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The evolution of beaches in response to the incident wave conditions has long attracted the attention of
researchers and engineers. A popularmathematicalmodel describing the change in the position of a single height
contour on the coastline assumes that the beach profile is stable and the plan shape evolves due to wave-driven
long-shore transport. Extensions of this model include more contours and allow for beach profile alteration
through cross-shore transport of sediment. Despite this advantage, models with multiple contours remain
relatively underused. In this paperwe examine the stability of this class ofmodel for the cases of one to three con-
tours. Unstablemodesmay exist when there ismore than one contour. These include shortwaveswhose growth
rate is strongly dependent uponwavenumber. For the case of three contours an additional longwave instability is
possible. A necessary, but not sufficient, condition for instability is found. It requires a reversal of transport direc-
tion amongst the contours. The existence of these instabilities provides a possible explanation for the difficulties
found in implementing computational multi-line models, particularly where structures alter the natural
longshore transport rates so they satisfy, locally, the condition for instability.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The problem of beach stability, particularly with respect to shoreline
response to the construction of coastal defences, has long been a famil-
iar question in coastal research. Early work can be traced back to the
1950s,with continuing research since that time. Interest in this problem
stems from the observation of instabilities in the natural environment. It
is also germane to the problem of formulating numerical models that
describe the time evolution of the shoreline. Whilst it was common to
commission laboratory studies to test the performance of proposed
coastal structures the era of cheap computing has meant that computa-
tional modelling has become an important design tool that doesn't
suffer from the scaling problems inherent in modelling sediment
transport in laboratory models. However, computational modelling
has brought new challenges, particularly in view of the need to have
reassurance that results from a computer model are reliable, stable
and robust. One source of checks on the performance of a computer
model is analytical solutions. As a general rule such solutions are avail-
able only for simplified situations or a restricted range of conditions.
Nevertheless, analytical solutions remain one of the best forms of
basic computer model testing. Checking the performance of computer
models in more complex situations requires comparison against lab-
oratory or field experiments. Current design practice typically relies

on several if not all of the above approaches. In this paper we focus
on analytical methods and the characteristic behaviour of beach
models when some of the simplifications adopted for analytical solu-
tions are relaxed. Whilst this might at first appear to be an exercise
of solely academic interest the results have relevance for a class of
computational models known as line models. The simplest of these
models is the 1-line model, which describes the movement of a sin-
gle contour line in response to incoming waves and sources and/or
interruptions of sediment supply along the beach. This model has
a fairly restrictive assumption that the beach profile remains un-
changed. It was only natural that researchers wished to remove
this restriction, so models describing more contour lines were devel-
oped so as to account for changes in beach profile shape. Nevertheless,
these ‘better’models whichmight have been expected to provide more
realistic results, have not enteredmainstream use. One reason seems to
have been difficulties encountered in achieving solutions that converge.
One potential reason for this is numerical instability, in which small
fluctuations in the solution can grow rapidly, overwhelming the fea-
tures of engineering interest, and rendering the computed solutions
meaningless. In this paper we analyse the stability properties of the 1,
2 and 3 line models to investigate whether such instabilities might be
an inherent property of the systems of equations, thereby rendering
the computational approach rather problematic in certain situations.
In Section 2 the 1-line model, which is widely known in the coastal
engineering literature, is discussed briefly. In Sections 3 and 3.1 the sta-
bility of the governing equations to small perturbations in the beach
position is assessed. Conclusions from the assessment are presented in
Section 3.2.
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2. The 1-line model and beyond

Pelnard-Considère (1956) undertook laboratory experiments and
proposed a simplified analytical model to describe the long-shore sedi-
ment transport driven by waves. Assuming constant, uniform wave
conditions and that the angle between wave crests and the shoreline
contour is small, the equation for the position of the shoreline (or a
single depth contour), y(x, t), from a fixed datum line takes the form
of a linear diffusion equation with constant coefficient and has gained
the epithet of the ‘one-line equation’:

∂y
∂t ¼ K

∂2y
∂x2

: ð1Þ

In Eq. (1) y is the distance of the reference contour from a datum line
(usually taken to be the x-axis), t is time, and K is a diffusion coefficient
that represents the factors affecting the rate at which sediment is
transported along the shoreline, and may be written as 2Q0/D where D
is the height of the active profile andQ0 is a nominal sediment transport
rate that depends upon wave height and sediment characteristics. The
physical transport rate is equal to the product of Q0 and a function
of wave angle, determined empirically to be sin(2αb) where αb is the
angle between the breaking wave crests and the local shoreline contour
(US Army Corps of Engineers, 2002). Specifically,

