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Abstract. Geophysical methods can be used to remotely characterize contaminated sites and 

monitor in situ enhanced remediation processes. We have conducted one sandbox experiment 

and one contaminated field investigation to show the robustness of electrical resistivity 

tomography and self-potential (SP) tomography for these applications. In the sandbox 

experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment 

under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the 

evolution of the permanganate plume in agreement with visual observations made on the side of 

the tank. Self-potential measurements were also performed at the surface of the sandbox using 

non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density 

distribution with and without the resistivity information. A compact horizontal dipole source 

located at the front of the plume was obtained from the inversion of these self-potential data. 

This current dipole may be related to the redox reaction occurring between TCE and 

permanganate and the strong concentration gradient at the front of the plume. We demonstrate 

that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer 

plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve 

the shape of the plume. In the field investigation, a 3D resistivity tomography is used to 

characterize an organic contaminant plume (resistive domain) and an overlying zone of solid 

waste materials (conductive domain). After removing the influence of the streaming potential, 

the identified source current density had a magnitude of 0.5 A m
-2

. The strong source current 

density may be attributed to charge movement between the neighboring zones that encourage 

abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-

potential source current density is located in the area of strong resistivity gradient.  
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1. Introduction 

In characterizing contaminated groundwater sites, in situ measurements gathered only 

from wells are generally insufficient for tracking plume migration and to characterize 

concentration changes beyond the immediate area adjacent to the well. Aquifer heterogeneity can 

cause localized flow paths that may not be easily detected from monitoring well samples only. 

There is a therefore a growing interest in hydrogeophysics in developing methods for monitoring 

groundwater remediation that would complement well data. Geophysical methods can be 

employed to characterize contaminant plumes (e.g., Clement et al., 1997; Gao et al., 2007; 

Castro and Branco, 2003), to visualize preferential flow paths (e.g., Kulessa et al., 2003; Ikard et 

al., 2012; Jardani et al., 2013), and to detect and to monitor chemical species injected in the 

subsurface for remediation (e.g., Hubbard et al., 2001; Gehman et al., 2009; Williams et al., 

2009).  

Electrical resistivity tomography (ERT) is a well-established geophysical method that has 

been widely used to investigate the variations in electrical conductivity associated with changes 

in pore water ionic strength or water phase saturation (e.g., Slater, 2007; Loke et al., 2013). 

During an ERT survey, electrical current is injected through electrodes (called current 

electrodes), and, at the same time, electrical potentials are measured at other electrodes (called 

potential electrodes). Resistance or apparent resistivity data can be obtained through electrode 

arrays located at the ground surface and in vertical or horizontal boreholes as documented in 

various field studies (Daily and Ramirez, 1995; Slater et al., 2000; Kemna et al., 2002). The use 

of multichannel resistivity meters has decreased the time required to take a single snapshot. 

These surveys can be repeated at different time periods to track the movement of an injected 

chemical solution. Time-lapse inversions can then be also performed (LaBrecque and Yang, 
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2001; Kim et al., 2009; Karaoulis et al., 2014) and applied to track the concentration changes 

over time (e.g., Singha and Gorelick, 2005; Cassiani et al., 2006; Revil et al., 2013) and also 

dense non-aqueous phase liquid plumes (Power et al., 2015). The drawback of the method is that 

it takes usually some time to perform a resistivity acquisition (i.e., getting a single snapshot), and 

the interpretation of resistivity tomograms is not easy. Indeed, electrical resistivity of porous 

rocks depends on both the bulk conductivity associated with conduction in the pore network and 

surface conduction in the electrical double layer coating the surface of the grains (Revil, 2013a, 

b). We note a worrying tendency in the recent hydrogeophysics literature to oversell what 

electrical resistivity alone can accomplish by using Archie’s law and neglecting the effect of 

surface conductivity (for instance Comina et al., 2010, 2011). 

 A less-known and less-used geophysical method is the self-potential method. In contrast 

to electrical resistivity, the self-potential method is a passive technique. Electrical fields resulting 

from the existence of source currents in the conductive subsurface are measured in a way that is 

very similar to electroencephalography in medical imaging (Trujillo-Barreto et al., 2004). In the 

case of contaminant plumes, the current density is generated by the presence of the plume itself. 

Indeed, charge carrier concentration gradients generate a source current density known as a 

diffusion current (e.g., Maineult et al., 2004, 2005, 2006; Revil et al., 2009; Martinez-Pagan et 

al., 2010). The resulting electrical field is called the diffusion or membrane potential. Self-

potential signals of this type have been recently used to measure the velocity of injected saline 

pulses moving through dam and embankment leaks both in laboratory and field conditions (Ikard 

et al., 2012). 

One of the drawbacks of the self-potential method is the existence of several source 

current densities in field conditions. Indeed, three other mechanisms can generate in situ source 
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current densities. One is called the streaming current and is related to the flow of the pore water 

dragging part of the electrical diffuse layer coating the surface of the grains (e.g., Revil et al., 

2002; Suski et al., 2004; Rizzo et al., 2004 and Titov et al., 2005). A second (and generally 

corresponding to a relatively small effect) is the thermoelectric effect related to temperature 

influences upon the chemical potential of the charge carriers (Leinov et al., 2010; Ikard and 

Revil; 2014; Karaoulis et al., 2014). Finally, a current density is generally associated with a 

gradient in the redox potential in the presence of electronic conductors such as ore bodies or 

certain microorganisms (e.g., Naudet et al., 2004; Castermant et al., 2008; Risgaard-Petersen et 

al., 2012). We have developed, however, methodologies to separate various contributions as 

explained for instance in Naudet et al. (2004).  

