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Abstract: We examine the partition function of N = 2∗ supersymmetric SU(N) Yang-

Mills theory on the four-sphere in the large radius limit. We point out that the large radius

partition function, at fixed N , is computed by saddle-points lying on walls of marginal

stability on the Coulomb branch of the theory on R4. For N an even (odd) integer and

θYM = 0 (π), these include a point of maximal degeneration of the Donagi-Witten curve

to a torus where BPS dyons with electric charge
[
N
2

]
become massless. We argue that the

dyon singularity is the lone saddle-point in the SU(2) theory, while for SU(N) with N > 2,

we characterize potentially competing saddle-points by obtaining the relations between the

Seiberg-Witten periods at such points. Using Nekrasov’s instanton partition function, we

solve for the maximally degenerate saddle-point and obtain its free energy as a function

of gYM and N , and show that the results are “large-N exact”. In the large-N theory

our results provide analytical expressions for the periods/eigenvalues at the maximally

degenerate saddle-point, precisely matching previously known formulae following from the

correspondence between N = 2∗ theory and the elliptic Calogero-Moser integrable model.

The maximally singular point ceases to be a saddle-point of the partition function above a

critical value of the coupling, in agreement with the recent findings of Russo and Zarembo.
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1 Introduction and summary

Localization techniques have emerged as a powerful and elegant tool for extracting non-

perturbative information on quantum field theories in various dimensions. In particular,

Pestun’s work [1] provides a remarkable and concrete formulation of the partition function

of supersymmetric (SUSY) gauge theories on spheres, in terms of ordinary (matrix) inte-

grals. This formulation allows the exact computation of field theoretic observables such

as supersymmetric Wilson loops [1] which could then be compared and matched with cor-

responding results for large-N gauge theories with holographic supergravity duals [2, 3]
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e.g. the N = 4 SUSY Yang-Mills (SYM) theory in four dimensions. The matrix models

for N = 2 theories with flavours following from Pestun’s work, were further explored in

the large-N limit at strong coupling [4, 5] to deduce aspects of putative string duals of

such theories.

In this paper, motivated by the works of Russo and Zarembo [6–8], we investigate

certain aspects of the partition function of SU(N), N = 2 SYM with one massive adjoint

hypermultiplet, on the four-sphere. This theory, also known as N = 2∗ SYM, is the N = 2

supersymmetric mass deformation of N = 4 SYM. In references [6–8] it was found that the

large-N partition function of N = 2∗ theory on S4, in the large radius limit, undergoes an

infinite sequence of quantum phase transitions with increasing ’t Hooft coupling λ.

One of several intriguing aspects of this picture is that the low-λ phase of [6, 7], (for

0 < λ ≤ λc ≈ 35.45) has exactly calculable condensates which coincide precisely with the

exact results (obtained sometime ago in [9–11]) for a specific maximally degenerate point

on the Coulomb branch of N = 2∗ theory on R4. At such a point the Seiberg-Witten curve

for the theory [12–14] undergoes maximal degeneration due to the appearance of N − 1

massless, mutually local BPS states. The total number of maximally degenerate vacua of

N = 2∗ theory is given by a sum over all the divisors of N (for the SU(N) theory). We are

immediately presented with a potential puzzle: which one of these special points is picked

out as a saddle-point of the partition function and why? This question was the original

motivation for our work.

We answer the question by first noting that in the limit of large radius, regardless

of N , Pestun’s partition sum is determined by the critical points of the real part of the

N = 2 prepotential evaluated on configurations with purely imaginary Seiberg-Witten

periods [12]. Localisation of the partition function onto constant configurations yields

an ordinary multi-dimensional integral over the imaginary slice of the space of (N − 1)

independent periods {aj} (j = 1 . . . N). We point out that saddle-points lying on this

integration contour must also have purely imaginary dual periods {aD j}. When the phases

of the Seiberg-Witten periods and dual periods are aligned we encounter a wall of marginal

stability [13]. Therefore, saddle-points contributing to the large volume partition function

may be viewed as the points of intersection of the marginal stability wall with the imaginary

slice/contour selected by Pestun’s formulation.

Working at fixed N , for generic values of the microscopic (UV) coupling constant gYM

and vacuum angle θYM, we find that the critical points on the contour described above are

not related to singular points on the Coulomb branch of the theory on R4. However, when

θYM = 0 with N an even integer and θYM = π for odd N , one of the maximally singular

points lands on this contour and is also a saddle-point. In particular, at this point the

massless BPS dyons each carry an electric charge
[
N
2

]
under one distinct abelian factor

on the Coulomb branch. In the large-N limit this statement applies for any θYM since

the effect of the vacuum angle effectively scales to zero in the strict large-N limit. Put

slightly differently, it is well understood [9, 15, 16] that at the maximally singular points

without massless electric hypermultiplet states i.e. those that are relevant for this paper,

low energy observables in N = 2∗ SYM depend only on the combination τ̃ ≡ (τ + k)/N

where τ ≡ 4πi/g2YM + θYM/2π and k = 0, 1, 2 . . . N − 1. For such points, the dependence

– 2 –
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on θYM vanishes in the limit N → ∞ and the vacuum with k
N → 1

2 is picked out at large-N

as the saddle-point.

We establish the picture above by direct examination of the N = 2∗ prepotential

which also shows that for the special situations with θYM = 0 and π, the partition sum can

have additional saddle-points which are not points of maximal degeneration. Instead, at

these additional points, while a subset of the cycles are degenerate, the remaining satisfy

saddle-point conditions involving linear combinations of periods with non-zero intersection

numbers. This suggests a relation to Argyres-Douglas type singularities [17] as has been

found recently in theories with flavours [18, 19]. For the SU(2) N = 2∗ theory we provide

strong evidence that the dyon singularity (which is trivially a maximal degeneration point)

is the only saddle-point of the partition function on S4 (when θYM = 0). In a certain sense

which we make precise, instanton contributions preclude the possibility of an additional

saddle-point, confirming the expectations of [18].

A novel aspect of our work is that for any fixed N (and large S4 radius) we are able

to solve exactly for the maximally degenerate saddle-point utilising the direct relationship

between Pestun’s partition function and Nekrasov’s instanton partition function for the

N = 2∗ theory on the so-called Ω-background [1, 20, 21]. The Ω-deformation parameters

are set by the inverse radius and in the limit of large radius, Nekrasov’s partition function

is dominated by a saddle-point. The saddle-point conditions in this language, as expected,

pick out points on the marginal stability wall with purely imaginary periods. The point of

maximal degeneration can be characterised in terms of a complex analytic function with

two branch cuts that are glued together in a certain way. Such saddle-point equations have

previously appeared in a closely related physical context, namely, in the description of the

holomorphic sector of vacua of N = 1∗ theory using Dijkgraaf-Vafa matrix models [11,

22, 23]. Recognizing the connection between the degenerate Donagi-Witten curve (a torus

with complex structure parameter τ̃) and the Riemann surface picked out by the saddle-

point equations we employ a unformization map to solve for the saddle-point and obtain

the exact values of the condensates. These match previously known formulae obtained

by other methods [10] involving the correspondence between N = 2 gauge theories and

integrable systems. The saddle-point equation for the Nekrasov partition function at the

maximally singular point also makes it manifestly clear that all nontrivial dependence on

N enters through the combination λ = g2YMN even when N is fixed. This property of

“large-N exactness” of physical observables at maximally singular points has also been

understood in the context of N = 1∗ vacua wherein planar graphs of the Dijkraaf-Vafa

matrix model completely characterise such points [11].

In the large-N limit, we reproduce the results of [6] and in particular, we observe

that beyond a critical value (λc ≈ 35.45) of the ’t Hooft coupling, the Seiberg-Witten

periods at the point of maximal degeneration move off the imaginary slice so that this is no

longer a saddle-point. Beyond this value of the ’t Hooft coupling, the partition function is

computed by a different critical point as argued in [6, 7]. Our analysis indicates that with

the exception of the SU(2) theory such a phenomenon should also occur for theories at fixed

N : beyond a certain critical value of the gauge coupling, λc(N) > λc(N → ∞) ≃ 35.45, the

point of maximal degeneration should cease to be a saddle-point. From the viewpoint of

– 3 –



J
H
E
P
1
2
(
2
0
1
5
)
0
1
6

Seiberg-Witten theory, this occurs when the maximally degenerate saddle point approaches

another singular (non-maximal) point where one or more massless electric hypermultiplets

appear. This cannot happen for the SU(2) theory since the singular points are trivially

maximal and points of maximal degeneration in N = 2∗ theory cannot collide. Formally

we may say that for the SU(2) case, λc(2) → ∞.

Finally, one of the most intriguing aspects of the large-N partition function is that at

strong coupling it appears to be computed by a particularly simple configuration charac-

terised by the Wigner semicircle distribution of eigenvalues/periods [6, 7]. We point out

that maximally degenerate vacua of N = 2∗ SYM at large-N do not have the correct strong

coupling behaviour to reproduce the scaling of condensates with λ required by the Wigner

distribution.

For the sake of clarity we list the central ideas and outcomes of the analysis presented

in this paper:

• Making use of the large radius limit (as opposed to the large-N limit) to localise

the partition function on to saddle points. This has also been pointed out in other

related works, notably [18].

• Employing Nekrasov’s instanton “matrix model” functional to understand the rele-

vant saddle points and calculate the free energies at fixed N .

