 mmol) and the solid precipitate was 

collected and recrystallized from ethanol (Reaction 1, Scheme1). The yield was 70%. The 

resulting salt (2) was dissolved in hydrobromic acid (0.18 mmol, 10 ml) (48%) in a round 

bottom under reflux five hours (Reaction 2, Scheme 1). The reaction mixture was left to cool 

down, the compound appeared as yellow oil (3). In order to prepare the tri-p-

tolylphosphoniopropylthiosulfate zwitterion (4), a mixture of -bromopropyl-tri(p-

tolyl)phosphonium bromide (3) (1 mmol) and sodium thiosulfate (1.5 mmol) were refluxed 

for five hours in aqueous ethanol (1:1, 10ml) (Reaction 3, Scheme 1). TLC was used in order 

to follow the progress of the reaction by using 20%:80% methanol:DCM as mobile phase. All 

compounds were purified further by liquid-liquid extraction of the reaction mixture using 

DCM and by trituration with dry diethyl ether.  
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Scheme 1: Synthesis of tri(p-tolyl)phosphoniopropylthiosulfate zwitterion (4) 



9 
 

Synthesis of triphenylphosphoniopropylthiosulfate  

In order to obtain the triphenylphosphoniopropylthiosulfate zwiterion,
35

 three main chemical 

reactions were carried out. The first stage involved the synthesis of the 

hydorxylpropylphosphonium salt and this was generated by a quaternation reaction of 

triphenylphosphine (4 mmol) and the corresponding bromo-propanol (15 mmol) in 

acetonitrile under reflux for four to five hours. The resulting salt was dissolved in 

hydrobromic acid (48%) and reaction was carried out under reflux for five hours to obtain the 

ω-bromopropyltriphenylphosphonium bromide salt. The latter (1 mmol) then was treated 

with sodium thiosulfate (1.5 mmol) in ethanol/water under reflux for five hours in order to 

produce the phosphoniopropylthiosulfate zwitterion. Progress of all reactions were monitored 

by TLC using methanol:dichloromethane 1:4 ratio as the mobile phase. All the compounds 

were purified by dichloromethane extraction and re-crystallisation using diethyl ether.  

(CH2)3 S SO3P

Triphenylphosphoniopropylthiosulfate zwitterion 

Synthesis of (3-thioacetylpropyl)triphenylphosphonium bromide 

In order to obtain the (3-thioacetylpropyl)triphenylphosphonium bromide, 

hydroxypropylphosphonium and ω-bromopropyltriphenylphosphonium bromide salts were 

also synthesised as described in the synthesis of triphenylphosphoniopropylthiosulfate 

zwitterion.
35,36

 Once the bromide salt (2mmol) was produced, this was reacted with potassium 

thioacetate (3 mmol) in a mixture of ethanol/water. The progress of the reaction was followed 

by TLC using a mobile phase of methanol:dichloromethane  in 1:4 ratio. The (3-
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thioacetylpropyl)triphenylphosphonium bromide was isolated and purified by liquid-liquid 

extraction using DCM as the extracting solvent, and re-crystallisation of the bromide salt 

using diethyl ether. 

Br
(CH2)3 S C

O

CH3P

 (3-Thioacetylpropyl)triphenylphosphonium bromide 

 (c) Synthesis of cationic phosphonium gold nanoparticles in DMSO and water 

The method for the synthesis of colloidal cationic phosphonium gold nanoparticles in DMSO 

is reported for the first time in this work. These nanoparticles were obtained by a reduction of 

the gold salt in the presence of protecting ligands in DMSO. Colloidal cationic phosphonium 

gold nanoparticle solutions in water were also prepared for comparison purposes, following 

the principles involved in the method developed by Brust and Schifrin, a two-phase liquid-

liquid system.
35

 Variations were made to this protocol due to the solubility of the 

phosphonium ligands synthesised.  