K ¼ 2
D

κρH2
sbCgb

16 ρs−ρð Þ 1−psð Þ ð2Þ

where ps is the porosity of the beach material, ρs is the density of
the beach sediment (kg/m3), ρ is the density of seawater (kg/m3), Hsb

is the significant wave height at breaking (m), cgb is the wave group
velocity at breaking (m/s), and κ is a dimensionless coefficient which
is a function of the particle size and has a recommended value of
approximately 0.4 for sandy beaches.

Some of the first analytical solutions to this equation for cases
of coastal engineering interest were presented by Grijm (1960), under
the assumption of constant uniform waves. This assumption can be re-
laxed, but complicates the analysis considerably. Larson et al. (1997)
presented an equation for constant but non-uniform wave conditions
corresponding to Eq. (1), whilst Reeve (2006), Zacharioudaki and
Reeve (2008), Walton and Dean (2011) and Valsamidis et al. (2013)
have presented solutions for cases where wave conditions are uniform
but time varying. The development of analytical models not only an-
swers a pedagogical need but also broadens the range of conditions
for testing computational models.Whilst some of themethods required
to derive analytical solutions can appear difficult and arcane, the
solutions themselves have several attractive properties. First, they can
usually be evaluated in a straightforward and efficient manner. Second,
no time stepping is required as the solution simply needs to be evaluat-
ed at a selected time, rather than approached iteratively throughmulti-
ple time steps. Finally, analytical solutions do not suffer from numerical
stability in the same way that computational models can. The need
to make simplifying assumptions does restrict analytical methods and
for many practical applications numerical models are preferred, partic-
ularly as they can be linked to other models that can predict, for exam-
ple, nearshore wave transformation processes.

In practical applications, the 1-line model is solved using a time
marching numerical solution procedure to solve the continuity, sedi-
ment transport and wave angle equations simultaneously, commonly
relaxing the ‘small angle approximation’made to assist in deriving ana-
lytical solutions.Wang and LeMéhauté (1980) showed that the expres-
sion for sediment transport can, under the assumption of parallel depth
contours, be cast in terms of deepwater wave conditions. Instabilities
can occur for certain values of offshore wave angle, although the equa-
tion governing shoreline evolution no longer takes the form in Eq. (1).
This idea was used by Ashton et al. (2001) to develop a numerical

model that provided an explanation for the unusual coastal spit forma-
tions found in the Azov Sea, and by Falques (2003) in an analysis of the
method of estimating the diffusion coefficient.

The 1-line model has proved remarkably robust, and over the past
decade or so has been used extensively, being an element in current
design guidelines (eg. US Army Corps, 2002). The use of the 1-line
model in more complicated situations has driven the development
and expansion of a simple morphological equation (Eq. (1)) into com-
putational prediction suites. For example, suchmodelling suites include
elements of wave prediction, nearshorewave transformation,modifica-
tions to allow for wave diffraction, longshore variations in wave angle
and height, and variations in beach slope (eg Hanson and Kraus, 1989,
Dabees & Kamphuis, 1999).

One criticism of the 1-line formulation is that it is not able to deal
explicitly with cross-shore sediment transport and hence changes in
the cross-shore beach profile. Changes in beach slope and convexity
that arise from the construction of coastal defences require something
more than the 1-line model. Bakker (1969) proposed a 2-line theory
which predicted the simultaneous evolution of two distinct contour
lines and hence changes in beach slope. Perlin and Dean (1983) sub-
sequently presented the theory for an N-line model together with asso-
ciated numerical solution methods. With a few notable exceptions
(Dabees and Kamphuis, 2001; Hanson and Larson, 2001; Shibutani
et al., 2009), the N-line formulation has not found widespread applica-
tion. The reasons for this are not entirely clear, although there have
been some reports discussing the difficulty of obtaining consistent re-
sults in practical applications. For example, Hulsbergen et al. (1976)
performed laboratory experiments and found that the 2-line model
worked well for a long, straight beach with a simple pattern of long-
shore currents but was not as accurate for more complicated situations;
whilst Hanson and Larson (2001) commented upon instances of
numerical difficulties in certain applications.