• The special role played by one of the large number of maximally singular points on

the Coulomb branch of N = 2∗ theory.

• Calculation of observables in the low-λ saddle point for fixed N , as exact functions

of the gauge coupling using the Nekrasov functional.

• Clarification of certain aspects of the quantum phase transitions studied in earlier

works [6, 7], and their manifestation in the theories at finite N , at large radius.

The organisation of the paper is as follows: section 2 commences with some basic

background on N = 2∗ theory, the general features of the large volume limit of the partition

function on S4 and the connection to points of marginal stability. We then study the

criteria satisfied by the Seiberg-Witten periods at the saddle-points and their connection

to singular points on the Coulomb branch. The saddle point(s) of the SU(2) theory are

investigated in detail and the general criteria laid out for SU(N). In section 3 we review

the essential aspects of Nekrasov’s instanton partition function in the large volume limit

and extract the saddle-point conditions relevant for the Pestun partition sum on S4. We

then present the detailed solution for the maximally degenerate saddle point for any N

and examine its features as a function the gauge coupling. Section 4 makes contact with

the large-N investigations of Russo and Zarembo. We conclude with a discussion of open

questions and future directions. A synopsis of essential properties of elliptic functions and

modular forms is presented in an appendix.

– 4 –
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2 N = 2∗ theory on S4

N = 2∗ supersymmetric (SUSY) gauge theory is the N = 2 SUSY preserving mass defor-

mation of N = 4 SYM. It can be viewed as an N = 2 vector multiplet coupled to a massive

adjoint hypermultiplet. The lowest component of the N = 2 vector multiplet is an adjoint

scalar field Φ. For the theory with SU(N) gauge group on R4 and at weak coupling, the

VEVs of the eigenvalues of Φ parametrize the Coulomb branch moduli space,

Φ = diag (â1, â2 , . . . âN ) ,
N∑

i=1

âi = 0 . (2.1)

The effective theory on the Coulomb branch [12] is determined by the Donagi-Witten

curve [14]. At a generic point on the Coulomb branch moduli space on R4, the Donagi-

Witten curve corresponds to a Riemann surface of genus N which is a branched N -fold

cover of the torus with complex structure parameter given by the coupling constant of the

parent N = 4 theory

τ =
4πi

g2YM

+
θYM

2π
. (2.2)

The Coulomb branch moduli space has special points where the Donagi-Witten curve

undergoes maximal degeneration to a genus one Riemann surface.1 The points of maximal

degeneration on the Coulomb branch moduli space are special, in that they are in one-to-

one correspondence with massive vacua of N = 1∗ SYM theory obtained by the N = 1

SUSY mass deformation of the N = 2∗ theory. These points which we sometimes refer to

as “N = 1∗ points” will play an important role in our work below.

When the theory is formulated on S4, the Coulomb branch moduli space is lifted due to

the conformal coupling of the adjoint scalar fields to the curvature of the S4, and the zero

modes of the adjoint scalar must be integrated over as a consequence of the finite volume.

Furthermore, the realisation of N = 2 supersymmetry on S4 requires additional terms in

the microscopic Lagrangian. The supersymmetric partition function for the N = 2∗ theory

on the four-sphere of radius R is known to localize onto constant configurations and the

corresponding matrix integral was deduced by Pestun [1].

2.1 Relation to Nekrasov’s partition function

Pestun’s formulation of the partition function for N = 2 theories on S4 is intimately

related to Nekrasov’s N = 2 instanton partition function on the so-called Ω-deformation

of R4 [1, 20, 21] . The connection between the instanton partition function on the Ω-

background and Pestun’s partition function on S4 requires the identification of the Ω-

deformation parameters ϵ1, ϵ2 with the inverse radius of S4:

ϵ1 = ϵ2 = R−1 , (2.3)

so that

ZS4 =

∫
dN−1a

∏

i<j

(ai − aj)
2
∣∣ZNekrasov(ia, R

−1, R−1, iM)
∣∣2 . (2.4)

1In pure N = 2 SYM, the Seiberg-Witten curve has genus N−1 and can maximally degenerate to genus

zero.
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M is the mass of the adjoint hypermultiplet and the {ai} are N − 1 independent, real

variables, related to eigenvalues of the zero mode of the adjoint scalar in the N = 2 vector

multiplet:

âj = iaj ,
N∑

j=1

aj = 0 . (2.5)

An important aspect of Nekrasov’s instanton partition function is that it includes classical,

one-loop and so-called instanton pieces, all at once:

ZNekrasov = ZclZ1−loopZinst . (2.6)

In this sense it is somewhat artificial to split the partition function on S4 into perturbative

and non-perturbative contributions. Such a split really depends on the appropriate duality

frame in the low energy effective theory on the Coulomb branch of N = 2 gauge theory.

We will be interested in the limit of large S4 radius, or equivalently, large hypermultiplet

mass which has received attention in the recent works [6] and [7]. From the viewpoint

of Nekrasov’s partition function, the large radius limit is particularly interesting since the

instanton partition function is then directly given by the Seiberg-Witten prepotential for

the low-energy effective theory on the Coulomb branch on R4:

ZNekrasov

(
ia,R−1, R−1, iM

) ∣∣
R−1→0

→ exp
(
−R2F(ia, iM, iτ )

)
. (2.7)

Here F denotes the Seiberg-Witten prepotential, encapsulating classical, one-loop and all

instanton corrections at the point on the Coulomb branch labelled by the coordinates {iaj}.
For the purpose of this paper F can be identified with the leading contribution at large R.

Subleading terms in the large R expansion correspond to a series of gravitational couplings,

which will not be relevant for our discussion.Since the exponent of the instanton partition

function scales as R2, the measure factor in eq. (2.4) is subleading for large R, and the

partition function can be evaluated on the saddle-point(s) of the integrand of

ZS4 ∼
∫

dN−1a exp
[
−R2

{
F (ia, iM, iτ ) + F (ia, iM, iτ )

}]
. (2.8)

The saddle-point conditions are non-trivial,

∂F
∂aj

+
∂F
∂aj

= 0 , j = 1, 2, . . . N , (2.9)

and must be interpreted with care, since the prepotential F is a multivalued function with

branch cuts. Recalling the definition of the dual periods in Seiberg-Witten theory, following

the conventions of [21], we have

aDj ≡ 1

2πi

∂F(â)

∂âj
, j = 1, 2, . . . N . (2.10)

As defined previously the Coulomb branch moduli âj = iaj so that

aD j (ia, iM, iτ ) + aD j (ia, iM, iτ ) = 0 . (2.11)

– 6 –
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With aj ∈ R, the saddle-point conditions are then concisely,

Re(aD j) = Re(âj) = 0 , (2.12)

for all j. This means that at putative saddle-points, the periods and dual periods must be

‘aligned’ with the same complex phase and in particular, along the imaginary axis. More

generally, when such an alignment of the phases of the periods occurs, one encounters a

curve or wall of marginal stability along the Coulomb branch of N = 2 supersymmetric

gauge theory [12]. Therefore the large volume saddle-points of the partition sum on S4 can

be viewed as special points on the curves of marginal stability where Re(aj) = 0.

For special values of θYM (0 or π), these may coincide with certain points of (maximal)

degeneration of the Donagi-Witten curve where the periods are similarly aligned, leading

to massless BPS dyons. Such points which descend to specific oblique confining vacua of

N = 1∗ theory, can be described exactly for any N and their contribition to the partition

function can be computed exactly.

2.2 Pure N = 2 SYM

Before examining the N = 2∗ theory, we first focus attention on the simpler case of pure

N = 2 SYM, which is a special limit of N = 2∗ theory obtained by decoupling the adjoint

hypermultiplet. For SU(2), N = 2 SYM the prepotential is

F(â) = − 1

2
â2 ln

(
â

Λ

)2

+ Finst(â) , Λ ∈ R . (2.13)

We take the dynamical scale Λ to be real, which is equivalent to setting the microscopic

vacuum angle to zero. The prepotential respects the symmetry under the Weyl group of

SU(2) which acts by permutation on the moduli â1,2 or equivalently as â → −â. A branch

cut singularity arises from the one-loop term, while the instanton contributions are even

functions of â, so that for large â we have

Finst(â) = â2
∞∑

k=1

(
Λ

â

)4k

Fk . (2.14)

In terms of the microscopic parameters at the UV cutoff, Λ4 = Λ4
UV exp(−8π2/g2YM).

Pestun’s formula for the partition function on S4 instructs us to perform the integral along

the imaginary axis in the complex â-plane. Taking â = ia, we split the prepotential into

its real and imaginary parts,

Re [F(ia)] =
1

2
a2 ln

(
a2

Λ2

)
+ Finst(ia) , (2.15)

Im [F(ia)] =
π

2
a2 .

The dual period aD defined as2

aD =
1

iπ

∂F(â)

∂â
. (2.16)

2The normalisations and conventions we use in this paper follow those adopted in [21]. In particular

(2πi)aD j = ∂F/∂aj , and for the SU(2) theory aD ≡ aD1 − aD2.

– 7 –
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At the saddle point, the real part of aD is set to zero, and therefore we find

aD + â = 0 , â = ia . (2.17)

This is the condition for degeneration of the Seiberg-Witten curve for SU(2) and the appear-

ance of a massless BPS dyon with magnetic and electric charges given as (nm, ne) = (1, 1) .