Cationic phosphonium gold nanoparticles dispersed in DMSO 

In order to prepare the colloidal gold nanoparticles in DMSO, solutions of the phosphonium 

ligands, triphenylphosphoniopropylthiosulfate zwitterion, (3-

thioacetylpropyl)triphenylphosphonium bromide and tri(p-tolyl)phosphoniopropylthiosulfate 

zwitterion were prepared in DMSO (0.25 mmol, 0.30 mmol, and 0.8 mmol respectively). The 

volume used for these solutions was 20 mL. A solution of potassium tetrachloroaurate (0.12 

mmol) in DMSO (10mL) was also prepared. Then both, ligand and gold salt solutions were 

mixed and stirred. The reduction was carried out by adding 5 mL of freshly prepared aqueous 
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solution of sodium borohydride (2.0 mmol) to the DMSO mixture. In order to remove the 

excess of ligands in each one of the gold colloidal solutions prepared, liquid-liquid 

extractions were carried out using diethyl ether. 

Cationic phosphonium gold nanoparticles dispersed in water 

Solutions of the phosphonium ligands (triphenylphosphoniopropylthiosulfate zwitterion and 

(3-thioacetylpropyl)triphenylphosphonium bromide) was prepared in 20 mL of 

dichloromethane (DCM) (0.25 mmol, 0.30 mmol, 0.8 mmol respectively) and potassium 

tetrachloroaurate (0.12 mmol) was also added to the DCM solution.
35,36

 This was vigorously 

stirred for 2 hours and until the potassium gold salt was totally dissolved. The reduction of 

the gold (III) to gold (0) in the presence of phosphonium ligand was carried out by adding 

drop by drop a freshly prepared sodium borohydride solution in water (3ml, 400 mM) with 

vigorous stirring. After 20 minutes of stirring, 15 mL of deionised water was then added to 

the mixture. The latter is kept stirring overnight. The initial DCM was removed from the 

aqueous phase, as the functionalised nanoparticles transferred to this phase. Then, three 

liquid-liquid extractions were carried out using DCM in order to purify the cationic 

phosphonium gold nanoparticles dispersed in water. 

3. Results and Discussion 

(a) Synthesis of tri(p-tolyl)phosphoniopropylthiosulfate zwitterion 

The synthesis of the tri(p-tolyl)phosphoniopropylthiosulfate zwitterion involved the 

preparation of two intermediates, which were obtained and purified in order to get the 

zwitterion. The first compound synthesised was the hydroxylpropylphosphonium salt and this 

was obtained by the quaternisation of the tri(p-tolyl)phosphine with bromopropanol as it is 

showed in Scheme 1. The hydroxypropyl-tri(p-tolyl)phosphonium bromide was then treated 
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with HBr in order to obtain the -bromopropyl-tri(p-tolyl)phosphonium bromide. The latter 

is then reacted with Na2S2O3 in aqueous ethanol. The resulting zwitterion was purified by 

trituration using diethyl ether. The final product had an oil appearance, yellow coloured. 

When studied by ESMS in positive ion mode, ion corresponding to M+H
+
 was observed 

(459). The 
1
H NMR showed the distinctive chemical shift at 2.3 corresponding to the nine 

protons from the –CH3 attached to the aromatic ring. This chemical shift is the main 

difference between the tri(p-tolyl)phosphoniopropylthiosulfate and the 

triphenylphosphoniopropylthiosulfate 
1
H NMR spectra. It can be assumed that the sulfur-

sulfur bond of both tri(p-tolyl)phosphoniopropylthiosulfate undergoes cleavage with the loss 

of the sulfite ion under reductive conditions as in the synthesis of gold colloidal 

nanoparticles, as it was shown and reported in the case of the 

triphenylphosphoniopropylthiosulfate. This cleavage will allow the sulfur of the cationic 

phosphonium ligand to interact with the gold nanoparticle surface. As previously mentioned, 

these thiosulfate and thioacetate ligands are usually known as masked thiol ligands. For 

triphenylphosphoniopropylthiosulfate zwitterion and (3-

thioacetylpropyl)triphenylphosphonium bromide, similar results to the previously reported 

were observed when studied by IR, NMR and ESI-MS. Solubility tests were carried out to all 

three masked thiol ligands. They were soluble in methanol, ethanol, DMSO, chloroform and 

DCM. 