Self-potential measurements are especially interesting for the purpose of measuring 

plume advection because of the speed at which they could potentially be used. Since self-

potential is a passive approach, changes can be observed in real time, which is a real advantage 

of the method with respect to ERT as explained in Ikard et al. (2012). Getting a snapshot of self-

potential data and inverting it can be an instantaneous process in the field. An additional 

advantage is that, in contrast to ERT, the inversion of self-potential signals is a linear problem 

since the data (the self-potential signals) are linearly related to the source current density 

corresponding to the model parameter. Therefore, the inverse problem can be solved very 

quickly, possibly in a single iteration if the regularization coefficient has been predetermined 

using simulations done prior to the measurements. This speed advantage would be especially 

relevant for developing automated monitoring systems for contaminant plume remediation and 

for following advective saline tracers through preferential flow paths. This can be advantageous 

in field conditions to make decisions in real time, for instance regarding addition of chemical or 
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biological remediation amendments. Resistivity measurements take more time partly due to the 

lack of equipment able to inject various sources of current at different frequencies 

simultaneously and having massive multichannel capabilities for the voltage electrodes. In 

addition, the inversion of resistance data is a non-linear problem, requiring more time for 

inversion.  

In principle, the inversion of self-potential data requires resistivity data for the 

computation of the kernel. That said, self-potential tomography can be done without resistivity 

information or by using resistivity information from auxiliary data like in 

electroencephalography (see Trujillo-Barreto et al., 2004) and during localization of 

hydromechanical disturbances (see Revil et al., 2015). In addition, self-potential and resistivity 

tomography can be considered as complementary techniques in identifying and monitoring 

contaminant plumes and their remediation. 

In this study, we investigate the use of both ERT and self-potential surveys to monitor the 

movement of permanganate in a TCE-contaminated sandbox and to characterize a contaminated 

groundwater site at an abandoned gas factory. The purpose of the sandbox experiment is to study 

the possibility of using these two methods to evaluate the evolution of a plume in the shallow 

subsurface. While ERT is a well-established technique, very few experiments have used time-

lapse self-potential signals to monitor remediation of a contaminant plume and for which the 

inversion results can be compared to the ground truth.  For the field experiment, we use these 

two methods to locate the contaminant and source current density.  
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2. Methods  

In this section, we introduce the simulation techniques employed in this research. 

Forward and inverse modeling methods are addressed for both resistivity and self-potential 

tomography. 

2.1. Forward Modeling  

2.1.1. Electrical resistivity 

The voltage response due to a known DC current during an ERT survey is described by 

the following elliptic equation:  

 ( ) I ( ) ( )
s s

          r r r r ,    (1) 

where   denotes the electrical potential (in V), σ is the electrical conductivity (in S m
-1

), I is the 

injected current magnitude (in A), 
s

r  and 
s

r are the position vectors of the injection and 

retrieving electrodes A and B, and δ denotes the Dirac (delta) functions (in m
-3

). Two types of 

boundary conditions can be used: 

1

2

0

0










 

 


 n

.      (2) 

The boundary 1  indicates ground condition (prescribed potential value) while 2  

corresponds to an insulating boundary (n is the unit vector normal to this boundary). In the 

sandbox experiment, the forward model will consider the effect of the insulating boundary at 

each wall of the sandbox. In field conditions, the ground surface is considered an insulating 

boundary, and the potential goes to zero at infinity in the ground. In the following, the current 

flow is solved as a 3D problem.  
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2.1.2. Self-potential 

In a self-potential survey, the source current density is generated inside the conductive 

material. The total current density J (in A m
-2

) in the sandbox is described by a generalized 

Ohm’s law 

s J E J ,      (3) 

where E is the electrical field (in V m-1), and Js is the source current density that is responsible 

for the observed electrical field (in A m
-2

). Since the time-variations of the current density are 

very slow, we can use the quasi-static limit of the Maxwell equations for which 0 E , and 

therefore  E ,   being the self-potential field. In this limit, the conservation of charge 

takes the form 

0 J .       (4) 

Combining equations (3) and (4), the scalar potential is the solution of a Poisson equation, 

( ) s   J .      (5) 

The boundary conditions have the same form as indicated by equation (2) for the resistivity 

problem. All the boundaries of the sandbox will be considered as insulating boundaries, while for 

the field case, only the ground surface is considered to be an insulating boundary. According to 

equation (5), the self-potential field is affected by the electrical conductivity distribution. 

Therefore, the electrical conductivity distribution is included in the computation of the elements 

of the kernel. This point will be further explained below in section 2.2.2. If the electrical 

conductivity distribution is unknown, time-lapse self-potential data may be inverted with a single 

snapshot of resistivity, using a homogeneous resistivity distribution, or using a resistivity 
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distribution inferred from auxiliary data (see for instance Trujillo-Barreto et al., 2004, in 

electroencephalography, and Revil et al., 2015, in self-potential tomography). 

 

2.2. Inversion modeling 

The inversion codes used for both resistivity and self-potential surveys were developed in 

house using Matlab and Comsol Multiphysics using application programming interface (API) 

functions. Comsol Multiphysics is used to solve the forward model and the computation of the 

kernel. The inversion codes calculate sensitivity and update electrical conductivity and source 

current density vectors during each iteration. 

 

2.2.1. Inversion of resistance data 

In the realm of deterministic inversion with Tikhonov regularization, ERT tomography is 

performed by minimizing the following objective function: 

22
P ( ) ( ( ) ) ( )d obs m ref

    m W d m d W m m .    (6) 

In Equation (6), the matrix Wd is related to the data covariance matrix. The data standard 

deviation is used in populating the diagonal matrix Wd. The vector d(m) denotes the predicted 

data (resistances or apparent resistivity) calculated by solving the Poisson equation using the 

resistivity model m. The model vector m denotes here the collection of unknown electrical 

resistivity for all the cells used to discretize the volume of the tank. We use the log of 

conductivity as unknowns in m  to ensure positiveness of the conductivity value at each cell. 