In particular, both aD and â are aligned along the imaginary axis and the point lies on the

curve of marginal stability. This can be explicitly checked using the exact solution for aD
and â in [12] which yields

aD = −â = −4i

π
Λ . (2.18)

The degeneration point where the (1, 0) BPS monopole becomes massless corresponds to

aD = 0 and â = 4Λ/π ∈ R. This is a saddle-point of the integrand in (2.8), when

analytically continued away from the imaginary axis in the â-plane. The dominant saddle-

point is determined by the value of the real part of the prepotential. It can be readily

verified that the critical point on the imaginary axis with a massless (1, 1) dyon, has lower

action and is therefore dominant.

The analysis above generalises straightforwardly to the pure N = 2 theory with SU(N)

gauge group. The prepotential for the pure SU(N) theory is

F(â) = −1

2

∑

k<j

â2kj ln

(
âkj
Λ

)2

+ Finst(â) , (2.19)

âkj = âk − âj , Λ ∈ R .

Using the Weyl group of SU(N), we can pick a specific ordering of the Coulomb branch

moduli:

a1 ≥ a2 ≥ . . . aN−1 ≥ aN , âj = iaj . (2.20)

We then find

aD j, j+1 +
N

2
âj, j+1 = 0 , (2.21)

aD j, j+1 ≡ aD j − aD j+1 , aD j ≡ 1

2πi

∂F
∂âj

,

with j = 1, 2 . . . N − 1. When N is an even integer, these are precisely the conditions for

the appearance of N − 1 massless BPS dyons. In particular the dyons each carry magnetic

and electric charge
(
1, 12N

)
under a distinct abelian factor on the Coulomb branch, and

the Seiberg-Witten curve degenerates maximally at this point. Note that the solution with

aDj = 0 is also a saddle point of the integrand analytically continued off the imaginary axis.

For N -odd and Λ ∈ R, the conditions (2.21) pick out a specific point on the marginal

stability curve which does not correspond to a singular point, although the ratios of the

periods yield a rational number. This is because, in this case, there are no semiclassical

bound states of dyons with magnetic charge 2 (see e.g. [24]). On the other hand if we

introduce a microscopic (UV) theta-angle with θYM = π, we obtain

Λ → Λ eiπ/2N , Λ ∈ R , (2.22)

– 8 –
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and the saddle-point satisfies

aD j, j+1 +
N − 1

2
âj, j+1 = 0 , j = 1, 2, . . . N − 1 . (2.23)

Therefore when N is an odd integer, these are the conditions for maximal degeneration

i.e. for (N − 1) massless BPS dyons, each with charge
(
1, N−1

2

)
under one distinct abelian

factor on the Coulomb branch.

2.3 Saddle-points for N = 2∗ theory

We now turn to the N = 2∗ theory. The physical picture of the saddle-points of the large

volume partition function now has a new ingredient. Since the (complex) mass parameter

for the adjoint hypermultiplet is imaginary, the point on the Coulomb branch where purely

electric BPS states become light, occurs on the imaginary axis, i.e. whenever any of the

differences âjk is equal to ±iM . Going around this point produces a monodromy which

in turn implies that the physical interpretation of putative saddle-point configurations can

depend on their location relative to this singularity.

2.3.1 The SU(2) theory

The SU(2) theory happens to exhibit some of the key features that generalise automatically

and so we begin by focussing attention on this. Higher rank cases have a richer structure

of putative saddle-points.

The SU(2) N = 2∗ theory has 3 singularities on the Coulomb branch [13, 14]. As is well

known, when the theory is deformed by an N = 1 SUSY preserving mass term for the chiral

multiplet residing in the N = 2 vector multipet, these three points descend to the three

massive vacua of N = 1∗ theory with SU(2) gauge group. The vacua realise three distinct

phases, namely, Higgs (H), confinement (C) and oblique confinement (C ′), corresponding

to the condensation of the (0, 1) adjoint hypermultiplet, (1, 0) BPS monopole and (1, 1)

BPS dyon respectively. The SL(2,Z) duality of N = 4 theory permutes the three phases.

We will denote the locations of these three points on the Coulomb branch in terms of

the gauge-invariant coordinate

u2 = ⟨TrΦ2⟩ , (2.24)

as uH , uC and uC′ . The prepotential for the theory has the form

F(â) = −1

2

[
â2 ln â2 − 1

2
(â− iM)2 ln (â− iM)2 − 1

2
(â+ iM)2 ln (â+ iM)2

]

+
iπτ

2
â2 + Finst(â) , â ≡ â1 − â2 , θYM = 0 . (2.25)

Along the imaginary slice â = ia, the prepotential has both imaginary and real parts.

While the real part of F(ia) is obtained by taking a principal value, the imaginary part

is a discontinuous function of a. With θYM = 0, the instanton action q = exp(2πiτ) is

real and since Finst(ia) respects the Weyl reflection symmetry, it is a function of â2 and

is also real (see e.g. [25]). The imaginary part of the prepotential depends on the choice
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Figure 1. Complex â-plane with the contour integral along the imaginary axis â = ia. Also
depicted are the branch cuts singularities of the prepotential F(ia).

of orientation of the branch cuts of the one-loop contributions. The orientation of branch

cuts must respect the requirement that for large â, the theory reduces to N = 4 SYM:

F(â) → iπτ

2
â2 , |â| ≫ |M | . (2.26)

Since the Weyl symmetry identifies the points â and −â, without loss of generality, we take

â = ia with a > 0 and M > 0. With the branch cuts of F(ia) chosen as in figure 1, we

then have (for θYM = 0):

• a > M:

Re [F(ia)] = F>(a) (2.27)

=
1

2

[
a2 ln a2 − 1

2
(a+M)2 ln(a+M)2 − 1

2
(a−M)2 ln(a−M)2

]

+
2π2

g2YM

a2 + Finst(ia) .

Im [F(ia)] = 0 .

• 0 < a < M:

Re [F(ia)] = F<(a) (2.28)

=
1

2

[
a2 ln a2 − 1

2
(M + a)2 ln(M + a)2 − 1

2
(M − a)2 ln(M − a)2

]

+
2π2

g2YM

a2 + Finst(ia) . (2.29)

Im [F(ia)] =
π

2

(
−a2 + 2aM − 2M2

)
.

The Pestun partition sum is determined by the minimum of Re [F(ia)], the real part of the

prepotential. However, the physical interpretation of the extremal point becomes apparent
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upon examination of the full holomorphic function, evaluated on the imaginary axis. In

particular, the interpretation of critical points will depend on their location relative to the

singular point H where a = M and where the adjoint hypermultiplet becomes massless.3

Critical point for a < M : this region is connected to the pure N = 2 theory in the

decoupling limit M → ∞ and g2YM → 0, whilst keeping fixed Λ ∼ M exp(−2π2/g2YM). We

define aD as

aD =
1

iπ

∂F(â)

∂â
+ iM . (2.30)

The shift by iM , which is confusing at first sight, can be attributed to the monodromy

around a = iM , which leads to a shift ambiguity (linear in M) in the period integral of the

Seiberg-Witten differential [13, 26, 27]. With this definition, it is easy to check that the

(1,0) monopole singularity in the decoupling limit, appears at â ∼ Λ ∈ R and corresponds

to the condition aD = 0, as expected in the pure N = 2 theory.

The saddle-point condition becomes

aD(â) − â = 0 , â = ia , 0 < a < M . (2.31)

The resulting equation, in the decoupling limit, yields â ∼ iΛ, which is the singular point in

N = 2 SYM where the (1, 1) BPS dyon becomes massless. This physical picture also holds

away from the decoupling limit, as we will show in explicit detail in section 3. The exact

location of the dyon singularity C ′ can be determined directly from the Seiberg-Witten

curve [13]:

y2 =
3∏

i=1

(
x − ei(τ) ũ +

M2

4
ei(τ)

2

)
, (2.32)

where

ũ = ⟨TrΦ2⟩ +
M2

12

(
1 +

∞∑

n=1

αn q
n

)
. (2.33)

The {αn} represent scheme-dependent, but vacuum-independent additive ambiguities [28].

The locations of the three singular points are then given by,

ũH = −M2

4
e1(τ) =

M2

6
[E2(τ) − 2E2(2τ)] , (2.34)

ũC = −M2

4
e2(τ) =

M2

6

[
E2(τ) − 1

2
E2

(τ
2

)]
,

ũC′ = −M2

4
e3(τ) =

M2

6

[
E2(τ) − 1

2
E2

(
τ

2
+

1

2

)]
.

Here τ = 4πi/g2YM and E2 is the second Eisenstein series which is an “almost” modular

form of weight two (see appendix A for details). Whilst the actual values of the coordinates

3It is also possible for critical points to lie in the complex plane and their contributions can be picked

up by deforming the original integration contour smoothly.
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Figure 2. Positions of the coordinates ũ of the singularities C (red), C ′ (blue) and H (black) as
a function of the microscopic coupling gYM. Crucially the saddle-point C ′ (the dyon singularity)
never crosses the hypermultiplet point H, where â = iM .

are ambiguous, their relative locations are completely unambiguous (and real for θYM = 0).