3. The 2-line model

The stability of an equation, or system of equations, can be inves-
tigated by analysing the propensity of small perturbations to grow
or decay over time. Perturbations are typically taken to have a sinu-
soidal form. Seeking wave solutions to Eq. (1) of the form y(x,t) =
Yexp{i(kx − ωt)} leads to the requirement that ω = −iKk2, where
ω is the angular frequency of the perturbations, i is the imaginary
unit and k is the wave number of the perturbations in the position
of the shoreline contour. This requirement indicates that any wave
solutions will be damped over time. It is a matter of convention as
to over what ranges the wavenumber and frequency are allowed to
vary. Here, we take k as being non-negative whilst ω may take on
positive or negative values, depending uponwhich direction the per-
turbation propagates along the shoreline.

Following Bakker (1969), a 2-line model can be formulated on the
argument that the beach profile can be divided into two parts, a shallow
part that extends offshore to a depth D1 and a deeper part that extends
out to the depth of closure, written as D1 + D2 (see Fig. 1).

Again the concept of an equilibrium profile is used but in this case
it is defined by the position of two contours together with the position
of the depth of closure. In Fig. 1, y1 is the distance of a chosen contour
(typically the equilibrium sea level), from a fixed datum line landward
of the shoreline. This datum line is usually taken as the ‘x-axis’. A second
contour, a distance w from the x-axis at equilibrium, is denoted by y2.
When the profile is in equilibrium, both y1 and y2 are zero. When either
of the contours is not in their equilibrium position a cross-shore
sediment transport is inferred. The cross-shore transport of sediment
between the two contours must satisfy continuity and is assumed,
following Bakker (1969), to be in a sense that relaxes the beach
profile towards its equilibrium form. Hence, it may be written as qy =
Cy(y1 − y2) where Cy is a dimensional transport coefficient. It may be
noted that even though y1 is chosen to be the contour of the equilibrium
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water level this does not imply that longshore transport is zero, because
the underlying assumption of line models is that they are applied to
beaches that are predominantly drift dominated. Similarly, at the
depth of closure the assumption is that there is zero net cross-shore
transport, although longshore transport may occur.

The equations for the 2-line model may be written (Dean and
Dalrymple, 2002):

D1
∂y1
∂t ¼ −qy−q1

∂2y1
∂x2

ð2Þ

D2
∂y2
∂t ¼ −qy−q2

∂2y2
∂x2

ð3Þ

where: y1 is the distance of the first contour from the y-axis and y2 is the
distance of the second contour from its equilibrium position; q1 and q2
are the alongshore sediment transport rates along the first and second
contours, respectively; t is time and x is the longshore distance.

Eliminating y2 from Eqs. (2) and (3), we have:

D1D2
∂y1
∂t2

þ CyD
∂y1
∂t − D1q2 þ D2q1ð Þ ∂3y1

∂x2∂t
− Cyq

∂2y1
∂x2

þ q1q2
∂4y1
∂x2

þ q1q2
∂4y1
∂x4

¼ 0

ð4Þ

where D= D1 + D2; qi is the longshore sediment transport rates corre-
sponding to the contour yi and q = q1 + q2.

Seeking wave solutions as before with

y1 ¼ Yexp i kx−ωrtð Þð Þexp ωitð Þ ð5Þ

the following dispersion relation may be derived:

−D1D2 ωr
2 þ 2iωrωi−ωi

2
� �

− CyDþ D2q1 þ D1q2ð Þk2
h i

iωr−ωið Þ

þ Cyqk
2 þ q1q2k

4 ¼ 0

ð6Þ

By equating the coefficients of the imaginary terms on either side of
Eq. (6), it is concluded that either ωr = 0 or the sum of the imaginary
terms is equal to 0.

3.1. Stationary wave condition

In this case ωr = 0, and Eq. (6) simplifies to a quadratic. We denote
the solutions by ωi1 and ωi2 such that:

ωi1 ¼
− CyDþ D2q1 þ D1q2ð Þk2
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2
−4D1D2 Cyqþ q1q2k

2
� �

k2
r

2D1D2

ð7aÞ

ωi2 ¼
− CyDþ D2q1 þ D1q2ð Þk2
� �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2
−4D1D2 Cyqþ q1q2k

2
� �

k2
r

2D1D2
:

ð7bÞ

Dean and Dalrymple (2002) noted that longwave solutions (for
which k ≪ 1), have ωi b 0 and hence decaying amplitudes. However,
if the full expression is retained and the sediment transport rates q1
and q2 have opposite signs, in other words q1/q2 b 0, the dispersion
equation can yield one or both roots positive for fixed values of the pa-
rameter k, and hence an unstable mode. More specifically, if q1, q2 have
the same signs, the dispersion equation yields both roots negative, and
thus decaying perturbations. If q1/q2 b 0 and (CyD+(D2q1+D1q2)k2)≥
0 both roots of the dispersion equation are negative. On the other hand,
if q1/q2 b 0 and (CyD + (D2q1 + D1q2)k2) ≤ 0, both roots of the disper-
sion equation will be positive and perturbations will be unstable. If
the roots have opposite signs then the criteria has to be evaluated
from the full expression. Further details are provided in Appendix A.

Fig. 2 presents the values ofωi1 andωi2 plotted against the ratio q1/q2
and the wave number k, in two contour graphs respectively. The values
of the parameters have been chosen arbitrarily and in this case are;
D1 = D2 = 3.20 m, Cy = 4.23 × 10−6 (s−1). The value of Cy has been
chosen to be of the same order as used by other researchers (for
instance Hulsbergen et al., 1976). In this particular case, ωi1 is always
negative (see Fig. 2a), whilst ωi2 may become positive for particular
combinations of k and q1/q2 (see Fig. 2b). For small values of wave-
number, ωi2 is negative whatever value q1/q2 takes. As wavenumber
increases, ωi2 becomes positive over an increasing range of values of
q1/q2. A wavenumber of k = 1 corresponds to a perturbation with a
wavelength of ~6 m, similar to the spacing of small beach cusps. Larger
values of wavenumber correspond to smaller scale features, whilst
smaller values of wavenumber correspond to larger scale features. For
engineering applications values of k between 0 and 1 are likely to be
of greatest interest. For computationalmodel developers thewavenum-
ber is perhaps of less importance than the possibility of the existence of
growing perturbations (of any scale) that could cause the computation
to become unstable.

3.2. Propagating waves

In this caseωr ≠ 0, and the dispersion equation gives the constraint
on ωi as:

ωi ¼
− CyDþ D2q1 þ D1q2ð Þk2
� �

2D1D2
: ð8Þ

When the numerator of the term on the right-hand side of Eq. (8) is
positive, perturbations will be unstable; more specifically if

CyDþ D2q1 þ D1q2ð Þk2
� �

≤ 0: ð9Þ

This inequality can be valid only if the sediment transport rates q1
and q2 have opposite signs. As Cy, D, D1, D2 and k2 are all positive, if

Fig. 1.Diagram showing a cross-shore beach profile as it is represented in the two-linemodel. The distancew corresponds to the distance of the y2 contour from the datum line (x-axis) in
the equilibrium beach profile.
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the sediment transport rates q1 and q2 are both positive then ωi b 0 so
perturbations decay and the system is stable.

4. The 3-line model

In a manner analogous to the 2-line model the 3-line model
considers the movement of three contours: y1 (the shoreline one), y2
(the distance of the second contour from its equilibrium position), and
y3 (the distance of the seawardmost contour from its equilibrium
position); and the continuity equation for each, taking into account the
cross-shore sand movements qy = Cy(y1 − y2) between the first and
second contours and qz = Cz(y2 − y3) between the second and third
contours (Fig. 3).

The equations take the following form:

D1
∂y1
∂t ¼ −Cy y1−y2ð Þ þ q1

∂2y1
∂x2

ð10Þ

D2
∂y2
∂t ¼ Cy y1−y2ð Þ−Cz y2−y3ð Þ þ q2

∂2y2
∂x2

ð11Þ

D3
∂y3
∂t ¼ Cz y2−y3ð Þ þ q3

∂2y3
∂x2

: ð12Þ

Eliminating y2 and y3 from Eqs. (10)–(12) yields a 6th order equa-
tion for y1 (additional details are provided in Appendix B). The disper-
sion relation becomes:

D1D2D3iω
3−

h
k2 q1D2D3 þ q2D3D1 þ q3D1D2ð Þ þ Cy D3D2 þ D1D3ð Þ

þ Cz D1D3 þ D1D2ð Þ
i
ω2−

h
D1q2q3 þ D2q1q3 þ D3q1q2ð Þk4

þD3Cy q1 þ q2ð Þ þ D1Cz q2 þ q3ð Þ þ q3Cy D1 þ D2ð Þ
þ q1Cz D2 þ D3ð Þk2 þ DCyCz

i
iω þ q1q2q3k

6

þ Cy q1q3 þ q2q3ð Þ þ Cz q1q2 þ q1q3ð Þ
h i

k4 þ qCzCyk
2 ¼ 0:

ð13Þ

This equation may be analysed as before to determine the stability
criteria for perturbations to the beach.