The vector dobs denotes the measured resistance or apparent resistivity from the resistivity survey. 

The parameter λ denotes the regularization parameter, which is optimized using the L-curve 

approach (see Hansen, 2001 for a general treatment of this problem and Jardani et al., 2008 for 
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some examples pertaining to self-potential tomography). The matrix Wm is the weighting matrix, 

which is related to the model covariance matrix. In our case, a first or second order differential 

operator can be used. Finally, mref denotes a reference model.  

During inversion, the electrical conductivity model m is updated using the Gauss-Newton 

method,  

1i i   m m m ,       (7) 

1

( ) [ ( )( ( ) ) ( )]T T T T T T

d d m m d d i obs m m i ref  


       m J W W J W W J W W d m d W W m m , (8) 

 

where J is the Jacobian matrix and is computed using the principle of reciprocity (Friedel, 2003). 

At each iteration, the updated parameter vector at iteration i+1 is sent back to Comsol 

Mutiphysics via an interpolation function. When the change of the objection function (see 

equation 6) is less than 0.01 or when the value of the objection function is less than 0.01, we 

consider that the algorithm has converged, and we stop the inversion. 

The Active Time Constraint (ATC) time lapse inversion algorithm proposed by Kim et al. 

(2009) was also attempted in this study. However, the difference between ATC and inverting the 

data separately was found to be negligible for the tank experiment described below. The benefit 

of the ATC method is to remove unrelated noise and artifacts from the inversion. The fact that 

this difference was negligible indicates that good resistance data were obtained during the ERT 

survey. Therefore, all the data were inverted separately in this paper.  

 

2.2.2. Inversion of self-potential data 

From Eq. (5), the voltage response  is linearly related to the source current density Js. 

Eq. (5) can be written in an integral form as 
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( ) ( , ) ( )sP P M M d


 K J ,     (9) 

where K(P, M) is a linear mapping function called the kernel (Trujillo-Barreto et al., 2004), M is 

the location of the source current density, and P is the self-potential measurement location. Ω is 

the volume for each current source in the domain, and d  denotes a volume element around the 

source point M. The kernel is a collection of Green function, which can be determined 

analytically only for some simplistic geometries (half-space, layered Earth, and so on). The 

kernel is more often calculated with a numerical method because of its ability to handle 

boundaries and heterogeneous conductivity distributions. In a 2D problem, the kernel has the 

form ( , )x zK K K  and therefore includes two matrices for the horizontal and vertical 

components of the source current density, respectively. For a 3D problem, the form of the kernel 

is ( , , )x y zK K K K , and it has components in all three directions. After establishing the kernel, 

the objective function can be defined as  

22
( ) ( ) ( )SP d obs m refP    m W Km d W m m ,   (10) 

where m is the source current density vector, 
obsd  is the vector of observed self-potential 

measurement at each self-potential station, mref is the prior reference model vector, and the 

product Km denotes the vector of predicted data. The matrix Wm is a regularization matrix to 

ensure a stable result. It could have the same form as the one used for the ERT inversion. 

However, we can also use an identity matrix I or zeroth order derivative (minimum norm).    

From the objective function defined in Eq. (10), the model vector is obtained in a single 

iteration as (e.g., Jardani et al., 2008) 

1

( ) ( ) ( ) ( )T T T T T

d d m m d d obs m m ref 


         
Tm K W W K W W K W W V W W m .  (11) 
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As known for the potential-field problems, the inverted results will be localized on the surface of 

the domain (close to the measurement stations) if only surface measurements are used (Jardani et 

al., 2008). Depth weighting of the kernel is therefore needed to find a solution that is not 

weighted close to the top surface of the tank. A diagonal weighting matrix is defined based on 

the kernel matrix: 

2 1/4

1

diag( )
N

ij

i

K


 Λ ,     (12) 

where “diag” means creating a diagonal matrix, and N is the number observation data. The 

rationale behind this weighting matrix is that Λ
2
 follows the decay of the kernel matrix. 

 A classical least-square inversion of the self-potential data will lead to a very smooth 

distribution of the self-potential sources. However, in our case, the source current density is 

expected to occur only in the area covered by the plume location. Therefore, the source current 

density is expected to be compact and we need to compact the source current density distribution 

beyond what is obtained in the classical least square solution with smoothing. We use the MS 

(minimum support) method introduced by Last and Kubik (1983). The MS-function is defined as  

2

2 2
1 ( 1)

M
k

k k i

m
MS

m  




 ,      (13) 

where mk(i-1) is the source current density at iteration i-1, while β is a small threshold number in 

the MS method. With the MS function, a new diagonal weighting matrix is established: 

2

2 2

1

diag kk

km 

 
  

  

Ω ,      (14) 

in which Ω is the newly updated weighting matrix.  The kernel matrix is revised as 1*  K K , 

and Eq. (11) is therefore revised to have a new form: 
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1

* * ( ) * ( ) * ( ) ( )T T T T T

d d m m d d obs m m ref 


         
Tm K W W K W W K W W V W W m . (15) 

The retrieved source current density must be transformed back after each iteration to get an 

unscaled current density according to m=Ω
-1

m*. Normally, the compaction process is done 

iteratively until the difference between two consecutive iterations is smaller than a prescribed 

value. However, during the compaction process we must also have a physical understanding of 

the problems. Otherwise, it could lead to an overly compact source even though the objective 

function continues to decrease. For example, based on the measured self-potential magnitude, we 

could roughly know the order of the magnitude for the source current density. For the field test 

conducted in this paper, the magnitude could not be bigger than 1 A m
-2

. 