At weak coupling gYM ≪ 1, using the q-expansions (A.15)

uH − uC ≃ −M2

4
− 2M2 e−4π2/g2YM , (2.35)

uH − uC′ ≃ −M2

4
+ 2M2 e−4π2/g2YM ,

as expected from the results for the pure N = 2 theory. At strong coupling gYM ≫ 1, we

can apply the (anomalous) modular transformation rule for E2 and obtain

uH − uC ≃ −M2

4

(
g2YM

4π

)2

, gYM ≫ 1 , (2.36)

uH − uC′ ≃ − 4M2

(
g2YM

4π

)2

e−g2YM/4 .

Therefore, both at weak and strong gauge coupling, the monopole and dyon singularities C

and C ′ remain to one side of the point H where the adjoint hypermultiplet is massless. The

positions of the singularities are shown in figure 2. The main point of this exercise was to

show that the saddle-point C ′ can never collide with H. The fact that maximally singular

points on the N = 2∗ Coulomb branch (or massive vacua of N = 1∗ theory) cannot merge,

was pointed out in [14]. This point has also been made by Russo [18] recently within the

present context.

Therefore we conclude that there is one saddle-point C ′ on the axis Re(â) = 0 with

a < M , which exists for all values of gYM, and which descends to the oblique confining

vacuum of N = 1∗ theory. We will calculate the free energy of this saddle point using

Nekrasov’s functional in section 3.

(No) critical point for a > M : the large-a regime is smoothly connected to the semi-

classical region where quantum corrections and instantons can be made small for sufficiently

large a, and the theory approaches N = 4 SYM. We have already seen that the singular

points C and C ′ which lie on the real axis in the u-plane, never cross the hypermultiplet

point (H) where a = M . Therefore a critical point, if any, in the large-a regime cannot be
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a singular point. It is instructive to examine the prepotential to understand the conditions

under which a critical point may exist for large a. With a > M , the one-loop prepotential is

manifestly real. Using the definition of the dual period (2.30) which is compatible with the

charges of light states at the singularities, the critical point condition for a > M becomes

aD(â) = iM , â = ia . (2.37)

Since this cannot be a singular point, it can only correspond to a point of marginal stability

where Im(aD/â) = 0.

Splitting F(ia) into the one-loop (including the classical piece) and instanton contri-

butions,

F(ia) = F1−loop(ia) + Finst(ia) , (2.38)

it is easily seen that F1−loop has a critical point at strong coupling. This occurs when the

first derivative of F1−loop becomes negative i.e. g2YM > 2π2/ ln 2 ≃ 28.48:

F1−loop(ia) = (2.39)

1

2

(
a2 ln a2 − 1

2
(a+M)2 ln(a+M)2 − 1

2
(a−M)2 ln(a−M)2

)
+

2π2

g2YM

a2 ,

and

F1−loop(ia) ≃ M2

[
2π2

g2YM

− ln (4M)

]
+ 2M(a−M)

(
2π2

g2YM

− ln 2

)
+ . . . (2.40)

If one-loop effects were dominant then this would lead to a minimum for a > M , since

F(ia) must eventually turn around and increase as a2 for large enough a. However, the

instanton contributions are equally important for this value of the coupling. In particular,

the form of the instanton prepotential is known [29] in the regime a > M :

Finst(ia) =
∞∑

n=1

(−1)n+1 f2n(τ)

(2n)

M2n+2

a2n
. (2.41)

The functions f2n(τ) are given in terms of anomalous modular forms of weight 2n. For

example, f2(τ) = (E2(τ)−1)/6 and f4(τ) = E2
2/18 + E4/90 − 1/15. In the weak coupling

limit, the instanton prepotential vanishes, f2n → 0. At strong coupling, after applying an

S-duality,

f2n(τ) ∼ (gYM)4n , gYM ≫ 1 . (2.42)

Therefore, at strong coupling, instanton terms (after S-duality) remain small only if

a ≫ g2YMM . (2.43)

Hence, we cannot use (2.41) to conclude whether or not the critical point of the one-loop

prepotential is washed out by the instanton part of the effective action. Interestingly, at

arbitrarily strong coupling, F1−loop continues to have a critical point:

∂F1−loop(ia)

∂a

∣∣∣∣
a≫M ; gYM≫1

= 0 =⇒ a ≃ gYM

2π
M . (2.44)
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This is, however, deep within the region where Finst cannot be neglected (at

strong coupling).

To determine whether the critical point of the one-loop prepotential survives the inclu-

sion of instanton corrections, we need to know the instanton expansion about the singular

point a = M . Such an expansion was considered by Minahan et al. in [29] and the leading

term in F ′′ was identified exactly. We first define a formal expansion of Finst around the

singular point, in powers of (a2 −M2):

Finst(ia) = M2 c0(q) + (a2 −M2) c1(q) +
1

M2
(a2 −M2)2 c2(q) + . . . (2.45)

q = e2πiτ .

The constant term c0(q) is irrelevant for our purpose. Using the results in [29] for the

explicit form of the large-a expansion (2.41), the instanton expansion to order q8, and the

exact formula for F ′′(iM), we deduce that

c1(q) = −2 ln
∏

n=1

(1 + qn) − 4 ln
∏

n=1

(1 + (−q)n) (2.46)

c2(q) = − ln
∏

n=1

(
1 + qn

1 + (−q)n

)
.

Therefore, near the hypermultiplet point, combining classical, one-loop and all instanton

corrections we obtain,

F(ia)− F(iM) ≈ M(a−M)

[
−2 ln 2 − 4 ln

η(2τ)

η(τ)
− 8 ln

η(2τ)

|η(τ + 1
2)|

]
+ . . . (2.47)

where η(τ) = eiπτ/12
∏
(1− qn) is the Dedekind eta-function. Although not of immediate

relevance, we note in passing that F(iM) can be written in closed form as

F(iM) = 2M2 [ln η(τ) − 2 ln η(2τ) − ln(2M)] . (2.48)

It can now be seen explicitly that whilst F ′
1−loop(iM) = (−2 ln 2−iπτ)M becomes negative

for gYM ! 5.34, the inclusion of all instanton corrections forces F ′(iM) to be strictly greater

than zero (see figure 3). Although this does not exclude the possibility of a critical point

for a significantly larger than M , it appears quite unlikely.

We have argued that the partition function of the N = 2∗ theory with SU(2) gauge

group, on a large four-sphere, is computed by a single saddle point (the dyon singularity

C ′) and therefore the system cannot exhibit any non-analyticities as a function of the gauge

coupling. This was also the expectation in [18]. The value of the partition function at this

saddle point will be evaluated using Nekrasov’s functional.

2.3.2 SU(N) N = 2∗ theory with N > 2

For SU(N) gauge group, with N > 2, and N an even integer, we find new putative saddle

point configurations, in addition to generalisations of the oblique confining and confining
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Figure 3. The slope of the one-loop prepotential (dashed, orange) and the full prepotential (solid,
blue) at a = M , as a function of the gauge coupling gYM. The two curves are practically indistin-
guishable (left) until the instanton contributions kick in (right) and prevent F ′(iM) from becoming
negative for any value of gYM.

points that appeared for SU(2). The prepotential for N = 2∗ theory is

F(â) = −1

2

∑

k<j

[
â2kj ln â

2
kj − 1

2
(âkj + iM)2 ln (âkj + iM)2 (2.49)

− 1

2
(âkj − iM)2 ln (âkj − iM)2

]
− 4π2

g2YM

∑

j

â2j + Finst(â) ,

âkj = âk − âj , θYM = 0 .

Focussing attention on the imaginary â-axis and choosing a natural ordering for the aj
as explained for the pure N = 2 theory, we find that putative critical points can be

summarized as follows:

• For small enough, real aij such that aij < M for all i, j, we find that the saddle-point

conditions imply,

aD j, j+1 =
N

2
âj, j+1 , (2.50)

with j = 1, 2 . . . N − 1. As in the N = 2 case, we have absorbed a linear shift iM

into the definition of the dual periods aDj . For N even, we recognise these as the

conditions for the appearance of N − 1 massless BPS dyons, each carrying charges

(n(j)
m , n(j)

e ) =
(
1,−N

2

)
, (j = 1, 2 . . . N − 1), in a distinct unbroken U(1) subgroup on

the Coulomb branch. This is smoothly related to the oblique confining point we saw

above for the pure N = 2 theory.

• If all aij are large such that aij > M , then saddle-point conditions pick out the point

satisfying

aD j, j+1 = iM , j = 1, 2 . . . N − 1 . (2.51)

We have already seen in the SU(2) theory that such a saddle point is unlikely to exist.

• Finally, there is potentially a large family of critical points where a subset of aij are

smaller than, and the rest are larger than M . The simplest of these situations arises
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when a1N > M and all other aij < M . A putative saddle point with this property

would need to satisfy

aD 12 =
N

2
â12 − 1

2
(â 1N − iM) , (2.52)

aD j, j+1 =
N

2
âj, j+1 , j = 2, 3, . . . N − 2 .

aDN−1, N =
N

2
âN−1, N − 1

2
(â 1N − iM) .

These are no longer conditions for maximal degeneration. A subset of the dual periods

are degenerate and lead to massless dyons, but aD 12 and aDN,N−1 are required

to be (non-integer) linear combinations of cycles with non-zero intersection. This

picks out a particular point on the wall/surface of marginal stability in the N = 2∗

Coulomb branch.

We have only considered the simplest such ‘mixed’ saddle-point. It should be fairly

clear that there is a large family of such possible saddle-points with increasing N .