For stationary waves (ωr = 0), the dispersion relation gives a cubic
equation for ωi:

aωi
3 þ bωi

2 þ cωi þ d ¼ 0 ð14Þ

where the coefficients are given in full in Appendix B. The values
of ωi, corresponding to the roots of this cubic polynomial, as a
function of wave number k, are presented in Fig. 4 for two differ-
ent combinations of transport rates. The transport rates have been
set arbitrarily to illustrate the stability properties of the equa-
tions. In practice, transport rates are rarely measured directly
and are more often inferred from beach volume changes or calcu-
lated using transport formulae such as that due to US Army Corps
(2002).

In the ‘standard’ situation (Fig. 4a) with alongshore transport rate
increasingmonotonically towards the shore, the solutions are all stable.
The rate of 0.25 m3/s is approximately 8 million m3/year which would
be at the upper end of reported values. For example, Taborda et al.
(1994) estimated transport rates of almost 10 million m3/year on
Portuguese beaches exposed to a breaking wave height of ~3 m. In
the second case (Fig. 4b) more modest transport rates are chosen,
but with a reversal of transport direction. Such reversals are unlikely
to occur on long, straight beaches with a simple lower beach struc-
ture. However, in cases of more complex bathymetry or in the pres-
ence of structures such as detached breakwaters a reversal of
transport direction is certainly conceivable. From the stability analy-
sis above it is clear that instability can occur where there is a reversal
in the transport rates. (For any particular combination of parameter
values the number of positive roots can be determined using Descartes'
Rule of Signs.)

Fig. 2. a. ωi1 as a function of wavenumber (k) and transport rate ratio. b. ωi2 as a function of wavenumber (k) and transport ratio. Positive values are shaded in red.

Fig. 3. Diagram showing a cross-shore beach profile as it is represented in the three-line model. The parameters w1 and w2 correspond to the relative equilibrium distances.
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For propagating wave solutions (ωr ≠ 0), the following expression
for the frequency applies:

a ωr
3−3ωrωi

2
� �

i− 3ωr
2ωi−ωi

3
� �h i

−b ωr
2 þ 2ωrωii−ωi

2
h i

− c iωr−ωið Þ þ d ¼ 0:

ð15Þ

Equating the coefficients of the imaginary terms on either side of
Eq. (15) yields:

a ωr
3−3ωrωi

2
� �

−b 2ωrωið Þ−cωr

h i
¼ 0 ð16Þ

which is a quadratic for ωi, with roots given by:

ω1;2
i ¼

−2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2−12a c−aω2

r

� �q
6a

: ð17Þ

Eq. (16) indicates thatωihas a dependency onωr, however, forωr≪ 1,
this dependence is weak.

The role of the factor c− aωr
2 in Eq. (17) in determining the stability

of the system is analysed further below. We consider the cases where
the factor is positive or negative separately, noting that the coefficient
a must be positive by definition.

If c − aωr
2 b 0:

Then, for ωi1;
if b N 0 we obtain ωi1 N 0 as the term inside the square root is

greater than 2b;
if b b 0 we obtain ωi1 N 0 as both terms in the numerator are

positive.
Consequently, if c − aωr

2 b 0, ωi1 N 0, and unstable modes can
exist.
For ωi2;

if b N 0 we obtain ωi2 b 0 as both terms in the numerator are
negative;

if b N 0 we obtain ωi2 b 0 as the term inside the square root is
greater than 2b.

Consequently, if c− aωr
2 b 0,ωi2 b 0, and all modes are decaying.

If c − aωr
2 N 0:

Then, for ωi1;
if b N 0 we obtain ωi1 b 0 as the term in the square root is less

than 2b;
if b b 0 we obtain ωi1 N 0 as the numerator is positive.
Consequently, if c− aωr

2 b 0 unstable modes are possible if b b 0,
which can only occur if q1, q2 and q3 are not all the same sign.

For ωi2;
if b N 0 we obtain ωi2 b 0 as the numerator will be negative;
if b b 0 we obtain ωi2 N 0 as the square root term is less than 2b.