 

3. A sandbox experiment  

ERT using miniature electrode arrays is well-suited to the monitoring of contaminant 

migration and bioremediation in small-scale laboratory experiments (Sentenac et al., 2010; 2015). 

The movement of a permanganate plume in a TCE-contaminated environment was monitored in 

an acrylic sandbox using two geophysical methods: Direct Current (DC) resistivity and self-

potential (SP). In this section, we describe first the experimental setup and then the approach 

used to acquire the experimental data during the course of the experiment.  

 

3.1. Rationale for the experiment 

Many engineering techniques have been proposed to remediate widespread aquifer 

contamination (Hyman and Dupont, 2001). In situ chemical oxidation (ISCO) using 

permanganate ion (MnO4
-
) is one common method used to break down petroleum and other 

organic compounds in soil and groundwater (Schnarr et al., 1998; Thomson et al., 2007) to 
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improve water quality. One of the challenges for any remediation method is the effective 

monitoring of the process. Traditional methods typically rely on geochemical analysis of samples 

collected from a sparse network of drilled wells, but the limited sampling locations and the 

influence of aquifer heterogeneity may prevent accurate evaluation and tracking of the 

remediation program. We hypothesized that the injected ISCO solution will change the local 

electrical conductivity of the material and generate a concentration gradient, which can be 

tracked using electrical resistivity tomography and self-potential 

 

3.2. Chemical reaction 

The redox reaction between TCE and permanganate can be approximated using Eq. (16) 

(Yan and Schwartz, 2000):  

- - +

2 3 4 2(s) 2(g)C HCl (TCE)+2MnO 2MnO +2CO +3Cl +H .   (16) 

As a result of this reaction, permanganate ion (MnO4
-
) is removed, and Cl

-
 and H

+
 ions are 

produced. H
+
 is then subsequently removed through protonation of silica surface groups (Hort et 

al., 2014) and through reaction with bicarbonate present in the pore fluid. These reactions result 

in a slight increase in the electrical conductivity of the permanganate solution over the unreacted 

background permanganate conductivity (Hort et al. 2015). However, because of the high 

concentration of permanganate that was injected compared to the concentration of TCE within 

the artificial groundwater (50 mM : 1.6 mM) and the relatively small extent of hydrodynamic 

dispersion that was observed, the fluid conductivity within much of the permanganate plume 

could likely be approximated based on the original conductivity of the injected solution. In fact, 

high concentrations of permanganate (35 – 47 mM) were recovered from sampling ports 

downstream of the collection site 2 hours and 3 hours after injection. While a trail of solid-phase 
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manganese dioxide (MnO2) was observed to be left behind as the plume moved, the effects of 

this precipitate on electrical conductivity are negligible at this concentration of TCE (Hort et al. 

2014, 2015). No visible bubbling of CO2 gas was observed. In this experiment, changes in 

observed electrical conductivity over time can be assumed to be caused predominantly by the 

movement of the permanganate plume, which has a significantly higher conductivity than the 

background artificial groundwater.  

 

3.3. Sandbox setup 

The sandbox used in this study had an outer dimension of 0.56 m × 0.076 m × 0.20 m. A 

total of 32 stainless steel electrodes were installed inside the tank for electrical resistance 

measurements in four linear arrays (two horizontal with 12 electrodes and two vertical with 6 

electrodes, shown in Fig. 1), attached to a plastic housing that was affixed to one wall of the tank. 

The distance between two consecutive electrodes was 0.03 m. 18-8 stainless steel screws with a 

1.9×10
-3

-m diameter were used as the electrodes. Only a small part of each screw was left to 

have contact with the porous media, and the rest of it was wrapped with non-conductive epoxy. 

Each electrode was treated as a point source in the numerical simulation. Two permeable plates 

were inserted inside the tank to create two reservoir compartments (Figure 1). A woven nylon 

mesh with 150 μm diameter openings was attached to each plate to avoid sand particles flowing 

into the reservoirs. 6.3 mL min
-1

 water was circulated between these two reservoirs with an 

Ismatec IPC peristaltic pump, which created a hydraulic gradient of 0.035 m m
-1

.   

The sandbox was wet-packed by first adding artificial groundwater (4 mM Na
+
, 0.2 mM 

Ca
2+

, 0.1 mM Mg
2+

, 2.4 mM Cl
-
, 2 mM HCO3

-
, and 0.1 mM SO4

2-
 in deionized water) amended 

with dissolved TCE to simulate a contaminated groundwater plume and then adding prepared 
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sand. The artificial groundwater had a conductivity of 0.048 S m
-1

 at ambient temperature 

(around 22°C) and a TCE concentration of 1.6 mM just prior to starting the resistivity surveys. 

The sand was periodically tapped down with a glass rod during filling to remove air bubbles. 

Unimin #70 industrial quartz sand was chosen for the experiment to be consistent with the 

experiments performed previously by Hort et al. (2014). The sand was sieved twice with a Tyler 

#80 sieve, muffled at 550
o
C to remove organic content, and rinsed with deionized water until the 

sand was clear and had a conductivity less than 3 μS cm
-1

. As prepared, the sand had negligible 

surface conductivity and an intrinsic formation factor (F) of about 4 (Hort et al., 2014). Because 

surface conductivity was negligible, the bulk conductivity of the saturated sand was about 0.012 

S m
-1

. While filling the tank with sand, a small injection tube (x = 0.17 m, y = 0.03 m, bottom of 

tube 0.067 m below the sand surface) was placed near the upstream reservoir, and two small 

sampling tubes were placed downstream. After filling, the top of the tank was sealed with 

Parafilm and plastic wrap to reduce TCE volatilization. The whole tank was maintained under a 

fume hood for safety reasons. After allowing the fluid to circulate through the tank for 3 hours, 

50 mL of artificial groundwater amended with 50 mM KMnO4 (conductivity of 0.604 S m
-1

) was 

injected into the pore fluid through the injection tube to simulate the plume. 