Whether there exist points on the Coulomb branch which actually satisfy these con-

ditions is a dynamical question that will require analysis on a case-by-case basis, and

will be a function of N and the gauge coupling gYM, as already illustrated for the

SU(2) theory. One may generically expect at least some of these saddle points to co-

exist, leading to phase transitions as a function of gYM. This is consistent with the

results of [6, 7] where the large-N limit was analysed and the theory argued to exhibit

an infinite sequence of phase transitions as a function of increasing ’t Hooft coupling.

Similarly to the pure N = 2 case, the critical points are related to singular points

only for special values of θYM. When N is odd, and θYM = π, the large-a and small-a

critical-point conditions become

aDj, j+1 =
N + 1

2
âj, j+1 , aj,j+1 < M (2.53)

aDj, j+1 = iM + âj, j+1 , aj,j+1 > M . (2.54)

with j = 1, 2, . . . N − 1 and âj = i aj . In addition to these, there is potentially a large

family of ‘mixed’ critical points with a certain number of periods aj, j+1 small and the

rest being large. The condition (2.53) implies maximal degeneration of the Donagi-Witten

curve and the appearance of massless BPS (1, 12(N + 1)) dyons in each abelian factor.

3 The Nekrasov partition function and critical points

It turns out that the contributions of the maximally degenerate saddle-points to the parti-

tion function can be computed exactly for any N and any value of the microscopic gauge

coupling g2YM. For this purpose, the most significant aspect of the Nekrasov partition
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function in the limit ϵ1,2 = R−1 → 0 is that it is dominated by a saddle-point of the

functional [21, 31]

Eτ [ρ,λ, â, iM ] = −N2
∫

C
dx dy ρ(x)

[
γ0(x− y)− 1

2
γ0(x−y−iM)− 1

2
γ0(x− y + iM)

]
ρ(y)

+ iπτN

∫

C
dxx2 ρ(x) +

N∑

j=1

λj

(
âj − N

∫

Cj
dxx ρ(x)

)
, (3.1)

γ0(x) =
1

4
x2 lnx2 , (3.2)

C ≡
N⋃

j=1

Cj , Cj = [α−
j ,α

+
j ] . (3.3)

The function ρ(x) is a density with support on the disjoint union of N intervals {Cj},
satisfying ∫

Cj
dx ρ(x) =

1

N
∀j ,

∫

C
dx ρ(x) = 1 , (3.4)

whilst the {λj} are N Lagrange multipliers enforcing the constraints

âj = N

∫

Cj
dxx ρ(x) , j = 1, 2, . . . N . (3.5)

For a fixed set {âj}, specifying a Coulomb branch configuration, the instanton partition

sum is simply

ZNekrasov ∼ exp
(
−R2 Eτ [ρ]

)
. (3.6)

In the language of [21], the instanton partition function for ϵ1,2 ̸= 0, can be written as a

sum over coloured partitions, to each of which is associated a piecewise-linear “path” f(x).

In the limit ϵ1,2 → 0, the path f(x) becomes smooth, and the sum over paths localizes

onto saddle-points of the above functional with the density function related to f(x) as

ρ(x) =
1

2N
f ′′(x) . (3.7)

Specifically, the function f(x) determines the limit shape of a Young tableaux which

characterises the representation dominating the instanton partition sum in the limit ϵ1,2 →
0, when the number of boxes in the tableaux diverges.

We note that the kernel appearing in the action functional (3.1) is precisely the one-

loop prepotential for N = 2∗ theory. At fixed N , the localisation to saddle-points of the

functional Eτ [ρ] is achieved by the large volume or small ϵ1,2 limit.

The partition function of the theory on S4 involves integration over the {âj}, in addi-

tion to the integrations over the Lagrange multipliers. Since the exponent of the instanton

partition function scales as R2, the measure factor in (2.4) is subleading in the large volume

limit, and the partition function can be evaluated on the saddle-point(s) of the integrand of

ZS4 ∼
∫

[da][dλ][dλ̃][dρ][dρ̃] exp
[
−R2

{
Eτ [ρ, ia, λ, iM ] + Eτ̄ [ρ̃, −ia, λ̃,−iM ]

}]
. (3.8)
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Figure 4. Left: the N intervals {Ci} in the complex x-plane where ρ(x) has support. Right: the
genus N Riemann surface associated to the function G(x), with gluing conditions for each of the N
branch cuts {Ci} with their respective images {C′

i} (shifted by −iM). Points just above (below) Ci
are identified with corresponding points just below (above) C′

i.

Pestun’s matrix integral (2.4) involves two copies of the Nekrasov instanton partition sum.

Thus we have two energy functionals to extremize in the large volume limit with a priori

independent density functions ρ, ρ̃ and Lagrange multipliers λ, λ̃. An important feature of

the partition sum is that the moduli âj , must be taken to be purely imaginary,

âj = iaj . (3.9)

The extremization conditions will then relate the moduli and, therefore, the density func-

tions of the two copies. Varying independently with respect to each set of variables we

obtain the following set of saddle-point equations

λj = λ̃j , j = 1, 2, . . . N , (3.10)

iaj = N

∫

Cj
dxx ρ(x) = −N

∫

C̃j
dx̃ x̃ ρ̃(x̃) , (3.11)

λj

N
= −

∫

C
dy

[
K(x− y) − 1

2
K (x− y − iM) − 1

2
K (x− y + iM)

]
ρ(y) +

2iπτ

N
x ,

x ∈ Cj , (3.12)

λ̃j

N
= −

∫

C̃
dỹ

[
K(x̃− ỹ) − 1

2
K (x̃− ỹ − iM) − 1

2
K (x̃− ỹ + iM)

]
ρ̃(ỹ)− 2iπτ̄

N
x̃ ,

x̃ ∈ C̃j , (3.13)

where

K(x) = x lnx2 . (3.14)

Eq. (3.11) implies that the mean positions of the individual distributions Cj are along the

imaginary axis in the â-plane.

3.1 Localization to points with Re(aD) = 0

Configurations that extremize the functional Eτ define a genus N Riemann surface in a

way that we review in more detail below. This Riemann surface is the Seiberg-Witten (or

Donagi-Witten) curve with the Coulomb branch moduli {aj} specified by A-cycle integrals
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of the appropriate Seiberg-Witten differential, as illustrated in figure 4. The saddle-point

equations above “lock in” the moduli of the extremizing configurations for the two copies

of the instanton partition function that appear in eqs.(2.4) and (3.8). The Lagrange mul-

tipliers λj also have a natural interpretation in terms of the B-cycle integrals (cf. figure 4)

of the Seiberg-Witten differential. They are therefore identified with aDj , the Coulomb

branch moduli in the magnetic dual description of the low energy effective theory,

iaj ± iM

2
=

∮

A±
j

dS , aD j =
1

2πi
(λj − λj+1) =

∮

Bj

dS , (3.15)

where dS is the Seiberg-Witten differential:

dS =
1

2πi
xG(x) dx , ω(x) ≡

∫

C
dy

ρ(y)

x− y
,

G(x) ≡ ω

(
x − iM

2

)
− ω

(
x +

iM

2

)
. (3.16)

Here ω(x) is the resolvent function associated to the density ρ and is an analytic function of

x with branch-cut singularities along the N intervals {Cj}. By definition, the discontinuity

across each branch cut is given by the density function at that point:

ω(x+ iϵ) − ω(x− iϵ) = −2πi ρ(x) , x ∈
⋃

j

Cj . (3.17)

The function G(x), defined in eq. (3.16), plays a central role in the solution of the saddle-

point conditions and in determining the Riemann surface corresponding to the Donagi-

Witten curve. In particular, G(x) has 2N branch cuts along the intervals {Cj} and {C′
j},

as indicated in figure 4. Furthermore, the saddle-point conditions (3.12) and (3.13), when

differentiated twice with respect to x (and x̃), can be recast as

G

(
x − iM

2
± iϵ

)
= G

(
x +

iM

2
∓ iϵ

)
, x ∈ C . (3.18)

These are gluing conditions which identify points immediately above (below) the cuts {Cj}
with those immediately below (above) the image cuts {C′

j}. This defines a Riemann surface

with N handles, whose periods are determined by {aj} and {aD j}. This is the Donagi-

Witten curve associated to a specific point on the Coulomb branch of N = 2∗ SYM on R4.

The two remaining saddle-point equations (3.10) and (3.11) can now be viewed as

N − 1 independent conditions on the dual periods:

aD j (ia, iM, iτ ) = aD j (−ia, −iM, −iτ̄) = − aD j(ia, iM, iτ ) , (3.19)

with j = 1, 2, . . . N . These are precisely the saddle-point conditions we have encountered

before, namely,

Re(aD j) = 0 , âj = iaj . (3.20)

These conditions will generically be solved by distributions ρ(x) which may have support in

the complex x-plane and not necessarily on the real axis alone. As is usual in the steepest

descent method, all such saddle-points will have to be summed over and can compete with

each other.
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Figure 5. Left: the N cuts {Cj} and their images centred at points on the x-plane corresponding to
purely imaginary periods âj = iaj . Centre: a different orientation of the branch cuts, corresponding
to different set of moduli. Right: maximal degeneration of the Donagi-Witten curve to genus one,
as the branch cuts of G(x) line up. The two cuts are glued together and all dependence of physical
observables on N enters via the complex structure parameter τ̃ of the resulting torus.