Finally, if c− aωr
2 =0, thenωi1 = 0 andωi2 b 0 if b N 0, andωi1 N 0

and ωi2 = 0 if b b 0.
Fig. 5 shows the values of ωi (as determined from Eq. (13)), as a

function of the wave number for various choices of transport rates.
In the ‘standard’ situation, where the transport rates are of the same

sign and increase as the contours are closer to the shoreline, there is
one stable mode and one unstable mode (see Fig. 5a). The instability
has quite different characteristics to the stationary wave instability.
The maximum growth rate occurs at the largest scales (|k| ≪ 1), and
the growth rate has a finite maximum. A similar situation holds when
the transport rate along the middle contour is halved, as is evident in
Fig. 5b. For the situation with transport reversal (Fig. 5c) the small
wavenumber instability remains but as a local maximum. Significantly,
the high wavenumber instability is present. For large k, this has much
greater growth rates than the large scale instability and would be
expected to dominate the shoreline evolution.

5. Conclusions

In this paper the stability of a class of beach evolution models is
investigated. Specifically, the line models that predict the evolving
plan shape of one ormore depth contours. Suchmodels are usedwidely
in the coastal engineering community, both for research and design.
Multiple line models are, in principle, able to predict changes in beach
profile slope and convexity. However, the 1-line model has proved the
most robust and popular for applications, perhaps due to its stability
to small perturbations in beach position.

For the case of two and three line models we establish that instabil-
ities can exist. In the 2-line case, the system is generally stable but can
exhibit instability if the sediment transport rates along each contour
are in opposition. This is not very likely to occur on open straight coasts
but could quite conceivably occur in the presence of coastal structures
such as groynes and detached breakwaters. The instability is associated
with small spatial scales of little coastal engineering interest. However
its growth rate increases quadratically with wavenumber suggesting it
would be difficult to control in computational models once triggered.

The 3-line system has a similar instability; a sufficient condition
being that the sediment transport along one of the 3 contours is in
opposition to the transport direction of the other two. Significantly,
this system also has a large scale propagating instability, which does
not require transport reversal. Its growth rate is finite and greatest for
small spatial frequencies. This could manifest itself at scales of coastal
engineering interest. However, due to its finite growth rate it is possible

Fig. 4. a. ωi plotted as a function of wavenumber for longshore sediment transport rates q1 = 0.25 m3/s, q2 = 0.20 m3/s, q3 = 0.15 m3/s. b. ωi plotted as a function of wavenumber for
longshore sediment transport rates q1 = 0.0025 m3/s, q2 = −0.0025 m3/s, q3 = −0.00125 m3/s.
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Fig. 5. a. ωi plotted as a function of wave number for longshore sediment transport rates q1 = 0.25 m3/s, q2 = 0.20 m3/s, q3 = 0.15 m3/s. b. ωi plotted as a function of wave number for
longshore sediment transport rates q1=0.25m3/s, q2=0.10m3/s, q3=0.15m3/s. c.ωi plotted as a function of wave number for longshore sediment transport rates q1=1.55m3/s, q2=
−0.25 m3/s, q3 = −0.0125 m3/s.

that in computationalmodels suchmodes could be controlled eitherwith
additional damping terms or a dissipative numerical time-stepping
scheme.

The analysis presented in this paper provides some explanation for
the difficulties encountered in implementing 2-line and 3-line computa-
tional models in all but the simplest of beach geometries. In situations
where the longshore transport direction changes sign along the profile
the potential for unstable oscillations to develop is likely to limit the
use of such models. It should also be noted that in the treatment above
we have considered longshore quasi-homogenous conditions, in which
the transport rates are independent of longshore position. In reality,
transport reversalmay be localised, and further investigation is required
to determine whether local instabilities would be similarly localised
or would propagate throughout the domain of interest. The existence
of these instabilities provides a possible explanation for some of the

difficulties encountered with multi-line models reported in the litera-
ture. The analysis provides some guidance to model developers. Specif-
ically, if transport reversal occurs then numerical instability can be
expected. Further, the representation of cross-shore transport as a relax-
ation process towards equilibrium leads to the specific form of equation
which supports unstable modes. This element of multi-line models may
need revision in order to develop stable computational procedures for
dealing with more realistic conditions.
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Appendix A

There are three cases to consider: both roots negative; both roots positive; and one root of each sign.
a. If both roots of the dispersion equation are negative:

ωi1≤ 0⇔
− CyDþ D2q1 þ D1q2ð Þk2
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2−4D1D2 Cyqþ q1q2k
2

� �
k2

r
2D1D2

≤0 ðA1Þ

ωi2≤ 0⇔
− CyDþ D2q1 þ D1q2ð Þk2
� �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2−4D1D2 Cyqþ q1q2k
2

� �
k2

r
2D1D2

≤0: ðA2Þ

Combining Eqs. (A1) and (A2), and after some rearrangements we get condition (A3):

CyDþ D2q1 þ D1q2ð Þk2
� �

≥0: ðA3Þ

As Cy, D1 and D2 are positive, if q1, q2 N 0 then the condition (A3) is met if q1, q2 N 0.
If q1 N 0 and q2 b 0, and

D2q1 þ D1q2≥0⇔
q2

q1

����
����≤ D2

D1
ðA4Þ

then Eq. (A3) also holds.
However, if D2q1 + D1q2 b 0 then in order for Eq. (A3) to be valid the condition that must be satisfied is a more general one:

CyDþ D2q1 þ D1q2ð Þk2
� �

≥0: ðA5Þ
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b. If both roots of the dispersion equation are positive:

ωi1≥ 0⇔
− CyDþ D2q1 þ D1q2ð Þk2
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2−4D1D2 Cyqþ q1q2k
2

� �
k2

r
2D1D2

≥0 ðA6Þ

and

ωi2≥ 0⇔
− CyDþ D2q1 þ D1q2ð Þk2
� �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2−4D1D2 Cyqþ q1q2k
2

� �
k2

r
2D1D2

≥0: ðA7Þ

Adding Eqs. (A6) to (A7), and after some rearrangements, we get condition (A8);

CyDþ D2q1 þ D1q2ð Þk2≤0⇔D2q1 þ D1q2≤−
CyD

k2
: ðA8Þ

If q1,q2 N 0, then the inequality Eq. (A8) cannot be met. Necessarily, q1/q2 b 0.
c. Similarly, in the case of onepositive and onenegative root simplification is not possible and the conditionmust be determined from the sign of the

numerator:

− CyDþ D2q1 þ D1q2ð Þk2
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CyDþ D2q1 þ D1q2ð Þk2

� �2−4D1D2 Cyqþ q1q2k
2

� �
k2

r
: ðA9Þ

If this is positive then unstable modes can exist.

Appendix B

Solving the system of Eqs. (10), (11), and (12) for y1, yields:

− q1q2q3
Cy

∂6y1
∂x6

þ D1q2q3 þ q1q2D3 þ q1D2q3
Cy

" #
∂5y1
∂x4∂t

þ q1q3Cyq2q3Cy þ q1q2CZ þ q3CZ

Cy

" #
∂4y1
∂x4

− D1q2D3 þ D1D2q3 þ q1D2D3

Cy

" #
∂4y1
∂x2∂t2

−
D3Cy q1 þ q2ð Þ þ D1CZ q2 þ q3ð Þ þ q3Cy D2 þ D1ð Þ þ q1CZ D2 þ D3ð Þ

Cy

" #
∂3y1
∂x2∂t

þ D1D2D3

Cy

∂3y1
∂t3

þ Cy D1D3 þ D2D3ð Þ þ CZ D1D3 þ D1D2ð Þ
Cy

" #
∂2y1
∂t2

þ CZD
∂y1
∂t −

qCZCy

Cy

∂2y1
∂x2

¼ 0

ðB1Þ

where q = q1 + q2 + q3 and D = D1 + D2 + D3.
For the case ωr = 0 the dispersion relation (Eq. (13)) gives a cubic equation for ωi:

aωi
3 þ bωi

2 þ cωi þ d ¼ 0 ðB2Þ

where:
a = D1D2D3

b = [k2(q1D2D3 + q2D3D1 + q3D1D2) + Cy(D3D2 + D1D3) + Cz(D1D3 + D1D2)]
c = [(D1q2q3 + D2q1q3 + D3q1q2)k4 + [D3Cy(q1 + q2) + D1Cz(q2 + q3) + q3Cy(D1 + D2) + q1Cz(D2 + D3)]k2 + DCyCz]
d = q1q2q3k

6 + [Cy(q1q3 + q2q3) + Cz(q1q2 + q1q3)]k4 + qCzCyk
2
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