(b) Cationic phosphonium gold nanoparticles dispersed in DMSO and water 

The triphenylphosphoniopropyl thiosulfate and (3-thioacetylpropyl)triphenylphosphonium 

bromide ligands have shown their ability to functionalised and stabilised gold nanoparticles 

surface in water. For this work, another biocompatible solvent, DMSO, was used in order to 

assist with the solubilisation of more hydrophobic ligand (in our case the tri(p-
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tolyl)phosphoniopropyl thiosulfate zwitterion), its interaction with gold nanoparticle surface, 

and then penetration into the lipophilic cell wall. These thiosulfate containing salts are also 

known as Bunte salts. Shon et al. were the first in showing the production of alkanethiolate-

gold nanoparticles from Bunte salts.
37

 They used sodium S-dodecylthiosulfate and showed 

that the sulfur-sulfur bond of the thiosulfate salt undergoes cleavage and acted as the free 

thiol.
35,37

 Functionalised gold nanoparticles dispersed in water were obtained when 

triphenylphosphoniopropylthiosulfate and (3-thioacetylpropyl)triphenylphosphonium 

bromide ligands, and the two-phase liquid-liquid (DCM/water) method were used. However, 

when tri(p-tolyl)phosphoniopropylthiosulfate zwitterion was used as the protecting ligand 

with the same method, no transfer of these nanoparticles to the water phase was observed, 

and, therefore, no stable gold colloidal nanoparticles were obtained in water.  Various 

attempts of synthesising phosphonium cationic gold nanoparticles were carried out using 

tri(p-tolyl)phosphoniopropylthiosulfate zwitterion as the stabilising ligand and the two phase 

DCM/water method. Concentration of this ligand was also increased to a double (80 mM) 

and same results were obtained. Therefore, in the case of the tri(p-tolyl)phosphoniopropyl 

thiosulfate zwitterion, even increments in the concentration of the ligand did not help to the 

formation functionalised gold nanoparticles dispersed in water using the p-tolyl ligand.  

DMSO was chosen as an alternative solvent to disperse the gold nanoparticles functionalised 

with tri(p-tolyl)phosphoniopropylthiolate ligand. Due to the properties described in the 

introduction, DMSO was used to synthesise gold nanoparticle functionalised with the tri(p-

tolyl)phosphoniopropylthiosulfate zwitterion, and also be able to use more hydrophobic 

phosphonium ligands to fabricate carriers with potential abilities to permeate and penetrate 

the lipophilic cell walls.  

In order to prepare the colloidal gold nanoparticles in DMSO, a reduction of gold (III) to gold 

(0) was carried out in the presence of tri(p-tolyl)phosphoniopropylthiosulfate zwitterion in 
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DMSO, using sodium borohydride as the reducing agent. With this reducing method using 

DMSO as the dispersing solvent, a ruby – coloured colloidal solution of gold nanoparticle 

functionalised with tri(p-tolyl)phosphoniopropylthiolate was obtained. Using the same 

method in DMSO, other colloidal solutions of gold nanoparticles functionalised using 

triphenylphosphoniopropylthiosulfate zwitterion and (3-

thioactylpropyl)triphenylphosphonium bromide as protecting ligands were also successfully 

obtained. Stability studies were also carried out in order to monitor over time the potential 

aggregation in the colloidal solutions prepared following this method.  

(c) UV-Visible and TEM studies 

Using UV-Vis spectroscopy technique, formation of colloidal gold nanoparticles in DMSO 

(Figure 1) and as previously mentioned, stability of these solutions were monitored (Figures 2 

to 4).  