3.2 Point of maximal degeneration

We look for a saddle-point in a regime where all the cuts Cj have extents that are suitably

small and the periods satisfy |ajk| < M for all j, k. Each of the cuts is centred at a point on

the imaginary axis in the complex x-plane as shown in figure 5 (leftmost). We would now

like to understand the maximally degenerate configuration (the dyon singularity) which,

as we have argued above, is a saddle-point of the partition function (for θYM = 0 and

θYM = π). Maximal degeneration of the Donagi-Witten curve occurs when the cuts Cj
line up end-to-end, such that end-points of adjacent branch cuts touch each other, as

indicated in figure 5. In this limit, G(x) has precisely two branch cuts C and C′ with gluing

conditions,4 yielding a genus one curve. For simplicity, we will assume that for imaginary

values of the periods âj = iaj , the cuts Cj need to be aligned along the imaginary axis in

order for maximal degeneration to occur. This assumption will turn out to be partially

justified. We will eventually show that the single branch cut C, after maximal degeneration

of the curve, does lie on the real axis, but only for a finite range of values of the coupling

constant. The branch-points of C can move off the imaginary x axis as the coupling constant

is increased, while the periods themselves continue to remain purely imaginary.

We have already shown that the saddle-point condition Re(aD) = Re(a) = 0 can be

satisfied at a maximally singular point on the Coulomb branch when θYM = 0 (N even)

and θYM = π (N odd). Therefore, we will proceed with the implicit understanding that

the vacuum angle takes one of these two values and interpret our final result in light of

this assumption.

In order to calculate the contribution from the maximally degenerate critical point, we

first perform the rotations

(x, y) → (iu, iv) , (3.21)

4In the rotated configuration, points to the right(left) of C are identified with those to the left(right) of C′.
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leaving fixed the normalisation condition

∫

Cj
dx ρ(x) →

∫

Cj
du ρ(u) =

1

N
, (3.22)

so that branch cut C lies on the real axis in the u-plane. This analytic continuation

leaves the form of Nekrasov’s functional and the ensuing saddle-point equations unchanged.

Second, since all cuts Cj coalesce at such a point, we need only assume that the configuration

is characterised by a single branch cut C (and its image under the shift by M):

C = [−α, α] , α ∈ R . (3.23)

The requirement that the dual periods have vanishing real parts translates into

the equation:5

∫ α

−α
dv ρ(v)

[
K(u− v)− 1

2
K(u− v −M)− 1

2
K(u− v +M)

]
+

8π2

g2YMN
u = 0 ,

u ∈ [−α, α] . (3.24)

Since there is only a single branch cut at a maximally singular point, we do not have

immediate access to the values of the individual periods (aj , aDj). To evaluate the (N − 1)

independent pairs of Seiberg-Witten periods, we would need to move slightly away from

the singular point. This is a difficult task for general N and not essential for the immediate

problem at hand.

The remarkable feature of the equation (3.24) is that the only dependence on N enters

via the term linear in u through the combination,

λ = g2YMN , (3.25)

the ’t Hooft coupling. Since we have been consistently working with N fixed, we conclude

that the description of the physics at the maximally singular point is large-N exact. This

means that finite N results do not depend separately on N and g2YM, and instead are

determined by λ = g2YMN . Therefore, relevant physical observables at such a point are

computed exactly by the planar theory. This property has been understood in earlier

works [11] within the context of Dijkgraaf-Vafa matrix models [22] where the planar limit

of matrix integrals compute holomorphic sectors of N = 1 SUSY field theories. This

applies, in particular, to all the massive vacua of N = 1∗ theory which descend from

maximally singular points on the N = 2∗ Coulomb branch.

3.3 Solution of the saddle-point equation

We now turn to the solution of the saddle-point equation (3.24). In order to find the

solutions we will closely follow the approach adopted in [11] for similar matrix integrals

which compute holomorphic observables of N = 1∗ theory on R4. The method is based on

5We remark that even if the vacuum angle were non-zero (and equal to π for odd N), it would not

explicitly appear in the expression for the real part of the dual period.
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the key observation of [23] that equations of the type in (3.24) can be viewed as specifying

a Riemann surface with certain gluing conditions. While this approach was also followed

by Russo and Zarembo [7], we will adopt a slightly different route, placing emphasis on

the map from the auxiliary Riemann surface (the degenerate Donagi-Witten curve) to the

“eigenvalue plane” or the complex u-plane.

On the u-plane (u = −ix) we define the resolvent function

ω̃(u) =

∫ α

−α

ρ(v)

u− v
dv , u ∈ [−α, α] , (3.26)

It is an analytic function on the complex u-plane with a single branch cut singularity on

the real axis, the discontinuity across the cut being determined by the density function:

ω̃(u+ iϵ) − ω̃(u− iϵ) = −2πiρ(u) , u ∈ [−α, α] . (3.27)

The resolvent function ω̃(u) on the u-plane is related in a simple way to ω(x) defined on

the complex x-plane (3.16), as ω̃(u) = iω(iu) Given the form of eq. (3.24), as before, we

introduce the generalised resolvent function:

G̃(u) = ω̃

(
u+

M

2

)
− ω̃

(
u− M

2

)
, u ∈ C , (3.28)

which is now an analytic function of u with two branch cuts between [−α + M
2 , α + M

2 ]

and [−α − M
2 , α − M

2 ], with the discontinuities across the cut determined by the density

function. For this picture to make sense we must require α < M/2, otherwise the two

branch cuts of G̃(u) would overlap (see figure 6). We will explain below that when the

extent of the single cut distribution saturates this bound the branch points of G̃(u) move

off the real axis into the complex u-plane.

Expressed in terms of the generalised resolvent function G̃(u), the saddle-point equa-

tion becomes

G̃

(
u+

M

2
± iϵ

)
= G̃

(
u− M

2
∓ iϵ

)
, u ∈ [−α, α] , (3.29)

which should be viewed as a gluing condition for the two branch cuts on the u-plane. The

gluing together of the two branch cuts implies that the auxiliary Riemann surface associated

to G̃(u) is a torus. Our strategy will be to find the map between the flat coordinates on

this auxiliary torus and the u-plane.

3.3.1 Map from torus to eigenvalue plane

The auxiliary torus can be viewed as the complex w-plane modulo lattice translations,

namely Cw/Γ with

Γ ≃ 2ω1Z⊕ 2ω2Z , τ̃ =
ω2

ω1
, (3.30)

where we have defined the complex structure parameter τ̃ for the torus in terms of its half-

periods ω1,2. The gluing conditions across the two branch cuts imply (see figure 6) that

u(w + 2ω1) = u(w) , u(w + 2ω2) = u(w) + M . (3.31)
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Figure 6. The single-cut distribution for the resolvent ω̃(u) leads to an auxiliary torus associated
to the function G̃(u) satisfying the saddle-point equation. The locations of the branch cuts centred
around u = ±M/2 are images of points on the contours CA and C ′

A wrapping the A-cycle of the
torus. The shaded region in between CA and C ′

A gets mapped to the u-plane.

Therefore u(w) is a quasi-periodic function on the auxiliary torus with a linear shift under

translations by one of the periods. This uniquely fixes u(w) in terms of the Weierstrass

ζ-function (see appendix A for details):

u(w) = iM
ω1

π

(
ζ(w) − ζ(ω1)

ω1
w

)
. (3.32)

The Weierstrass ζ-function has the property that

ζ(w + 2ω1,2) = ζ(w) + 2ζ(ω1,2) , ω2ζ(ω1) − ω1ζ(ω2) =
iπ

2
. (3.33)

It has a simple pole at w = 0 and its first derivative yields the Wierstrass ℘-function:

ζ ′(w) = −℘(w) , ζ(w)
∣∣∣
w→0

≃ 1

w
+ . . . . (3.34)

It will also be useful to re-express u(w) as the logarithmic derivative of the Jacobi theta

function,

u(w) =
iM

2

ϑ′
1

(
πw
2ω1

)

ϑ1

(
πw
2ω1

) . (3.35)

As is customary, without loss of generality we can take one of the periods of the torus to

be real:

2ω1 = π , 2ω2 = πτ̃ . (3.36)

The mid-points of the two branch cuts on the u-plane at u = ±M/2 are images of the

points w = ±ω2 on the torus:

u(±ω2) = ±M

2
. (3.37)

Each of the two branch cuts in the u-plane maps to a separate curve wrapping the A-cycle

on the auxiliary torus, defined as

Im [u(w)]
∣∣∣
w∈CA

= 0 , Im [u(w)]
∣∣∣
w∈C′

A

= 0 . (3.38)
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The two curves pass through the points w = ∓ω2 as sketched qualitatively in figure 6. This

condition specifies that the branch cuts on the u-plane lie on the real axis. Different choices

of orientation of the branch cuts would correspond to different contours on the w-plane

encircling the A-cycle of the torus.

3.3.2 The generalised resolvent G̃(u)

Our next task will be to find G̃[u(w)] as an elliptic function on the w-plane i.e. the flat

torus. In particular, given the map between the locations of the branch cuts of G̃(u) in the

u-plane and the corresponding curves CA, C ′
A in the auxiliary w-plane, we have

G̃(u) du
∣∣
CA

= G̃ [u(w)] u′(w) dw
∣∣
w∈CA

. (3.39)

The function G̃ ◦ u, viewed as a function of w, must be doubly periodic i.e. elliptic. This

follows from the fact that G̃(u) is single-valued when taken around the cycles CA and CB.

