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The ubiquitous problem of learning system parameters for dissipative two-level

quantum systems: Fourier analysis versus Bayesian estimation

Sophie G. Schirmer1 and Frank C. Langbein2

1College of Science (Physics), Swansea University,
Singleton Park, Swansea, SA2 8PP, United Kingdom
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We compare the accuracy, precision and reliability of different methods for estimating key sys-
tem parameters for two-level systems subject to Hamiltonian evolution and decoherence. It is
demonstrated that the use of Bayesian modelling and maximum likelihood estimation is superior to
common techniques based on Fourier analysis. Even for simple two-parameter estimation problems,
the Bayesian approach yields higher accuracy and precision for the parameter estimates obtained. It
requires less data, is more flexible in dealing with different model systems, can deal better with un-
certainty in initial conditions and measurements, and enables adaptive refinement of the estimates.
The comparison results shows that this holds for measurements of large ensembles of spins and
atoms limited by Gaussian noise as well as projection noise limited data from repeated single-shot
measurements of a single quantum device.

PACS numbers: 03.67.Lx, 03.65.Wj

I. INTRODUCTION

Quantum systems play an important role in atomic
and molecular physics, chemistry, material science and
many important current technologies such as nuclear
magnetic resonance imaging [1] and spectroscopy [2],
promising nascent quantum technologies such as spin-
tronic devices [3], and potential future technologies such
as quantum information processing [4]. Novel applica-
tions require increasingly sophisticated control, and ac-
curate and precise models to facilitate controlled manip-
ulation of their dynamics.

Although theoretical device modelling remains impor-
tant, system identification and data-driven models are
becoming increasingly important in many areas of sci-
ence and technology to accurately describe individual
systems [5]. System identification comprises a range of
problems including model identification, model discrim-
ination and model verification. Once a model has been
selected, the task often reduces to identifying parameters
in the model from experimental data. In the quantum
domain this is often data from one of the many types of
spectroscopy, from magnetic resonance to laser to elec-
tron transmission spectroscopy, depending on the phys-
ical system. More recently single shot measurements of
quantum systems have also become important for quan-
tum devices relying on individual quantum states.

Fourier analysis of the spectra is frequently used to
identify model parameters such as chemical shifts and re-
laxation rates by examination of the positions and shape
of peaks in a free-induction-decay (FID) spectrum [6].
Fourier analysis of Rabi oscillation spectra has also been
used to identify Hamiltonians [7, 8], as well as decoher-
ence and relaxation parameters for two-level systems [9],
and concurrence spectroscopy [10] has been applied to de-
termine information about coupling between qubits. For

more complex systems, Bayesian techniques and max-
imum likelihood estimation [11] have proved to be ex-
tremely valuable to construct data-driven models to iden-
tify Hamiltonian parameters [12] and decoherence pa-
rameters for multi-level systems [13]. Bayesian tech-
niques have also been applied for adaptive Hamiltonian
learning using sequential Monte-Carlo techniques [14].

In this work we revisit simpler systems: two-level sys-
tems subject to decoherence, one of the simplest but
arguably most important models in quantum physics.
The model is ubiquitous in magnetic resonance imag-
ing, where the magnetization signal from protons (spin- 12
particles) precessing and dephasing in a magnetic field
is the basis for non-invasive, in-vivo imaging. In quan-
tum information it describes qubits as the fundamental
building blocks subject to decoherence. Therefore, char-
acterization of two-level systems is extremely important.
We compare two frequently used estimation strategies
based on Fourier analysis and a Bayesian approach com-
bined with maximum likelihood estimation, for the ubiq-
uitous parameter estimation problem of a two-level sys-
tem subject to decoherence. We consider accuracy, pre-
cision and efficiency for different systems and noise mod-
els, including Gaussian noise, typically encountered for
large ensemble measurements, and projection noise, typ-
ically present in data from repeated single-system mea-
surements.

II. SYSTEM AND EXPERIMENTAL
ASSUMPTIONS

In this section we introduce our dynamic model of the
physical system and our assumptions about initialisation
and measurement of the system. We focus in particular
on the different options for the measurements depend-
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ing on the nature of the physical system and hence the
measurements from which we wish to estimate the pa-
rameters.

A. Dynamic system model

The state of a quantum system is generally described
by a density operator ρ, which, for a system subject to a
Markovian environment, evolves according to a Lindblad-
type master equation

ρ̇(t) = [H0, ρ(t)] +D[V ]ρ,

D[V ] = V ρV † − 1
2 (V †V ρ+ ρV †V ),

(1)

where H represents the Hamiltonian and V the dephas-
ing operator. If the dephasing occurs in the same basis
as the Hamiltonian evolution then we can choose a basis
in which both H0 and V are diagonal. For a two-level
system we can thus write H = ωσz and V = γ̃σz, where
γ̃ ≥ 0, leaving us essentially with two core system pa-
rameters to identify, ω and γ̃, or often γ = 2γ̃2.

B. Initialization and Readout

A basic experiment involves initalizing the system in
some state |ψI〉 and measuring the decay signal, a so-
called free-induction decay experiment. The measured
signal depends on the system parameters as well as the
initial state and the measurement. Taking the measure-
ment operator to be of the form

M =

(
cos θM sin θM
sin θM − cos θM

)
, (2)

and taking the initial state to be

|ψI〉 = cos(θI)|0〉+ sin(θI)|1〉, (3)

the measurement signal is of the form

p(t) = e−γt cos(ωt) sin(θI) sin(θM ) + cos(θI) cos(θM ).
(4)

Assuming the system is initially in the ground state |0〉,
e.g., corresponding to spins being aligned with an ex-
ternal magnetic field, the initialization procedure corre-
sponds to applying a short pulse to put the system into a
superposition of the ground and excitation state. Notice
if the system is not well characterized then it is likely
to be infeasible to prepare the system in a well-defined
superposition state with a known angle θI . Rather, θI
becomes an additional parameter to be estimated.