 

Figure 1. UV-visible absorption spectra of the colloidal solutions of gold nanoparticles 

functionalised with triphylphosphoniopropylthiosulfate zwitterion (TPPTS-AuNPs), (3-

thioacetylpropyl)triphenylphosphonium bromide (TPPTA-AuNPs), and tri(p-

tolyl)phosphoniopropylthiosulfate zwitterion (TTPTS-AuNPs) in DMSO, time = 0.  
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It is well-known that the dark-red colour of gold colloids dispersed in water reflects the 

surface plasmon band (SPB), which is a broad absorption band in the visible region around 

520 nm.
38

 The SPB is due to the collective oscillations of the electrons at the surface of 

nanoparticles (6s electrons of the conduction band for AuNPs) that is correlated with the 

electromagnetic field of the incoming light.
39

 The maximum and bandwidth are also 

influenced by the particle size.
40-43

 It has been shown that for gold nanoparticles of mean 

diameter of 9, 15, 22, 48, and 99 nm, the SPB maximum λmax was observed at 517, 520, 521, 

533, and 575 nm, respectively, in aqueous media.
40,44 

 

 

 

Figure 2. UV-visible absorption spectra of the colloidal solutions of gold nanoparticles 

functionalised using triphylphosphoniopropylthiosulfate zwitterion as protecting ligand 

(TPPTS-AuNPs). The different UV-visible spectra represent these nanoparticles dispersed in 

DMSO at time = 0, 6 and 12 weeks. 
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The method for the synthesis of colloidal gold nanoparticles in DMSO using triphenyl- and 

tri(p-tolyl)phosphoniopropylthiolate as protecting ligands is reported for the first time in this 

work. Evidence of the formation of gold nanoparticles using the reduction method in DMSO 

was shown by UV-Visible spectroscopy technique. Using the DMSO as the blank, bands 

centred at 519, 519 and 529 nm were observed in the resulting UV spectra (Figure 1) 

corresponding to the burgundy gold colloidal solutions prepared with 

triphenylphosphoniopropylthiosulfate (TPPTS-AuNPs), (3-

thioacetylpropyl)triphenylphosphonium bromide (TPPTA-AuNPs) and tri(p-

tolyl)phosphoniopropylthiosulfate (TTPTS-AuNPs), respectively. Their stability was also 

monitored by UV-Vis spectroscopy and the DMSO solutions showed to be stable at least for 

12 weeks (Figures 2, 3 and 4). The colloidal solutions were stored in the dark and at room 

temperature.  

As previously reported and repeated for this work for comparison purposes,
 35,36,45

 gold 

nanoparticles synthesised using triphenylphosphoniopropylthiosulfate and (3-

thioacetylpropyl)triphenylphosphonium bromide as protecting ligands, dispersed in water 

showed broad bands centred at 519 nm in both cases in the UV-visible spectra. When 

compared the UV spectra of the colloidal solutions of gold nanoparticles functionalised with 

triphenylphosphoniopropylthiolate in water and DMSO (time = 0), they did not show 

significant differences in the wavelengths. In our case the refractive index of the solvent 

DMSO has not shown to induce a shift of the SPB of our nanoparticles as suggested in the 

literature.
44 
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Figure 3. UV-visible absorption spectra of the colloidal solutions of gold nanoparticles 

functionalised using (3-thioacetylpropyl)triphenylphosphonium bromide as protecting ligand 

(TPPTA-AuNPs). The different UV-visible spectra represent these nanoparticles dispersed in 

DMSO at time = 0, 6 and 12 weeks. 