 

3.4. Acquisition of geophysical data 

The plume moved with the constant hydraulic head gradient from upstream reservoir to 

the downstream reservoir (right to left in Figure 1). The protocol for the ERT survey was 

designed to capture the movement of the plume. Sixteen acquisitions (snapshots) were collected 

with the current injection electrode in the upper horizontal array and retrieving electrode in the 

bottom array, e.g., 12 and 24 or 11 and 23. Four additional tests were collected between the 
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vertical arrays. Electrical potential was measured using the skip-one method (Slater et al., 2000). 

For example, for the current pair 12 and 24, the potentials were measured at electrode pairs 11 

and 9, 10 and 8, 9 and 7, etc. A total of 384 potential measurements were taken during each 

resistivity snapshot. 

Resistivity surveys were performed prior to permanganate injection and every half hour 

beginning immediately after injection (7 surveys were conducted in 3 hours during the 

experiment). An ABEM-LS multichannel resistivity meter was employed for data acquisition. 

The protocol was optimized using 4 channels, and with only 2 stacks for each of the 384 

measurements to estimate the standard deviation of the measurements. We did not collect 

reciprocal measurements because of time constraints, though reciprocal datasets could be utilized 

to check data quality (Kemna et al., 2002; Orozco et al., 2012). A minimum acquisition time of 

0.1 s and minimum acquisition delay of 0.1 s were chosen to minimize the total acquisition time 

in order to capture the plume movement accurately, which corresponds to a 0.2-s current 

injection period. A duration of 5 minutes was needed to perform the 384 resistivity 

measurements for each survey. Initial testing of survey time periods showed that these time 

periods yielded adequately similar results to longer survey times. The acquired data had 

relatively good quality with 99% of the data having a standard deviation smaller than 1%. Data 

with errors above this value were removed before the inversion. 

Self-potential data were obtained at the surface of the sandbox and taken every hour. A 

total of 4 surveys were conducted over 3 hours of test duration. Self-potential responses were 

measured right after each ERT survey at each hour. Ag-AgCl non-polarizing electrodes and a 

high input impedance voltmeter were used for the measurements. The reference electrode is 

defined as the electrode connected to the COM of the voltmeter and to which a zero potential is 
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assigned. This reference electrode was fixed near the downstream reservoir. Thirteen self-

potential measurements were taken during each survey with a distance of 3 cm between each 

station. The electrode drift was checked after each survey and removed from the raw data as 

indicated in Figures 2a and 2b. After this step, we subtracted the first measurement from all the 

data (Figure 2c) to reallocate the first data to zero (reference point). These corrected self-

potential data were used as input for the self-potential inversion.  

 

3.5. Inversion of the resistivity data  

We numerically simulated the process with the finite element software Comsol 

Multiphysics. The domain was discretized into 53 × 7 × 18 brick elements in x, y and z directions 

(a total of 6678 elements). Each brick has sides of 10
-2 

m (1 cm) in length. For the inversion, we 

did not include the two reservoirs that were kept at a constant electrical conductivity of 0.048 S 

m
-1

. Therefore, the model vector includes a total of 39×7×18 = 4914 unknown electrical 

conductivity values. Also, a lower threshold value of 0.022 S m
-1

 (determined by trial and error 

to separate the background values from the plumes) was applied to the resistivity tomograms to 

mask unrealistic conductivity changes associated with inversion artifacts. An example of the 

effect of this thresholding is shown in Figure 3 and an example of 3D resistivity distribution is 

shown in Figure 4.  

 

3.6. Inversion of the self-potential data  

In this study, because the plume moved along the y-direction of the sandbox (as visually 

confirmed), the self-potential problem is solved in the 2D (x-z) plane. The 2D mesh was the same 

as that in x-z plane in the resistance model, which had 53×18=954 brick elements.  Since the 
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kernel values were defined on the node, by excluding the boundary nodes, there were only 646 

nodes for placing the dipole sources. The dimension of the kernel ( , )x zK K  is therefore 13×1292 

(13 measurements and 646×2=1292 source current density unknowns in both x and z directions). 

During kernel calculation, the heterogeneous electrical conductivity σ needs to be 

considered. A unit dipole source was placed on each node of the mesh. Self-potential was 

calculated on the measurement location with respect to the reference location by solving Eq. (5). 

A unit dipole source was placed on each node of the mesh, excluding the boundary nodes for 

numerical stability reasons. Like the resistance inversion, the two reservoirs were excluded in 

this inversion since their conductivity was known.  

 

3.7. Results 

Figure 4 shows the inverted electrical conductivity distribution 2 hours after the injection 

of the plume. The tomograms capture the location of the plume but the magnitude of the 

resistivity change is smaller further away from the electrodes. In reality, the plume should move 

relatively symmetrically across the tank. This anomaly is due to 3D artifacts associated with the 

decrease of the sensitivity away from the current electrodes (Kemna et al., 2002). In the 

following, we will show only slices of the electrical conductivity distribution taken at y = 0.01 m 

from the electrodes.  

Figure 5a shows the extracted 2D electrical conductivity distributions at four different 

times. All the tomograms are shown at the fourth iteration. Figure 5b shows pictures of the side 

of the tank taken at the same times. The plume is visible thanks to the characteristic purple color 

of the permanganate. The brown trace behind the plume is the reaction product MnO2. This 

precipitate does not alter the electrical conductivity of the porous material and is therefore not 
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visible in the conductivity tomogram, at least at the threshold limit used. The conductivity 

tomograms agree nicely with the movement of the plume. 