The operator M corresponds to measuring the system
with regard to an axis tilted by an angle θM from the
system axis in the (x, z) plane, which can describe many
different experimental situations. In an FID experiment
in NMR, for example, an x-magnetization measurement
corresponds to setting θM = π

2 . In a Rabi spectroscopy

experiment of a quantum dot, where the population of
the ground and/or excited state is measured, e.g., via a
fluorescence measurement, we would typically set θM =
0. In some situations, such as the examples mentioned,
the Hamiltonian and measurement bases may be well-
known. In other situations, however, such as in a double
quantum dot system with charge state read-out via a
single electron transistor perhaps, θM may a priori at
most be approximately known. In this case θI becomes
an additional parameter to be estimated. In this work
we employ a formalism that does not require either the
initial state or measurement to be known a priori.

C. Continuous vs discrete-time and adaptive
measurements

In an FID experiment we could in principle measure
the decay signal continuously. However, modern receivers
typically return a digitized signal, i.e., a vector of time
samples, usually the signal values integrated over short
time intervals ∆t. For this type of readout, the num-
ber N of time samples and their spacing ∆t are usually
fixed, or at least selected prior to the start of the experi-
ment. In this set-up there is usually little opportunity for
adaptive refinement short of simply repeating the entire
experiment with shorter ∆t or larger N .

In other situations, such as Rabi spectroscopy [15],
each measurement corresponds to a separate experiment.
For example, we prepare the system in a certain initial
state, let it evolve under some Hamiltonian (with param-
eters to be estimated) for some time t before performing
a measurement to determine the state of the system. In
this case we are more flexible and can in principle choose
the measurement times adaptively, trying to optimize the
times to maximize the amount of information obtained
in each measurement.

Here we mainly consider the case of a regularly sam-
pled measurement signal but we also briefly consider how
the estimation can be improved in the latter case by
adaptive sampling with particular focus on the compari-
son between the different estimation strategies.

D. Ensemble vs single-system measurements

In many settings from NMR and MRI to electron spin
resonance (ESR) to atomic ensembles in atom traps,
large ensembles of spins or atoms are studied resulting
in ensemble average measurements. In this setting, the
backaction from the measurement is negligible and the
system can be measured continuously to obtain a mea-
surement signal s(t). The noise in the signal is well ap-
proximated by Gaussian noise, which can be simulated by
adding a zero-mean Gaussian noise signal g(t) to the ideal
signal p(t), i.e., the measured signal d(t) = p(t) + g(t).
By the Law of Large Numbers and Iterated Logarithm
Law [16] this gives a Gaussian distribution for d(t) with
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mean p(t) and variance σ2 ∼ log logNe

2Ne
for Ne →∞. This

is a good error model for simulating physical systems and
estimating the noise in actual measurement data when
the ensemble size Ne is large.

More recently single quantum systems, such as trapped
ions [17], trapped atoms [18], single electron spins [19],
and charge states in Josephson junctions [20], have be-
come an important topic for research because of their
potential relevance to quantum technolgoies. Given a
single copy of a two-level system, measurement of any
observable yields only a single bit of information indicat-
ing a 0 or 1 result. To determine the expectation value
of an observable the experiment has to be repeated many
times and the results averaged. Furthermore, due to the
backaction of the measurement on the system, we can
generally only perform a single projective measurement.
To obtain data about the observable at different times
the system has to be re-initialized and the experiment
repeated for each measurement. In this context the en-
semble size Ne is the number of times each experiment
on a single copy of the system is repeated. As repetitions
are time- and resource-intensive, it is desirable to keep Ne
small. However, this means the precision of the expecta-
tion values of observables becomes limited by projection
noise, following a Poisson distribution. To simulate ex-
periments of this type we compute the probability p̂1 of
measurement outcome 1 for the simulated system, gener-
ate Ne random numbers rn between 0 and 1, drawn from
a uniform distribution, and set p1 = N1/Ne, where N1 is
the number of rn ≤ p̂1.

III. PARAMETER ESTIMATION STRATEGIES

This section introduces the three parameter estimation
strategies based on Fourier and Bayesian analysis we wish
to compare.

A. Fourier-spectrum based estimation

A common technique to find frequency components in
a noisy time-domain signal is spectral analysis. Consider
a measurement signal of the form

p(t) = a+ be−γt cos(ω0t), t ≥ 0, (5)

which corresponds directly to measurement (4) if we set
a = cos θI cos θM and b = sin θI sin θM . Subtracting the
mean of the signal 〈p(t)〉 = a and rescaling gives f(t) =
(p(t)− a)/b. To account for the fact that f(t) is defined
only for t ≥ 0 we multiply f(t) by the Heaviside function

u(t) =

{
0 if t < 0

1 if t ≥ 0.

The Fourier transform of u(t)f(t) = u(t)e−γt cos(ω0t) is

F (ω) =
γ + iω

(γ + iω)2 + ω2
0

and the power spectrum is P (ω) = |F (ω)|2. Differ-
entiating with respect to ω and setting the numerator
to 0 shows that |F (ω)|2 has extrema for ω = 0 and
(γ2 + ω2)2 − ω2

0(4γ2 + ω2
0) = 0. The real roots ω∗ of

this equation satisfy

E1(ω0, γ) = ω2
∗ + γ2 − ω0

√
4γ2 + ω2

0 = 0 (6)

and the corresponding maximum of the power spectrum

P∗ = P (ω∗) =
ω2
0 + ω0

√
4γ2 + ω2

0

8γ2ω2
0

=
ω2
0 + ω2

∗ + γ2

8γ2ω2
0

.