 

It is known that the ligand shell also alters the refractive index and causes either a red or blue 

shift.
41

 This shift is especially significant with thiolate ligands, which are responsible for a 

strong ligand field interacting with surface electron cloud.
41

 Similar evidence can be observed 

when compared the colloidal solutions in DMSO of gold nanoparticles stabilised with 

triphenylphosphoniopropylthiolate ligand with the one corresponding to gold nanoparticles 

functionalised with tri(p-tolyl)phosphoniopropylthiolate. Differences in wavelengths (519 

and 529 nm, respectively) can be observed when ligands change in structure (see Figures 2 

and 4).  
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Figure 4. UV-visible absorption spectra of the colloidal solutions of gold nanoparticles 

functionalised using tri(p-tolyl)phosphoniopropylthiosulfate zwitterion as protecting ligand 

(TTPTS-AuNPs). The different UV-visible spectra represent these nanoparticles dispersed in 

DMSO at time = 0, 6 and 12 weeks. 

 

The colloidal solutions of gold nanoparticles functionalised using triphenylphosphoniopropyl 

thiosulfate (Figure 5, TEM1), (3-thioacetylpropyl)triphenylphosphonium bromide (Figure 5, 

TEM2) and tri(p-tolyl)phosphoniopropylthiosulfate (Figure 5, TEM3) as protecting ligands, 

were all analysed by TEM. Micrographs of all three gold nanoparticle samples showed 

spherical or semi-spherical shaped particles. Then, particle sizes for samples TEM1, TEM2 

and TEM3 were obtained by analysing at least 150 particles per sample from several images 

taken.  
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  (TEM1) 

 (TEM2) 

(TEM3) 

Figure 5. Representative TEM micrographs of cationic phosphonium gold nanoparticles 

synthesised using triphenylphosphoniopropylthiosulfate (TEM1), (3-

thioacetylpropyl)triphenylphosphonium bromide (TEM2), and tri(p-

tolyl)phosphoniopropylthiosulfate (TEM3) as protecting ligands in DMSO, and 

corresponding particle size histograms. 
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All samples showed similar in particle sizes, and the mean values were obtained by 

calculating the averages and standard deviations. The calculated mean diameters were the 

followings: 11 ± 1 nm (TEM1), 8 ± 1 nm (TEM2) and 10 ± 1 nm (TEM3). Samples TEM1 

and TEM2 showed similar particle sizes to ones reported and synthesised using the two-phase 

DCM/water method.
35,36

 These evidences are confirmed by the ones found in the 

corresponding UV-Visible spectra. Although, solvents used to disperse the nanoparticles 

were different, the principle of the reduction method used and also the concentrations used 

for both methods, two phase DCM/water and DMSO, were similar.  

Gold nanoparticles in DMSO derived from triphenylphosphoniopropylthiosulfate zwitterion, 

and (3-thioacetylpropyl)triphenylphosphonium bromide are slightly different in size and in 

particle size distribution. This can be due to the differing passivation kinetics of the types of 

ligands used for this study, and the cleavage of the sulfur-sulfur and sulfur-carbon bonds in 

the thiosulfate and thioacetate species.
45

 The mechanisms of these cleavages are still unclear. 

However, the presence of water traces in the solvent used for the synthesis of colloidal gold 

nanoparticles, has shown to be crucial for the hydrolysis of the thiosulfate and thioacetate 

ligands and formation of alkylthiolates.
46,47

 These thiolate anions will lead to the formation of 

phosphonium-functionalised gold nanoparticles. The presence of reducing agent in the 

solution also influences the cleavage of sulfur-sulfur and sulfur-carbon bonds.
45 

In the case of the tri(p-tolyl)phosphoniopropylthiolate functionalised gold nanoparticles, they 

could only be produced using the DMSO method. The corresponding UV-Visible spectrum 

showed that the SPB is centred at 529 nm (Figure 4). With this evidence only, it could have 

been assumed that nanoparticles were slightly larger in size than the ones functionalised with 

the triphenylphosphoniopropylthiolate ligands, which showed bands centred at 519 nm 