The inversion was conducted by considering the conductivity variation created by the 

plume. Because of the movement of the plume during the self-potential survey, we did not have a 

precise characterization of the plume distribution while making these measurements. Therefore, 

resistivity tomograms taken every half hour were interpolated to obtain the resistivity distribution 

during a self-potential survey. When assigning these values, the conductivity variations below 

the threshold value were not used, and only the variation of conductivity at the plume was picked. 

The self-potential signals shown in Figure 2c were inverted to obtain the source current 

density distribution. Despite the fact that we inverted the horizontal and vertical current density 

distributions, the vertical components were much smaller (by a factor 100) than the horizontal 

components; we discuss only the horizontal components below. The source shows a horizontal 

dipole only, shown in Figure 6. During inversion of the self-potential data, the small number 

β=10
-9

 was picked to produce a compact source and the diagonal weighting number λ=10
-11

 was 

chosen based on L-curve. During the compaction process, we checked not only the objective 

function Eq. (10), but also the pattern of the compact source. We made sure the source is not 

over-compacted with a physically unrealistic bigger source current density. Figure 7 shows the 

predicted self-potential for all four measurements from the estimated source current density at 

different periods. The trend is close to the 45 degree line.  

Figure 8 shows the evolution of the compaction process for the results at t = 2 hours. In 

order to show the results at early iteration, a different contour legend from Figure 6 is used. The 

compaction process for the z component is neglected here because of the smaller magnitude. As 
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the iteration proceeds, the source is pushed downward from the surface location and becomes 

more compact. At the same time, the magnitude of the source increases. 

In Figure 9, we overlapped the estimated source current density vector with the 

conductivity tomogram. We believe the SP signals are generated from the concentration gradient 

at the front of the plume and possibly related to the redox reaction occurring between TCE and 

permanganate. At these four different time periods, the vectors follow the moving direction of 

the plume, but do not coincide with the front of the plume exactly. We attribute this imprecision 

to the limited number of SP measurements on the surface and errors during each measurement 

from noise and drift of electrodes. 

Figure 10 shows that the kinetics of the plume movement was captured well by the 

electrical resistivity and self-potential tomograms. This is an interesting result in itself because 

very few self-potential measurements were used to localize the position of the plume over time. 

Figure 11 shows that the self-potential data (Figure 2) are consistent with horizontal dipoles. 

This is surprising at first, because we expect the self-potential data to be associated with the 

concentration gradients in the tank and we should therefore see a vertical component in addition 

to the horizontal components. The vertical component is rather small compared to the horizontal 

component. We attribute it to the concentration gradient at the front of the advecting plume. 

 

4. A field investigation  

4.1. Rationale for the experiment and site description 

Sustainable, low-cost and low-impact remediation technology, such as permeable 

reactive barriers (PRBs), and monitoring tools, such as geophysical methods, are critical for 

economical risk management of brownfield sites with complex contamination. Implementation 
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of remediation technology such as PRBs requires an elaborate approach however because the 

regulatory level of detail required to monitor PRBs, coupled with costly in-situ and laboratory 

analyses, can quickly render the technology unsustainable. Here we analyze with our 3-D 

tomographic models electrical resistivity and self-potential data recorded at a former 

manufactured gas plant in Portadown, Northern Ireland (Figure 12; Kulessa et al., 2006). 

Integrated electrical geophysical techniques previously supported model development of 

biogeochemical processes both outside (Doherty et al., 2010; Revil et al., 2010) and inside 

(Davis et al., 2010) a biological PRB installed at the ~ 1ha site. Previous SP data analysis was 

solely qualitative, and is substantiated here using formal inversion to locate the source current 

density. 

 The area of particular interest for the resistivity and self-potential surveys consisted of 

shallow aerobic groundwater perched on top of a 0.5 to 2.5-meter clay layer (Doherty et al., 

2010). Sitting on top of the thin clay layer are solid waste materials that include ashy metallic 

clinker and fused iron. Underlying the clay aquiclude is an anaerobic zone of organic-

contaminated groundwater that also has a high ammonium concentration. Although thin, the clay 

layer prevents mixing of the anaerobic organic-contaminated groundwater and the overlying 

aerobic groundwater with no organic contaminant. 

 

4.2. Acquisition of geophysical data 

Ten resistivity surveys were conducted from dotted lines R1 to R10, with 2 meter 

separation between every two electrode (Figure 12). An IRIS Syscal R1plus Switch 36 image 

system was used for data collection using a Wenner protocol, and each 70-m long survey line 

contained 36 stainless steel electrodes (LaBrecque and Daily, 2008). Inter-line spacing was 5 m, 
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and 195 measurements were collected for each line. Surface self-potential measurements were 

collected with lead-lead chloride electrodes (Petiau, 2000) and a high impedance METRA HIT 

22S multimeter. At each measurement station, a spade-deep hole was dug and filled with 

bentonite to ensure good electrode contact with the ground. Self-potential surveys followed the 

resistivity survey lines, although three additional self-potential survey lines were used (dashed 

lines in Figure 12). The self-potential electrodes were placed every 5 meters along each line, 

resulting in a total of 15 measurements per line. The self-potential reference station was located 

in the non-contaminated part of the field (the solid cross in Figure 12).  