Defining the error term

E2(ω0, γ) = 8γ2ω2
0P∗ − ω2

0 + γ2 + ω2
∗, (7)

we can estimate the frequency ω0 and dephasing rate γ
from the peak height P∗ and position ω∗ via

Strategy 1:

{ω0, γ} = arg min
ω′

0,γ
′
{|E1(ω′0, γ

′)|+ |E2(ω′0, γ
′)|}. (8)

Determining the maximum P∗ and its location ω∗
from |F (w)|2, we may choose ω′0 = ω∗ and γ′ =√

2ω∗/(8ω2
∗P∗ − 1) as starting point for a local minimiza-

tion routine provided γ � ω0 as is usually the case.
Instead of estimating the height of the peak, estimates

for ω0 and γ can also be obtained using the width of
the peak. Let ω1,2 be the (positive) frequencies for
which |F (ω)| assumes half its maximum. One way to
estimate ω1,2 is to take the minimum and maximum of
{ω : |F (ω) ≥ max(F )}, assuming that sufficient mea-
surements have been made such that F is symmetric and
peaked, i.e., it has low skewness and high kurtosis.

The full-width-half-maximum 2d of |F (ω)| is |ω2−ω1|
and we can derive the following expression:

d =

[√
ω2
0 − γ2 + 2

√
3ω0γ −

√
ω2
0 − γ2

]
=

[√
ω2
∗ + 2

√
3γ
√
ω2
∗ + γ2 − ω∗

]
.

Hence, given the location ω∗ and half-width d of the peak
solving for γ gives the alternative

Strategy 2:

γ =
1

6

√
6g(ω∗, d)− 18ω2

∗, ω0 =
√
ω2
∗ + γ2, (9)

where g(ω∗, d) =
√

9ω4
∗ + 12d2ω2

∗ + 12d3ω∗ + 3d4.
Strategy 2 based on peak-positions and linewidths is

probably the most common approach for estimating fre-
quencies and R2-relaxation rates from FID signals in
NMR and in many other contexts. The expressions for
|P (ω)|2, the peak heights and linewidth are more com-
plicated than those for quadrature measurements as we
only have a real cosine signal but the approach is funda-
mentally the same.
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B. Bayesian and Maximum Likelihood Approach

Given discrete time-sampled data represented by a row
vector d of length Nt containing the measurement results
obtained at times tn for n = 1, . . . , Nt, let p be the vector
of the corresponding measurement outcomes predicted by
the model. p depends on the model parameters, here ω0

and γ. Assuming Gaussian noise with variance σ2 we
define the joint likelihood [11]

P (p,d, σ) =
1

(
√

2πσ)Nt
exp

[
−||p− d||22

2σ2

]
. (10)

If the noise level σ of the data is not known a priori,
we can eliminate this parameter following the standard
Bayesian approach by integrating over σ from 0 to ∞,
using the Jeffrey’s prior σ−1. This gives

P (p,d) =
Γ(Nt

2 − 1)

4πNt/2
||p− d||2−Nt

2 (11)

where Γ is the Gamma function. It is usually more con-
venient and numerically robust to work with the (nega-
tive) logarithm of the likelihood function, the so-called
log-likelihood. When the noise level σ is known the log-
likelihood reduces to

L(p,d, σ) = − logP (p,d, σ) = 1
2σ2 ||p− d||22 + const,

(12)
where the constant is usually omitted; when σ is not
known a priori we obtain instead

L(p,d) = − logP (p,d) =
1−Nt

2
log ||p− d||22 + const.

(13)
The idea of maximum likelihood estimation is to find
the model parameters that maximize this (log-)likelihood
function. To simplify this task, we follow a similar ap-
proach as in previous work [11–13] and express the sig-
nals as linear combinations of a small number mb of basis
functions gm(t) determined by the functional form of the
signals. In our case the measurement signal p(t) can be
written as a linear combination of mb = 2 basis functions

p(t) = α1g1(t) + α2g2(t). (14)

with g1(t) = 1 and g2(t) = e−γt cos(ω0t). As the ba-
sis functions are not orthogonal, we define an orthogo-
nal projection of the data onto the basis functions sam-
pled at times tn as follows. Let G be a matrix whose
rows are the basis functions gm(t) evaluated at times
tn, Gmn = gm(tn), and E diag(αm)E† be the eigende-
composition of the positive-definite matrix GG†. Then

H = diag(α
−1/2
m )E†G is a matrix satisfying H†H = GG†,

whose rows form an orthonormal set, HH† = I, and we
define the orthogonal projection of the data vectors onto
the basis function by h = Hd†.

Projecting the data onto a linear combination of basis
functions introduced mb nuisance parameters αm. Us-
ing a standard Bayesian approach we can eliminate them

by integration using a uniform prior, and following fur-
ther simplifications [11], it can be shown that the log-
likelihood (11) becomes

L(ω0, γ|d) =
mb −Nt

2
log

[
1− mb〈h2〉

Nt〈d2〉

]
(15)

where 〈d2〉 = 1
Nt

∑Nt−1
n=0 d2n and 〈h2〉 = 1

mb

∑mb−1
m=0 h2m

and we have dropped the constant offset. This log-
likelihood function can be evaluated efficiently, and we
can use standard optimization algorithms to find its max-
imum, motivating

Strategy 3: {ω0, γ} = arg max
ω′

0,γ
′
L(ω′0, γ

′|d). (16)

Note that in general, finding the global maximum of
the log-likelihood function is non-trivial as it is non-
convex, tends to become sharply peaked, especially for
large data sets, and may have many local extrema, ne-
cessitating global search techniques. However, for our
two-parameter case, finding the global optimum over rea-
sonable ranges for ω and γ proved straightforward using
either standard quasi-Newton or even Nelder-Mead Sim-
plex optimization. For more complex functions a den-
sity estimator such as particle filters (sequential Monte
Carlo methods) or kernel density estimators may be used,
which also enable effective determination of the maxi-
mum.