(Figures 2 and 3). The slight blue shift observed in the UV-Visible spectrum of the tri(p-

tolyl)phosphoniopropylthiolate functionalised gold nanoparticles might be due to the ligand 
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shell altering the refractive index and interacting more strongly with the electron cloud of the 

nanoparticle surface, and not to the particle size. This evidence supports Su et al. 

experimental observations and results.
41

 

The agglomeration of nanoparticles can be observed in TEM1 and TEM3 micrographs 

(Figure 5). This recurrent experimental observation can be due to the use of drop deposition 

method for sample preparation. This technique is widely used for TEM sample preparation, 

however, according to studies reported in the literature,
48

 the use of this method can lead to 

agglomeration of particles at the substrate edges as the solvent evaporates. This accumulation 

will also depend on the sample concentration. No particle agglomeration can be observed in 

the case of gold nanoparticles prepared using (3-thioacetylpropyl)triphenylphosphonium 

bromide (TEM2, Figure 5). We can speculate that in this case, the sample concentration was 

lower than in the case of the solutions of gold nanoparticles prepared with the other two 

ligands.  

4. Conclusions 

The fabrication of cationic phosphonium gold nanoparticles using 

triphenylphosphoniopropylthiosulfate zwitterion, (3-thioacetylpropyl)triphenylphosphonium 

bromide and tri(p-tolyl)phosphoniopropylthiosulfate zwitterion as protecting ligands and a 

reduction method in DMSO is reported here for the first time; and also the synthesis of a new 

masked thiol, tri(p-tolyl)phosphoniopropylthiosulfate zwitterion. These Bunte salts and 

thioacetate ligands offer an advantage over the free thiol ligands as they showed better 

stability to air oxidation. The use of a biocompatible solvent such as DMSO to produce these 

nanoparticles can represent an advantage for their potential applications as novel therapeutic 

agents, especially, when more hydrophobic ligands (in our case, tri(p-

tolyl)phosphoniopropylthiosulfate zwitterion) are used to functionalised gold nanoparticles, 
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as they may have more affinity with the lipophilic cell walls. We have shown that under 

reductive conditions in DMSO, the formation of these nanoparticles occurred in the presence 

of all three cationic phosphonium ligands synthesised for this work. We have shown that the 

thiosulfate and thioacetate compounds convert into the corresponding thiolate anions. We can 

assume that these anions interact with the surface of the gold nanoparticles produced in situ 

when strong reducing agent is added to the DMSO solutions. The formation and the stability 

over time of triphenylphosphoniopropylthiolate and tri(p-tolyl)phosphoniopropylthiolate 

functionalised gold nanoparticles in DMSO were confirmed and followed by UV-visible 

spectroscopy.  Bands centred at 519 and 529 nm, respectively, were observed in the UV-

visible spectra, and those did not change over a period of 3 months. We can also speculate 

that the changes in the ligands chemical structure can affect the refractive index of the 

colloidal solution and produce a shift to the left (blue shift). As previously mentioned, tri(p-

tolyl)phosphoniopropylthiolate functionalised gold nanoparticles were successfully produced 

and dispersed in DMSO, however, these nanoparticles could not be obtained using the two-

phase liquid/liquid (DCM/water) method and dispersed in water. The TEM analyses of 

cationic phosphonium gold nanoparticles functionalised using 

triphenylphosphoniopropylthiosulfate and tri(p-tolyl)phosphoniopropylthiosulfate zwitterions 

as protecting ligands, showed similar particle sizes (11 nm). However, when (3-

thioacetylpropyl)triphenylphosphonium bromide used, the size of nanoparticles obtained was 

different (8 nm). This might be due to different passivation kinetics of the thiosulfate and 

thioacetate containing ligands. 

Visualisation of the cellular internalisation of our lipophilic cationic moieties containing gold 

nanoparticles by using flow cytometry technique is planned for future. This is a biophysical 

technique usually employed in the diagnosis of various health disorders. The cells are 

normally suspended in a stream of fluid and passed them by and electronic detection 
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apparatus. In order to prepare the samples for cytometry analysis, our cationic phosphonium 

gold nanoparticles are planned to be internalised by incubation.  