From the definitions of G̃(u) and u(w) we have,

G̃(u) = G̃(−u) , u(w) = −u(−w) , (3.40)

which implies that G̃ ◦ u is an even elliptic function of w. Any even elliptic function can

be expressed as a rational function of ℘(w) (the Weierstrass ℘-function) [38]. From its

definition (3.28) in terms of the resolvent functions, we deduce the behaviour of G̃ for

large-u (equivalently, w → 0):

G̃(u)
∣∣
u→∞ = −M

(
1

u2
+

M2 + 12⟨u2⟩
4u4

+ . . .

)
, (3.41)

where we have defined

⟨u2⟩ =

∫ α

−α
du ρ(u)u2 . (3.42)

Together with the Laurent expansion of u(w) around w = 0 (using the identity ζ(ω1) =

E2/12ω1),

u(w)
∣∣
w→0

=
iM

2

(
1

w
− 1

3
E2(τ̃) + . . .

)
, (3.43)

we obtain the expansion of G̃ ◦ u about w = 0:

G̃[u(w)]
∣∣
w→0

=
4

M

[
w2 + w4

(
−1 +

2

3
E2(τ̃) − 12

M2
⟨u2⟩

)
+ . . .

]
, (3.44)

exhibiting a second order zero at w = 0. If we assume that G̃[u(w)] has no further zeroes

in the fundamental parallelogram, then it must have two (simple) poles on the torus [38].

Therefore, G̃[u(w)] can only take the form

G̃[u(w)] =
A

℘(w) + B
. (3.45)
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The coefficients A and B can be fixed by the small w asymptotics of G[u(w)]. Comparing

the coefficients of the w2 and w4 from (3.44) and (3.45) in an expansion around w = 0,

we find

A =
4

M
, (3.46)

B = 1 − 2

3
E2(τ̃) +

12

M2
⟨u2⟩ .

The second of these two equations is actually a complicated condition since the right

hand side contains ⟨u2⟩ which, in principle, itself depends nontrivially on B. However, we

can adopt a shortcut by taking the hint from the observation in [7] that for the saddle-

point equation following from eqs. (3.24) and (3.29) the density function ρ(u) necessarily

diverges at the end-points of the distribution. The discontinuity of G̃(u) is determined by

the density ρ(u) and hence G̃(u) must diverge at the end-points of the branch cuts. Since

the Weierstrass ℘-function takes every value in the complex plane exactly twice in the

period parallelogram, there are precisely two points in the period parallelogram satisfying

the equation ℘(w) = −B where G̃[u(w)] diverges. Labelling the two roots as w1,2,

℘(w1) = ℘(w2) = −B . (3.47)

In order for these two points to be identified with end-points of the eigenvalue distribution

along the real axis in the u-plane, the roots w1,2 must lie on CA and (w1,2 + 2ω2) ∈ C ′
A.

Recall that CA and C ′
A are the curves along which u(w) is real. The positions of the two

largest eigenvalues (in magnitude) are then determined by the condition,

u′(w) = − iM

2

(
℘(w) +

1

3
E2(τ̃)

)
= 0 , w ∈ CA , (3.48)

which correspond to the extremities of the branch cut on the u-plane. Since this equation

must have precisely two roots, we must identify them with the poles of G̃[u(w)]. We

conclude that,

℘(w1,2) = −E2(τ̃)

3
= −B , (3.49)

and

G̃[u(w)] =
4

M

1

℘(w) + 1
3E2(τ̃)

= − 2i

u′(w)
. (3.50)

Crucially, this formula implies that

G̃(u) du = −2i dw . (3.51)

Its implication is remarkable: Quantum expectation values of physical observables are com-

puted by A-cycle integrals on the auxiliary torus with a uniform density function. In par-

ticular, expectation values of single-trace gauge invariant operators, which are given by

various moments [21] of the density function ρ(u) in the u-plane, can be expressed in terms

of integrals over the A-cycle of the torus with uniform density in the w-plane:

⟨un⟩ =
1

2πi

∮

CA

dz G̃ (u)

(
u +

M

2

)n

= − 1

π

∫ −ω2

2ω1−ω2

dw

(
u(w) +

M

2

)n

(3.52)

=
inMn

π

∫ π
2

−π
2

dt

[
−1

2

ϑ′
3(t)

ϑ3(t)

]n
. (3.53)
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Since the integrands are analytic functions of w, the actual form of the contour is unim-

portant and the answer only depends on the end-points of the integration range.

Eq. (3.53) precisely matches previous calculations of condensates at special points on

the Coulomb branch of N = 2∗ theory that descend to (oblique) confining vacua of N = 1∗

theory [10, 11]. One final step remains in our derivation of the single cut saddle-point of

Nekrasov’s functional: we have not yet solved for the modular parameter τ̃ of the auxiliary

torus. We will address this point below. Prior to this, we describe a non-trivial consistency

check of the solution presented above. Recall that the large-u asymptotics of G̃ led us to the

condition (3.46) to be satisfied by the constant B which, in turn was determined in (3.49)

by requiring the eigenvalue density to diverge at the end-points of the distribution. These

two conditions, when combined, specify the second moment of the eigenvalue distribution:

⟨u2⟩ =
M2

12

(
B +

2

3
E2 − 1

)
=

M2

12
(E2(τ̃) − 1) . (3.54)

However, ⟨u2⟩ can also be computed independently using eq. (3.53) and consistency requires

that we obtain (3.54) via this procedure. Indeed, we find6

⟨u2⟩ = −M2

4π

∫ π/2

−π/2
dt

[
ϑ′
3(t)

ϑ3(t)

]2
=

M2

12
(E2(τ̃) − 1) . (3.56)

This confirms both the validity of the reasoning used to derive the map u(w) from the torus

to the u-plane, and the form of G̃[u(w)] that leads to a uniform density function along the

contours CA, C ′
A on the torus.

3.3.3 Fixing τ̃ in terms of λ = g2
YMN

We can anticipate a constraint on the real part of τ̃ by an intuitive argument. Given that

the branch cuts in our solution lie on the real axis (at least for some range of λ) in the

u-plane, the second moment ⟨u2⟩ must be real and positive. The second Eisenstein series

E2(τ̃) is real when q̃ = e2πiτ̃ is real (see the q-expansion (A.15)). Requiring that ⟨u2⟩ be

positive for small q̃ (equivalently Im(τ̃) ≫ 1), from eq. (3.54) we deduce that

q̃ < 0 =⇒ Re τ̃ =
1

2
. (3.57)

We will now demonstrate how this constraint and the relationship between τ̃ and λ emerge

naturally from the saddle-point equations. To this end we consider the B-cycle integral:

∫ ω2

−ω2

dw = 2ω2 = πτ̃ . (3.58)

6We have used the identity

ϑ′
3(x)

ϑ3(x)
= 4

∞∑

n=1

(−1)n q̃n/2

(1− q̃n)
sin(2nx) , q̃ = e2πiτ̃ , (3.55)

and compared the result of direct integration with the q̃-expansion of the Eisenstein series E2(τ̃).
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Using the relation G̃(u)du = −2i dw we rewrite the complex structure parameter τ̃ as a

B-cycle integral on the u-plane:

∫ u+iϵ

∞
G̃

(
v +

M

2

)
dv −

∫ u−iϵ

∞
G̃

(
v − M

2

)
dv = −2iπτ̃ , u ∈ [−α, α] . (3.59)

The integral on the left hand side can be evaluated using the definition of G̃ in terms of the

resolvent function, keeping track of the imaginary parts following from the iϵ prescriptions:

∫ u+iϵ

∞
G̃

(
v +

M

2

)
dv−

∫ u−iϵ

∞
G̃

(
v − M

2

)
dv (3.60)

= −iπ + −
∫ α

−α
dv ρ(v) ln

[(
M2 − (u− v)2

)

(u− v)2

]
.

Now, we note that the integral on the right hand side is constrained by the saddle-point

equation (3.24). Differentiating eq. (3.24) once with respect to u, we obtain

−
∫ µ

−µ
dv ρ(v) ln

[(
M2 − (u− v)2

)

(u− v)2

]
=

8π2

λ
, u ∈ [−α, α] . (3.61)

Putting together eqs.(3.59), (3.60) and (3.61), we finally obtain

τ̃ =
4π i

λ
+

1

2
. (3.62)

Along with the form of the moments (3.53) that compute the condensates at the maximally

singular point on the Coulomb branch, this is the second crucial ingredient which forms

the basis for the physical interpretation below.

3.3.4 Physical interpretation of saddle-point

We now explain in some detail the physical interpretation of the saddle-point obtained

above. The N = 2∗ theory with SU(N) gauge group on R4 has a family of maximally

singular points at which the genus N Donagi-Witten curve degenerates to a genus one

curve. The Donagi-Witten curve is a branched N -fold cover of the basic torus with complex

structure parameter τ , the complexified microscopic coupling of N = 2∗ theory. At a point

of maximal degeneration the curve becomes a torus and is an unbranched N -fold cover of

the basic torus with modular parameter τ . An unbranched N -fold cover of the basic torus

is itself a torus with complex structure parameter τ̃ given by [9, 14, 16]

τ̃ =
p τ + k

r
, p, r, k ∈ Z , (3.63)

p r = N , k = 0, 1, . . . r − 1 . (3.64)

Therefore, the total number of such points is given by
∑

r|N r, the sum over divisors of N .