IV. EVALUATION AND COMPARISON OF
ESTIMATION STRATEGIES

We now compare the three strategies introduced in the
previous section for ensemble and single-shot measure-
ments and also discuss the uncertainty in the estimated
parameters and show how Strategy 3 enables the estima-
tion of additional initialisation and measurement param-
eters. For this we use 10 systems with different values for
ω and γ, given in Table I, and collect measurement data
from simulations with the relevant noise models. For each
system the signal was sampled uniformly at Nt = 100
time points tk ∈ [0, 30]. We assume that we have some
order of magnitude estimate of the system frequency ω̄
based on the physical properties of the system, giving us
a range for the values of ω. Without loss of generality we
can express both ω and γ in units of ω̄. Accordingly all
times quoted in the following will be in units of ω̄−1. In
our simulations we choose ω ∈ [0.2, 2] and γ ∈ [0.05, 0.4]
in units of ω̄.

To calculate an average relative error for the parame-
ter estimates, Ns = 1000 runs were performed for each
system and noise level and the error computed as

e(ω) =
1

Ns

Ns∑
n=1

ω−1|ω(n)
est − ω| (17a)

e(γ) =
1

Ns

Ns∑
n=1

γ−1|γ(n)est − γ| (17b)
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ω 1.0000 0.9000 0.5003 0.7304 1.2161 1.6211 0.2218 1.5195 0.7551 0.8029
γ 0.1000 0.1000 0.1243 0.1875 0.2031 0.0993 0.1234 0.0751 0.0533 0.1921

TABLE I: Model parameters for 10 models compared below (in units of ω̄).

where ω and γ are the actual parameters of the simulated

system and ω
(n)
est and γ

(n)
est are the estimated values for the

nth run.

A. Ensemble measurements with Gaussian noise

To compare the different estimation strategies for dis-
cretely sampled signals with Gaussian noise we simulate
the measurement result dk at time tk. The expected
signal p(tk) was calculated based on the selected model
and Gaussian noise of mean 0 and standard deviation
σ added to each value. Fig. 1 (left) shows an example
of an ideal measurement signal and simulated data with
uniform sampling at times tn = n∆t with ∆t = 0.3.

Fig. 2 compares the errors according to (17) for the
three strategies. Strategy 2, probably the most common
technique for estimating the frequency and dephasing pa-
rameter using the position and width of the peak in the
Fourier spectrum, actually gives the least accurate and
least precise estimates — the median error of the esti-
mated values is large, as is the spread of the errors for
different systems as indicated by the large error bars.
Strategy 1 produces slightly improved estimates, but pa-
rameter estimates based on Strategy 3 are significantly
better. The results are similar for ω and γ. Fig. 3 fur-
thermore suggests that Strategies 1 and 2 are not unbi-
ased estimators. The mean of the distribution over the
estimation runs does not appear to converge to the true
value of the parameter even for very lowest noise level
and 1000 runs. Strategy 3, however, appears to be an
unbiased Gaussian estimator.

One interesting feature of Strategies 1 and 2 is that
the median estimation errors appear to be almost con-
stant over the range of noise levels considered, while
for Strategy 3 the error increases with increasing noise
level, as one would expect. A probable reason for this is
that the uncertainties in the position, and indirectly the
width, of the peaks in the Fourier spectrum primarily
depend on the length of the signal T . Specifically, for a
fixed number of samples, [9] found that the uncertainty
in the parameter estimates was mainly proportional to
1/
√
T . This would explain why the accuracy of the es-

timates obtained from the Fourier-based strategies ap-
pears roughly constant as the signal length and number
of samples were both fixed in our simulated experiments
(T = 30, Nt = 100). So it might be argued that the
Fourier-based strategies are less sensitive to noise. How-
ever, it is important to notice that even for noise with
σ = 0.1, Strategy 3 still outperforms the other strategies
in all cases.

Furthermore, accurately and precisely estimating loca-

tion and width of a peak in the Fourier spectrum for a
relatively short, noisy signal can be challenging, as illus-
trated by the power spectrum examples in Fig. 4. The
blue bars show the |F (k)|2, where F (k) is the discrete
Fourier transform of the measured discrete signal

F (k) =

Nt∑
n=1

d′ne
−2πi(k−1)(n−1)/Nt , 1 ≤ k ≤ Nt, (18)

computed using the Fast Fourier Transform (FFT), after
centering and rescaling, d′ = (d − d̄)/dmax with d̄ =
1
Nt

∑Nt

n=1 dn and dmax = max |dn − d̄|. The red curve is
an approximation to the continuous Fourier transform

F (ω) =

∫ ∞
−∞
f(t)e−iωtdt ≈

Nt∑
n=1

d′ne
iωtn 1

2 (∆tn + ∆tn−1)

(19)
where the integral has been approximated using the
trapezoidal rule with ∆tn = tn+1 − tn = T/Nt for
n = 1, . . . , Nt − 1 and ∆t0 = ∆tNt

= 0. The left figure
shows a “good” power spectrum for a low-noise input sig-
nal. Even in this case the frequency resolution is limited
but the peak has a more or less Lorentzian shape and
the width is well defined. However, for increasing noise
the peak can become increasingly distorted (center) and
for very noisy signals it may even become split (right)
making width estimation difficult and assumptions about
kurtosis and skewness are no longer valid.