 

4.3. Numerical model setup 

4.3.1. Resistivity model 

Apparent resistivity data from 10 survey lines were inverted simultaneously in 3D. The 

forward model domain size was chosen to be 212 m × 202 m × 50 m, and the inverse domain 

was only located in the center of the forward domain, 70 m × 75 m × 15.92 m. For inverting 

resistivity, 35 × 30 × 10 = 10,500 cells were used. Each cell is 2 m × 2.5 m in the x and y 

directions. In the z direction of the inverse domain, incremental size elements were chosen with 

depth, from 1 m to 2.35 m with an increment ratio of 1.1 (Loke and Barker, 1996). Outside the 

inverse domain, triangular prism elements were used for the mesh. A uniform resistivity of 20 

Ω.m was assigned to the domain to start the inversion based on the site data.  

There were 195 apparent resistivity measurements per survey line. Measurements were 

processed with the Prosys II software from IRIS, and some of the abnormal data were also 

manually removed before inversion based on visual examination of the apparent resistivity map. 

In the end, 1303 apparent resistivity measurements were used for inversion. 



  

24 
 

 

4.3.2 Self-potential model 

When calculating the kernel for inverting SP data, the forward domain was the same as it 

was in the resistivity model. Also, the domain of the kernel was the same as the inverse domain 

used in the resistivity inversion, except the meshing was different because SP electrodes were 5 

m apart rather than 2 m as they were for resistivity measurements. When choosing the kernel 

points, only the points covered by the 13 SP survey lines were selected.  No kernel points were 

on the surface and at the bottom of the domain to avoid the boundary effect. In the end, 15 × 13 

× 9 = 1755 points were used when calculating the kernel. For the 3D model, the kernel had three 

components, ( , , )x y zK K K K , with dimensions of 195 × 5625. 

The streaming potential component of the SP data was removed using the methodology 

proposed by Naudet et al. (2003, 2004) and adopted previously by Doherty et al. (2010), and the 

resultant SP signals only reflect electrochemical and biological sources. All 13 × 15=195 

measurements were used to identify the source current density. 

 

4.4. Results 

Each individual resistivity survey line was previously analyzed separately by Doherty et 

al. (2010) using a 2.5-dimensional method (Dey and Morrison, 1979) with Res2Dinv software 

(Loke and Barker, 1996). The resultant 10 profiles were then interpolated by inverse distance 

method to obtain a three-dimensional resistivity distribution. Revil et al. (2010) used these 

results to analyze the cause of the SP anomaly. In this study, all 10 survey lines were inverted 

together with a 3D model. 
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The inverted resistivity distribution is shown in Figure 13. In general, the bottom part of 

the domain is more resistive than the surface area except for the upper left corner. Compared to 

the inversion of line R2 by Revil et al. (2010), the current results are similar but smoother at the 

same location. The low resistivity zone is still located around x = 14 m, and only extends from 

y=15 m to 30 m in the shallow subsurface.  The magnitude of this low resistivity is around 5 Ω m. 

The deeper resistive anomaly is at x = 40 m and extends all across the y direction. It has a 

maximum value of 40 Ω m. The transition zone between the resistive and less resistive zones is 

not as sharp as characterized by individually inverting line R2 in Revil et al. (2010). It spreads 

across a large distance from x = 18 m to 30 m. As shown by Doherty (2002), the conductive zone 

corresponds to the zone of perched aerobic groundwater containing metallic waste materials 

above the thin clay layer, while the resistive zone is located where the anaerobic free-phase 

organic waste plume exists. 

The estimated resistivity results were used as input values for calculating the kernel. With 

the measured SP data on the surface, we could locate a relative compact dipole source around x = 

15 and y = 20 m as shown by Figure 14. The largest magnitude is around 0.5 A m
-2

. We only 

proceeded with the compaction algorithm described in Section 2.2.2 for 2 iterations. Further 

compaction would lead to a more compact source, but the magnitude could reach as large as 10 

A m
-2

, which is physically unrealistic. 

The source predominantly points in the negative x direction as indicated by the white 

triangles. The source current density is located close to the surface, and magnitude decreases 

with depth. The predicted SP data from this estimated source current density matches very well 

with the measured values as demonstrated in Figure 15. Figure 16 shows the source current 

density field superimposed on the estimated resistivity field. The source current density field is 
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observed near the conductive part of the tomogram, to the left of the transition zone. Because the 

influence of streaming potential was already removed before identifying the source current 

density, the estimated results mainly reflect electrochemical and biological sources. 

At this site, the measured surface self-potential anomaly ranges from -455 mV to +380 

mV, which means a very large peak to peak anomaly of 800 mV, and the estimated source 

current density is about 0.5 A m
-2

. During the compaction process, the source current density is 

increased because of a required compact source. However, similar to the tank experiment results 

in section 3.7, the source current density anomaly is due to a concentration gradient. In this field 

test, the measured redox potential values only range from -161mV to +97mV, and redox 

reactions could drive such a large dipolar self-potential distribution alone. The large magnitudes 

of the self-potential gradient and source current density are catalyzed by microbial activity 

occurring in the anaerobic zone (Doherty et al., 2010; Revil et al., 2010). The activity of the 

anaerobic microorganisms may produce an abundance of anions, while oxidation of the 

overlying iron wastes may produce a positively charged environment. The thin clay layer may 

act as a permeable membrane for the transfer of charges between the two regions (see Revil et al., 

2010). 

 

5. Conclusion 

In the current study, we have tested the efficiency of using both DC resistivity and self-

potential measurements to track or locate a conductive anomaly either for remediation 

monitoring monitoring or contaminant localization. During the sandbox experiment, the self-

potential inversion produced a horizontal dipole source current density that remained at the 

front of the plume as it moved across the tank. The location of the plume could be verified both 
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through resistivity measurements and visual observation of the plume. The self-potential source 

current density is possibly associated with the strong concentration gradient between the 

permanganate plume and the surrounding artificial groundwater. At the field site, where a thin 

clay unit separates an overlying perched aerobic groundwater unit containing man-emplaced 

metal contaminants from underlying anaerobic organic-contaminated groundwater, a compact 

horizontal dipole source was located close to the conductive (metallic) region. The 0.5 A m
-2

 

magnitude source current density is potentially associated with microbially enhanced redox 

reactions between the aerobic and anaerobic zones. 