5. Characterisation of the cationic phosphonium ligands 

Hydroxypropyl-tri(p-tolyl)phosphonium bromide 

IR spectrum showed absorption bands at the regions of 725–720 cm
-1

 (  CH2), 1600cm
-1

 ( 

C-O), 3100–3000 cm
-1

(
 
 CH-Aromatic), and 3344 cm

-1
 ( C-OH) . 

1
H NMR spectrum gave 

signals at  1.8 (9H,s 2CH3) ,  2.0 (2H,m, -CH2-),  2.6 (1H,s, OH),  3.4 (2H,m, P-CH2),  

3.6 (2H,t, OH-CH2) , and  7.3-7.5 (12H,m, Aromatic H) ppm. ESI-MS 363 [M - Br], 364 [M 

– Br] +[H
+
]. 

-bromopropyl-tri(p-tolyl)phosphonium bromide 

IR spectrum showed absorption bands at the regions of 677cm
-1

 ( C-Br), 748 cm
-1

 ( CH2), 

988 cm
-1

 ( P-CH2), and 3100–3000 cm
-1

( CH-Aromatic). 
1
H NMR spectrum gave signals 

at  2.3 (9H,s, -CH3) ,  2.4(2H,m, P-CH2) ,   3.8  (2H,m, -CH2-) and  at  7.4- 7.9 (12H,m, 

Aromatic H) ppm.  ESI-MS 427 [M]. 

Tri(p-tolyl)phosphoniopropylthiosulfate zwitterion 

IR spectrum showed absorption bands at the regions of 725–720 cm
-1

, ( CH2), 1329cm
-1

 ( 

S=O), 1400 cm
-1

 ( C-S), 3100–3000 cm
-1 

( CH-Aromatic). 
1
H NMR showed a signals at   

2.3 (s,9H, 3CH3) ,  3.2 (t, 2H , P-CH2-CH2-CH2) ,  3.4 (t, 2H , P -CH2-CH2-CH2) ,  3.6 

(m, 2H , P-CH2-CH2-CH2),  7.24 (1H , CDCL3), and   7.3-7.6 (12H,m, Aromatic H) ppm. 

ESI-MS 459 [M + H
+
]. 
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Triphenylphosphoniopropylthiosulfate zwitterion 

IR spectrum showed absorption bands at the regions IR spectrum showed absorption bands at 

the regions of 725–720 cm
-1

 (  CH2), 1330 cm
1
 (  S=O), 1345 cm

-1
 (C-S-), and 3100–3000 

cm
-1 

( CH-Aromatic). 
1
H NMR spectrum gave signals at  2.2 (2H,m, P-CH2-CH2-CH2) ,  

3.3 (2H,m, P-CH2-CH2-CH2) ,   4.0  (2H,m, P-CH2-CH2-CH2) and  at  7.6 - 7.8 (15H,m, 

Aromatic H) ppm. ESI-MS 417 [M + H
+
]. 

(3-Thioacetylpropyl)triphenylphosphonium bromide 

IR spectrum showed absorption bands at the regions of 735–740 cm
-1

 ( CH2), 1345 cm
-1

 ( 

C-S), 1470–1450 cm
-1

 ( C–H corresponding to bend-CH2), 1678 cm
-1

 ( C=O), and 3100–

3000 cm
-1

( CH-Aromatic).  
1
H NMR showed a signals at    2.4 (3H,s, -CH3),  2.9 (2H,m, 

P-CH2-CH2-CH2),  3.8 (2H,m, P-CH2-CH2-CH2),  4.1 (2H,m, P-CH2-CH2-CH2), and  7.6-

7.9 (15H,m, Aromatic H) ppm. ESI-MS 380 [M + H
+
]. 
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