A further advantage of Strategy 3 is that it also pro-
vides direct estimates for the noise variance [11]

σ = 1
Nt−mb−2 (Nt〈d2〉 −mb〈h2〉) (20)

and Fig. 5 shows that the estimates are very accurate
across the board.

B. Single-system measurements

To assess if there are significant differences in the per-
formance of different estimation strategies in the presence
of projection noise, we repeat the analysis in the previous
subsection for the same 10 model systems, sampled over
the same time interval [0, 30], but with various levels of
projection noise added instead of Gaussian noise. Fig. 1
(right) shows an example of an ideal measurement signal
and simulated data. Fig. 6 shows the relative errors for
the different estimation strategies for the same model sys-
tems but subject to (simulated) projection noise. Strat-
egy 3 again performs significantly better than the other
strategies. Fig. 7 shows that the likelihood of the es-
timates increases with increasing number of repetitions
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FIG. 1: Example of ideal measurement signal and data from simulated experiments with Gaussian noise (σ = 0.05, left) and
projection noise (each data point is the average of Ne = 100 binary-outcome single shot measurements, right).
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FIG. 2: Minimum, maximum and median of relative error (averaged over 1000 runs for each system and noise level) of ω (left)
and γ estimates (right) as a function of the magnitude of the Gaussian noise for 10 model systems (Table I).

Ne, as expected. It also shows again that the maximum
likelihood for some model systems is consistently higher
than for others, as was observed for Gaussian noise.

Fig. 8 shows that even the estimates for the noise vari-
ance σ2 obtained automatically with Strategy 3 are very
accurate in that the results obtained closely track the the-
oretical values σ2 = 1/Ne expected for projection noise.

Overall this shows that although the noise strictly fol-
lows a Poisson distribution in this case, we still obtain
very good estimates of the noise level for typical values
of Ne using a Gaussian error model in the derivation of
the maximum likelihood estimation strategy. So overall
Strategy 3 appears to be consistently better than Strate-
gies 1 and 2, independent of the types of measurements
and their associated noise for the two-level frequency and
dephasing estimation problem.

C. Uncertainty in parameter estimates

The error statistics are useful for comparing different
strategies in terms of both the accuracy (mean or median
of error) and precision (spread of errors) of the estimated
parameters, and the graphs above show that Strategy 3
outperforms the other strategies on both counts. How-
ever, obtaining such statistics requires data from many
simulated experiments as well as knowledge of the actual
system parameters. In practice, the actual values of the
system parameters to be estimated are usually unknown,
as otherwise there would be no need to estimate the pa-
rameters in the first place, so we cannot use error statis-
tics directly to determine the accuracy and precision of
our estimates. However, we can estimate the uncertainty
of the parameter estimates, as discussed next.

For the Fourier-based strategies we have already men-
tioned that the uncertainty in the parameter estimates
is mainly determined by the frequency resolution, lim-
ited by the sampling rate based on the Nyquist-Shannon
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FIG. 3: Distribution of ω and γ estimates for 1000 runs for model 1 with 1% Gaussian noise for strategies 1, 2 and 3.
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FIG. 4: Limits of Fourier resolution and difficulty in estimating peak width for short, noisy signals.

sampling theorem, which is fixed Nt/T in our case, and
the length of the sampled input signal as the Gabor limit
implies as trade-off between time- and band-limits.

For the maximum likelihood estimation we can obtain
uncertainty estimates for the parameters from the width
of the peak of the likelihood function around the maxi-
mum. We use the following simple strategy. Let (ω, γ) be
the parameters for which the log-likelihood assumes its
(global) maximum Lmax. To estimate the uncertainty in
ω we compute the log-likelihood L(ω+δω, γ|d) for values
δω where L is significantly larger than 0 (implemented by
sampling under the assumption that L is not too far off
a peaked distribution). Then we find the range of δω for
which the actual likelihood

exp(L(ω + δω, γ|d) ≥ 1
2 exp(Lmax) (21)

to determine the full width at half maximum (FWHM)

δωFWHM of the likelihood peak in the ω direction. As-
suming a roughly Gaussian peak the uncertainty in ω is
then given by

∆ω = 2
√

2 ln(2) δωFWHM, (22)

and similarly for γ. Fig. 9 shows the resulting peaks in
the likelihood function for a typical experiment together
with the FWHM estimates, showing greater uncertainty
in the γ estimates.

Fig. 10 show the resulting uncertainties for parameter
estimates obtained by Strategy 3 for the ensemble mea-
surements. The uncertainty in the ω and γ estimates
increases with the noise level, as one would expect, but
for some systems the increase is steeper than for others.
In particular, the uncertainties are greater for models 4,
5 and 10, for which γ is large, and lowest for model sys-
tem 9, which has the lowest γ of the 10 models. The
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higher uncertainties coincide with dips in the maximum
of the log-likelihood in Fig. 12. Although there is some
variation in the value of the maximum log-likelihood be-
tween different runs for the same model and error level,
the differences between the average of the maximum log-
likelihood over many runs for model systems 1 and 5 are
several standard deviations, e.g. max logL ≈ 47.9 ± 3.2
(for model 1, σ = 0.1) vs 34.3 ± 3.3 (model 5, σ = 0.1).
This is consistent with the peak of the (log-)likelihood
being lower and broader for model 5, resulting in higher
uncertainty, and narrower and higher for model 1, result-
ing in less uncertainty. Fig. 11 shows that the uncertain-
ties for parameter estimates behave the same ways for
single shot measurements as a function of the projection
noise level 1/

√
Ne.