In both the sand box and field experiments, similar information was obtained using both 

resistivity and self-potential surveys. However, self-potential may require fewer measurements 

and less processing time when compared with resistivity surveys. In fact, only 13 surface self-

potential data points were needed during the sandbox experiment to locate the front edge of the 

permanganate plume. This suggests that the self-potential survey may be a promising fast 

method for the monitoring certain contaminants or methods of remediation.  
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Figures 

 

 

 

Figure 1. Configuration of the sandbox used in the experiment with the position of the electrodes 

used for the self-potential (SP) and resistivity (ERT) surveys. Note that the self-potential 

measurements are performed only from the top surface of the tank. The permanganate plume 

moves from right to left driven by the hydraulic head gradient between the two reservoirs. 
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Figure 2. Self-potential profiles. a. Raw data. b. Drift removed. c. Final self-potential profiles 

used for the inversion. The first electrode is used as a common reference for each profile and 

over time.  
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Figure 3. Thresholding the resistivity tomograms (here at t = 3 hours after the injection of the 

permanganate). The value of the threshold is fixed at 2.2×10
-2

 S m
-1

. 
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Figure 4. 3D inverted electrical resistivity tomogram at t = 2 hours after the injection of the 

permanganate. The solid black lines indicate the electrode locations on the side of the sandbox.  
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Figure 5. Comparison between the thresholded electrical resistivity tomograms (at the fourth 

iteration) and a set of photos showing the position of the plume at four different times. a. 

Extracted 2D slice images of the electrical resistivity distributions. b. Photos taken during the 

ERT survey. Note that the shadow left by the migration of the plume corresponds to the solid 

product MnO2 associated with the chemical reaction described in the main text. The black plain 

lines are similar to those shown in Figure 1 showing the position of the electrodes.  
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Figure 6. Inverted source current density distributions at four distinct times. The white triangles 

indicate the directions of the source current density and they mainly point in the negative x 

direction (to the right in this figure). 
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Figure 7. Comparison between measured and predicted self-potential signals for the four 

different periods. The self-potential data are well-reproduced by the inverted source current 

density distributions.  
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Figure 8. Evolution of the source current density at t = 2 hours at four different iteration 

numbers during the compaction process of the support of the source (iterations 2, 4, 6, and 8, 

respectively).  
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Figure 9. Estimated source current density vectors overlapped with conductivity tomograms at 

different periods of the plume movement. The flow of the pore water occurs from right to left.  

 

  



  

46 
 

 

Figure 10. Position of the plumes according to the different methods. a. Locations of the centers 

of the plume over time shown in Figures 5 and 6. The black circles are the center of the plume 

estimated by visual inspection from the photos taken during the experiment. b. The distances of 

the plume centers from the injection location are plotted with time along the curvilinear distance 

following the trajectory of the plume (plain line in Figure 10a). All the data from the tomograms 

and the observations are consistent with a mean velocity of 0.073 m hour
-1

.  
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Figure 11. Self-potential signals measured on the surface of the tank. a. Self-potential response 

from current sources at different elevation while at the same horizontal location x = 0.2 m (the z 

= 0.16 m represents a shallow current source). b. Self-potential response from current sources at 

different horizontal locations while elevation is fixed at z = 0.11 m. x = 0.1 m is close to the 

upstream reservoir. 
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Figure 12. Sketch of the test site (Portadown, Northern Ireland). The solid lines show the limits 

of the factory property. The ten dashed lines (R1 to R10) indicate the position of the electrical 

resistivity surveys (2 meter spacing between the electrodes). There is a total of 13 lines for the 

self-potential survey (the 10 resistivity lines plus 3 lines named SP-A to SP-M with 5 meter 

separation between each station). The self-potential reference station was chosen in the non-

contaminated part of the property indicated by a solid cross. The arrow represents the local 

hydraulic gradient direction and therefore in principle the flow direction. 
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Figure 13.  3D inversion of the electrical resistivity distribution. R1, R5 and R9 denote three of 

the survey lines. Note the area of low electrical resistivity (below 10 Ohm m). This area 

corresponds to the area exhibiting a negative self-potential anomaly at the ground surface. 
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Figure 14. Magnitude of the estimated source current density (in A m
-2

). The maximum source 

current density value is approximately 0.5 A m
-2

. The white triangles indicate the direction of the 

source current density vectors and mainly points in the negative x direction. 
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Figure 15. Comparison between the measured and predicted self-potential distributions at the 

ground surface (expressed in mV). The predicted self-potential map is based on the source 

current density shown in Figure 14.  

 

 

  

X
0 10 20 30 40 50 60 70

-350 -296 -242 -188 -135 -81 -27 27 81 135 188 242 296 350

SP (mV)

X (m)

Y
(m

)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Predicted SP

X (m)

Y
(m

)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Measured SP



  

52 
 

 

 

 

 

 

 

Figure 16. Estimated source current density vectors superimposed on the electrical resistivity 

tomograms. Note that the source current density is approximately co-located with the bottom of 

the high electrical conductivity anomaly. 
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Highlights 

1. Self-potential tomography is used to monitor a sandbox experiment 

2. This method can be used in real time to localize the position of the advecting plume 

3. This method is proved to be efficient in field condition to localize contaminant plumes 

 