This suggests that given the same amount of data the
uncertainty of our estimates increases slightly with larger
dephasing rate. A probable explanation for this is that
the signal decays faster for higher dephasing and thus
the signal-to-noise ratio of the later time samples is re-
duced. For higher dephasing rates the results could likely
be improved by adding more samples for shorter times or
introducing weights and reducing the latter for measure-
ments obtained for longer times.

D. Estimating initialisation and measurement
parameters

According to (14) Strategy 3 also provides information
about the initialization and measurement procedure via
estimates for the parameters α1 and α2. For this model
we obtain

α1 ± α2 = cos θI cos θM ± sin θI sin θM = cos(θI ∓ θM )

and thus

θI = 1
2 [arccos(α1 − α2) + arccos(α1 + α2)], (23a)

θM = 1
2 [arccos(α1 − α2)− arccos(α1 + α2)]. (23b)

Fig. 13 shows the estimates for the parameters α1 and
α2 with error bars indicating uncertainty for the ensemble
measurements. From the plot it is evident that α1 → 0
and α2 → 1 for σ → 0, which suggests θI = θM = π

2 ,
which agrees with the values of the initialization and
measurement angles used in the simulated experiments.
Fig. 14 shows that the same is true in the case of pro-
jection noise for single shot measurements. The associ-
ated estimates for the parameters α1 and α2 in converge
to α1 → 0 and α2 → 1 for Ne → ∞, which suggests
θI = θM = π

2 , which also agrees with the values of the
initialization and measurement angles used in the sim-
ulated experiments. Similar behaviour is observed for
other choice of the initialization and measurement an-
gles.

E. Fisher Information and Cramer Rao Bound

The Fisher information matrix I = (Iij) is defined by

Iij = E

[
∂L

∂θi

∂L

∂θj

]
=

∫
∂L

∂θi

∂L

∂θj
f(x|θ)dx = −E

[
∂2L

∂θi∂θj

]
(24)

where L(x, θ) is the log-likelihood of the measurement
outcome x given θ and E the expectation w.r.t. x. If
the estimator T for the parameters θ is unbiased, i.e. the
mean square error of T is

MSE(T ) = Bias(T )2 + Var(T ) = Var(T ) (25)

where Var(T ) is the covariance matrix of the estimator,
then the matrix C = Var(T )−I−1 must be positive semi-
definite and ||C|| gives an estimate of how close we are
to the Cramer-Rao limit.

Applied to our case, θ = (ω, γ) and

L(x|θ) = −N log(
√

2πσ)− 1

2σ2

N∑
n=1

|p(θ, tn)− xn|2

with p(θ, t) = e−θ2t cos(θ1t), we get

∂L

∂θ1
= − 1

σ2

N∑
n=1

[p(θ, tn)− xn]
∂p(θ, tn)

∂θ1
(26a)

∂L

∂θ2
= − 1

σ2

N∑
n=1

[p(θ, tn)− xn]
∂p(θ, tn)

∂θ2
(26b)

(26c)
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single-shot measurement repetitions per data point, Ne, for 10 model systems (Table I).
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and

∂p(θ, tn)

∂θ1
= −tne−θ2tn sin(θ1tn) =: αn (27a)

∂p(θ, tn)

∂θ2
= −tne−θ2tn cos(θ1tn) =: βn. (27b)

(27c)

Setting pn = p(θ, tn) we have

∂L

∂θ1

∂L

∂θ2
=

1

σ4

(
N∑
n=1

αnpn − αnxn

)(
N∑
n=1

βnpn − βnxn

)

= σ−4

(
AB −

N∑
n=1

cnxn +

N∑
m,n=1

αmβnxmxn

)
with A =

∑
n αnpn and B =

∑
n βnpn, cn = αnB+βnA.

Similarly for the other partial derivatives. Noting

1√
2πσ

∫ ∞
−∞

xn exp

[
−|pn − xn|2|

2σ2

]
dxn = pn (28)
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FIG. 10: Uncertainties of ω (left) and γ estimates (right) for 10 model systems (Table I) as a function of Gaussian noise level.

0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

un
ce

rt
ai

nt
y 

∆ω

noise level (N
e
−1/2)    

 

 
model 1

model 2

model 3

model 4

model 5

model 6

model 7

model 8

model 9

model 10

0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

noise level (N
e
−1/2)    

un
ce

rt
ai

nt
y 

∆γ

 

 
model 1

model 2

model 3

model 4

model 5

model 6

model 7

model 8

model 9

model 10

FIG. 11: Uncertainties of ω (left) and γ estimates (right) for 10 model systems as a function of projection noise level.
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and assuming the estimator is unbiased, we finally obtain
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FIG. 13: Estimates for parameters α1 and α2 including uncer-
tainty as a function of the noise level σ for 10 model systems.
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matrix of the estimator minus the inverse Fisher information
for various models as a function of Ne.

the entries of the Fisher information matrix

I11 = σ−4

(
A2 − 2A

∑
n

αnpn +
∑
m,n

αmαnpmpn

)

I12 = σ−4

(
AB −

∑
n

cnpn +
∑
m,n

αmβnpmpn

)

I22 = σ−4

(
B2 − 2B

∑
n

βnpn +
∑
m,n

βmβnpmpn

)
.

(29)

While our simulations suggest that the estimators based
on Strategies 1 and 2 are not unbiased, Strategy 3 ap-
pears to be unbiased. Fig. 15, showing the smallest eigen-
value of the matrix C for our various test systems subject
to projection noise, suggests that we indeed approach the

Cramer-Rao bound for Ne →∞ and σ = N
−1/2
e .

V. ADAPTIVE ESTIMATION STRATEGIES

We may find that the accuracy or precision of the pa-
rameters obtained from an initial data set is not sufficient
and we would like to improve it by acquiring additional
data. Adaptive refinement strategies depend on the ex-
perimental set-up and system and a detailed analysis of
specific strategies is beyond the scope of this paper. How-
ever, we shall briefly discuss general approaches for iter-
ative refinement for the Fourier and Bayesian estimation
approaches and compare these for a few examples.

In some settings an entire measurement trace is ob-
tained in a single experimental run and we are only able
to sample the signal at regular time intervals restricted
by the experimental equipment available. In this case
the only options available to us are extending the signal
length (keeping sampling density or number of sample
points constant) or repeating the experiment. If Fourier-
based estimation strategies are used, the only way to re-
ally improve the resolution of the Fourier spectrum, and
thus the accuracy and precision of our estimates, is by in-
creasing the signal length. However, for a decaying signal
the signal-to-noise ratio progressively deteriorates until
the signal vanishes, limiting the accuracy and precision
that are attainable. This is illustrated in Fig. 16(left),
which shows the (normalized) power spectrum for 1 to
1000 repetitions of the experiment for model parameters
4, assuming each individual measurement trace is sub-
ject to Gaussian noise at σ = 0.1 and the signals are
averaged. For a single run of the experiment with this
level of noise, the peak is distorted but the power spec-
trum quickly converges. The corresponding estimates for
ω and γ (Fig. 16, center and right) also converge but not
to the true value. For Strategy 2 the ω and γ estimates
are inaccurate. The optimization step in Strategy 1 ap-
pears to improve the accuracy of the ω estimates but the
γ estimates are still inaccurate. Strategy 3 does not suf-
fer from these limitations and averaging multiple short
traces should increase the accuracy of our estimates. In-
deed the figure shows that this appears to be the case:
both the ω and γ estimates converge to the true values.

This shows that Strategy 3 allows adaptive refinement
even if all we are able to do is to repeat the experi-
ment multiple times and average the measurement traces.
However, in some situations we have more freedom. For
Rabi spectroscopy, for example, each data point, corre-
sponding to a measurement at a particular time tn, may
be obtained in a separate experiment, and we may be free
to choose the measurement times tn flexibly. In this case,
having obtained Nt measurements we can try to choose
the next measurement time tNt+1 such that it optimizes
the amount of information we gain from the experiment.
We could ask, for example, considering all possible out-
comes of a measurement at time t and their probability
based on our current knowledge, at what time should we
measure next to achieve the largest reduction in the un-
certainty of our estimates. However, this would require
calculating the uncertainty of the parameters (e.g., by es-
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FIG. 16: Iterative refinement by averaging of signal traces: power spectra (left), ω estimates (center) and γ estimates (right).
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timating the width of the likelihood peaks) for all possible
measurement times and outcomes. Given the continuum
of measurement outcomes and measurement times, this
is generally too expensive to calculate.

We therefore consider a simpler heuristic. We gener-
ate a number of guesses {(ωj , γj), j = 1, . . . , J} for the
parameters based on the current likelihood distribution
for the parameters. We then calculate the measurement
signal p(t, {ωj , γj}) for a set of discrete times and select
the next measurement time where the variance of the
predicted measurement results is greatest. The idea be-
hind this strategy is that a larger spread in the predicted
results indicates greater uncertainty, and a measurement
at such a time should result in a greater reduction of the
uncertainty. We illustrate this strategy in Fig. 17. The
variance of the predicted traces pj(t) = p(t, {ωj , γj}) ex-
hibits oscillations at about twice the frequency of the
signal, being largest around the minima and maxima of
the oscillatory signal but due to the damping of the sig-
nal there is an overall envelope and a global maximum
around 3 in units of πω̄−1. To avoid repeated sampling
at the same time it is desirable to introduce a degree
of randomness, e.g., by selecting the next measurement
time based on the maximum of the variance of pj(ts)
sampled over a discrete set of times ts, such as a non-
uniform low-discrepancy sampling of the time interval

[0, T ]. Furthermore, in practice it may be rather inef-
ficient to recalculate the variance of the traces after a
single measurement. Instead, it we shall acquire an ini-
tial set of N0 data points and then select the next N1

measurement times to coincide with peaks in the vari-
ance of the traces where we allow N1 to vary depending
on the number of peaks. In Fig. 17, for example, there
are eight local peaks and we would choose the next eight
measurement times to coincide with these maxima and
iterate the process.

An even simpler way of iterative refinement is via low-
discrepancy (ld) time sampling, a generalization of uni-
form sampling that lends itself to easy iterative refine-
ment. The basic idea of ld sequences is to ensure the
largest gap between samples is asymptotically optimal,
while there is little uniformity in the sampling points to
avoid aliasing effects (see blue noise criterion). In this
case the initial measurement times are chosen to be the
first N0 elements in a low-discrepancy quasi-random se-
quence such as the Hammersley sequence [22], and in
each subsequent iteration the next Ni elements of the se-
quence are used. The number of initial measurements N0

and subsequent measurements per iteration Ni are com-
pletely flexible, the elements of the sequence can be scaled
to uniformly cover any desired time interval, and we can
perform as many iterations as desired. Fig. 18 shows
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the measurement times as a function of the iteration as
determined by the Hammersley sequence with N0 = 20
and Ni = 8 for 10 iterations and total sampling times
T = 30, showing that uniform coverage of the sampling
interval is maintained. For a fixed number of measure-
ments Nt = 100 we verified that there was no significant
difference in the errors and uncertainties of the parame-
ter estimates between low-discrepancy and uniform sam-
pling for the cases considered above. Furthermore, it-
erative refinement based on ld-sampling performed very
well. Fig. 19 for model system 4 with measurements
subject to 5% Gaussian noise shows that simple itera-
tive ld-sampling actually outperforms the adaptive re-
finement strategy based on the trace-variance described
above. While this may not be universally the case, and
may be due to the variations in the trace variance be-
ing relatively small in our example, it shows that simple
strategies such as iterative ld-sampling can be highly ef-
fectively.

VI. GENERALIZATION TO OTHER MODELS

So far we have considered a particular model of a de-
phasing two-level system with dephasing acting in the
Hamiltonian basis. However, if control fields are applied,
as in a Rabi oscillation experiment for example, then the
effective Hamiltonian and the dephasing basis may not
coincide. For example, for two-level atoms in a cavity
driven resonantly by a laser, the effective Hamiltonian
with regard to a suitable rotating frame is H = Ωσx,
where Ω is the Rabi frequency of the driving field. As-
suming the driving field does not alter the dephasing pro-
cesses, so that we still have V =

√
γ
2σz, the resulting

measurement trace is given by [21]:

p(t) = e−γt sin θI sin θM + Φx3(t) cos θI cos θM (30)
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FIG. 19: Median error of ω and γ parameter estimates for
iterative ld-sampling and adaptive sampling based on trace
variance for model system 4 with measurements subject to 5%

Gaussian noise and projection noise σ = N
−1/2
e , respectively.

where

Φx3(t) = e−
γ
2 t
[
cos(ωt) +

γ

2ω
sin(ωt)

]
, (31)

ω =

√
Ω2 − γ2

4 . (32)

If Ω2 < γ2/4 then ω is purely imaginary and the sine and
cosine terms above turn into their respective hyperbolic
sine and cosine equivalents. If Ω2 = γ2/4, the expression
ω−1 sin(ωt) must be analytically continued.

Due to the more complex nature of the signal, the
Fourier estimation strategies are not directly applicable.
However, we can very easily adapt Strategy 3. All that
is required is a change in the basis functions, setting
g1(t) = e−γt and g2(t) = Φx3(t).

Fig. 20 shows the log-likelihood functions for a very
sparsely sampled signal with significant projection noise
for a system of type (30) for a simulated experiment per-
formed with θM = π

4 and θI = π
3 . The signal is a damped

oscillation, though not a simple damped sinusoid. Strat-
egy 3 easily succeeds in identifying the model parame-
ters and the log-likelihood function has a clearly defined
peak. In fact, we are showing the log-likelihood here as
the actual likelihood function is so sharply peaked that
its internal structure, especially the squeezed nature, is
not easy to see.

Finally, Fig. 21 (left) shows the error statistics for the
ω and γ estimates obtained using Strategy 3 for 10 mod-
els of type (30) with the same values for Ω and γ as
in Table I. We compare two experimental conditions:
θI = θM = 0, which corresponds to maximum visibil-
ity of the oscillations and θI = π

3 , θM = π
4 , for which

the signal is more complex and the visibility of the oscil-
lations is reduced as shown in Fig. 20. The estimation
errors are very similar to those for models of type 1. For
γ they are effectively identical for both experimental con-
ditions; for Ω they are slightly larger in case 2b, as might
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for 10 model systems of type (30) with model parameters given in (Table I) for two experimental conditions: θI = θM = 0 (2a,
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, θM = π

4
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be expected as the visibility of the oscillations is reduced
in this case.

In both cases we also obtain excellent estimates of the
noise level σ of the data as well as estimates for the
parameters α1 and α2. As before, if the initial state
prepared or the precise measurement performed are un-
known a priori, as may well be the case for a system that
is not yet well characterized, we can use these parameters
to derive estimates for θI and θM :

θI =
1

2
[arccos(α2 − α1) + arccos(α2 + α1)] (33a)

θM =
1

2
[arccos(α2 − α1)− arccos(α2 + α1)] (33b)

Fig. 21 (right) shows the estimates derived for the angles
θI and θM for both experimental conditions. The mark-
ers indicate the average of the estimate for all runs and
all model systems, the errorbars indicate the standard

deviation of the estimates. The estimates are not as ac-
curate as those for the system parameters, as one would
expect as we have marginalized the amplitudes α1 and α2

and thus θI and θM . However, they are still quite close
to the actual values (black dash-dot lines) with the ex-
ception of the θI estimate for case (2a), which is slightly
more biased and less accurate – it should be 0, coinciding
with the measurement angle θM .

VII. CONCLUSIONS

We have investigated the ubiquitous problem of identi-
fying crucial parameters from experimental data for two-
level systems subject to decoherence. Comparing differ-
ent strategies based on the analysis of Fourier spectra as
well as Bayesian modelling and maximum likelihood esti-
mation, the latter approach was found to be vastly supe-
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rior to commonly used Fourier based strategies in terms
of accuracy and precision of the estimates obtained.

Strategies based on simple Fourier analysis are lim-
ited by the accuracy with which the positions, heights
and widths of the Fourier peaks can be determined. As
the spectral resolution is limited by signal length and
sampling rate, the accuracy of Fourier-based estimation
schemes for short, decaying signals or sparse noisy data is
limited. The Bayesian approach is not constrained in this
way and yields uncertainties for the system parameters
as well as information about the noise in the data.

An additional advantage of the Bayesian estimation is
that it does not require a priori knowledge of the initial-
ization or measurement angles θI and θM . Rather, the
estimation procedure provides values for the coefficients
of the basis functions, which are related to the parame-
ters θI and θM .

The results are widely applicable to many experimental
settings from the analysis for free-induction decay signals
for spin systems, e.g., in NMR, MRI and ESR to Rabi
spectrocopy fo atomic ensembles, trapped ions, quantum
dots or Josephson junction devices.
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