Since the degenerate Donagi-Witten curve at these points is a torus with complex structure

parameter τ̃ , condensates of single trace composite operators,

un = ⟨TrΦn⟩ , (3.65)
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which are the gauge-invariant coordinates on the Coulomb branch, will naturally be mod-

ular functions of τ̃ . Modularity follows from SL(2,Z) transformations on τ̃ . This duality

in the effective coupling τ̃ , to be contrasted with SL(2,Z) action on τ , was referred to as

S̃-duality in [16].

The saddle-point we have uncovered has complex structure parameter

τ̃ =
Im(τ)

N
+

1

2
. (3.66)

For even N and θYM = 0, this is the singular point with p = 1, r = N and k = N/2. On

the other hand, when N is odd and θYM = π, we can associate this to the singular point

with k = (N − 1)/2. We are now in a position to explain how these precisely match the

physical picture that was anticipated on general grounds in section 2.3.2.

Each maximally singular point on the Coulomb branch corresponds to a distinct su-

persymmetric vacuum of N = 1∗ theory which is obtained by adding a supersymmetric

mass for the adjoint chiral superfield in the N = 2∗ vector multiplet. In a vacuum labelled

by an integer r (which divides N as in eq. (3.63)), the SU(N) gauge group is partially

Higgsed to SU(r) [9, 32]. Classically, the massless fields in such a vacuum constitute an

N = 1 vector multiplet with SU(r) gauge symmetry. At low energies these degrees of

freedom confine and spawn r discrete vacua (consistent with the Witten index for SU(r),

N = 1 SYM) labelled by the integer k = 0, 1, . . . r − 1. The massive vacua of N = 1∗

theory are in one to-one correspondence with all possible massive phases of Yang-Mills

theory with a ZN centre symmetry [14]. The microscopic SL(2,Z) action on τ permutes

the N = 1∗ phases and therefore, the maximally degenerate points described above. On

the other hand, S̃-duality or the SL(2,Z) action on τ̃ is a duality property visible in a

given vacuum.

The vacua with r = N and k = 0, 1, . . . N − 1, are of particular interest to us. These

form an N -tuplet of confining and oblique confining vacua. The N = 1∗ vacuum labelled

by the integer k is associated to the condensation of a dyon with ZN -valued magnetic and

electric charges (1, k). The oblique confining vacua can be reached from the k = 0 confining

vacuum via shifts of θYM by multiples of 2π:

τ → τ + k , k = 0, 1, . . . N − 1 , (3.67)

under which

τ̃ =
τ

N
→ τ + k

N
. (3.68)

In the abelianised description of the N = 2∗ Coulomb branch, the basic confining N = 1∗

vacuum with k = 0 descends from the point where N−1 BPS-monopoles, carrying magnetic

charges under distinct U(1) factors, become massless. This requires the degeneration of

N − 1 independent B-cycles of the Donagi-Witten curve.

The vacuum with k = N/2 for N even (and θYM = 0) corresponds to the point

with N − 1 massless BPS dyons carrying charges (1, N/2) under the abelian factors on

the Coulomb branch. Analogous statements apply when N is odd and θYM = π. We

have therefore confirmed the arguments of section 2.3.2 which picked out these singular

points as the saddle-points of the large volume partition function, provided the periods

satisfy aij < M .
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3.3.5 Condensates

The values of the condensates un = ⟨TrΦn⟩, which are the gauge invariant coordinates of

the point on the Coulomb branch on R4, are given by the moments [21] of the eigenvalue

distribution (3.53):

⟨TrΦ2n−1⟩ = 0 , n ∈ Z , (3.69)

⟨TrΦ2⟩ = N
M2

12
(1 − E2(τ̃))

⟨TrΦ4⟩ = N
M4

720

[
10E2(τ̃)

2 − E4(τ̃)− 30E2(τ̃) + 21
]
.

Note that the variables x and u are related as x = iu, so that in general ⟨TrΦn⟩ = N⟨xn⟩ =
Nin⟨un⟩. The condensates were already evaluated in earlier works on N = 1∗ theory [11]

and more recently in [6], and these results are in perfect agreement with eq. (3.69).

An important feature of all the condensates is that they are quasi-modular functions

of τ̃ , and therefore possess a q̃-expansion or “fractional instanton expansion” since q̃ =

− exp(2πi/g2YMN) [15], which survives the ’t Hooft large-N limit.

It is well known that all condensates suffer from scheme dependent, but vacuum inde-

pendent mixing ambiguities [11]. The lowest condensate ⟨TrΦ2⟩ has an additive ambigu-

ity [28]. The dependence on τ̃ is, however, vacuum-dependent and physically meaningful,

and should be unambiguous. The τ̃ -dependence and the normalisation of the result above

matches the value of uC′ for the dyon singularity (2.34) in the SU(2) theory which was

deduced from the Seiberg-Witten curve.

3.3.6 Free energy of the maximally degenerate saddle

The contribution of the saddle-point to the partition function of the theory on S4 follows

directly from the calculation of the second moment ⟨x2⟩ and was also obtained in [6] within

the context of the large-N theory. Here we quote the same result which we now know to

be valid for any N . Utilizing the dependence of Nekrasov’s partition function on τ , the

microscopic gauge coupling, we may write

∂ lnZS4

∂τ2
= 2NπR2 ⟨x2⟩ , τ2 ≡ Im(τ) . (3.70)

This determines the τ -dependent terms in the free energy, and we find,

F = − lnZS4 = −2N2R2M2

(
ln |η (τ̃)| + π2

3λ
+

1

2
lnM

)
, (3.71)

τ̃ =
4πi

λ
+

1

2
, λ = g2YMN .

The additive coupling-independent piece is fixed by evaluating the action functional on

the trivial solution at gYM = 0. We emphasize that it is not possible to rule out further

vacuum-independent (and coupling-dependent) contributions that are a direct consequence

of the ambiguity in the condensate ⟨x2⟩. By definition, such ambiguities, which affect the

normalisation of the partition function, will not affect the relative free energies between
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competing saddle points. For the SU(2) theory we have already argued on general grounds

that there are no saddle-points other than the dyon singularity and the free energy of the

theory is given by eq. (3.71) with N = 2.

It is interesting to examine the behaviour of the free energy of this saddle-point in the

strong coupling limit, which could be viewed either as gYM ≫ 1 for fixed N , or as λ ≫ 1

at large-N . The large-N theory has several other saddle points as shown in [6, 33] and the

maximally degenerate vacuum does not remain a saddle-point for large values of λ. On

the other hand, for the SU(2) theory, we have argued that the dyon singularity is the only

saddle-point for all values of gYM. The asymptotic forms of the free energy at small and

large couplings are:

F = −2N2R2M2

(
e−8π2/λ +

1

2
lnM + . . .

)
, gYM ≪ 1 , (3.72)

= −2N2R2M2

(
− λ

192
+

1

2
ln

λM

8π
+ e−λ/8 + . . .

)
, gYM ≫ 1 .

Note that the strong coupling expansion can be taken seriously only for the SU(2) theory

where the dyon singularity remains a saddle-point for all values of gYM. This is generally

not expected to be the case when N > 2.

It is worth making an important remark at this stage.7 For the SU(2) theory the

dyon singularity is mapped to itself by the action of S-duality on τ . Under the action

of S-duality we have τ̃ ≡ (τ + 1)/2 → τ̃ ′ ≡ (−τ−1 + 1)/2. The new τ̃ ′ can in turn be

mapped back to τ̃ by a modular transformation on τ̃ ′ (this is the SL(2,Z)-invariance of the
degenerate Donagi-Witten curve), namely τ̃ ′ → (τ̃ ′−1)/(2τ̃ ′−1). If we now assume that the

expected S-duality of the N = 2∗ partition function on S4 should also extend to the limit

of large M (or large radius), then the existence of a unique, S-duality invariant saddle point

without any phase transitions, points at a consistent picture. The potential manifestation

of S-duality of the partition function in the large M limit deserves deeper study. In this

context we note that that the SU(2) partition function (3.71) and its expansions at weak

and strong coupling (3.72), do not precisely exhibit the invariance under S-duality. While

the infinite q-expansions at weak and strong coupling do map into each other precisely, the

term proportional to 1/λ in (3.71) and the transformation of the Dedekind-eta function

introduce an “anomaly”, so that the weak and strong coupling expansions are identical

only up to these anomalous pieces.

3.3.7 Increasing g2
YMN and putative non-analyticity

In our solution for the maximally degenerate saddle-point we began by taking the branch

point singularities in Nekrasov’s functional to lie on the real axis in te u-plane (or imaginary

axis in the x-plane). This choice was motivated by the purely imaginary values for the

periods âj = iaj , appearing in Pestun’s integral. However, the periods only constrain

the integrals of the Seiberg-Witten differential around the cuts or, equivalently, the mean

positions of the individual branch cuts Cj (prior to degeneration).

7We thank the anonymous referee for prompting us to comment on this.

– 30 –



J
H
E
P
1
2
(
2
0
1
5
)
0
1
6

Figure 7. Left: the shaded region (yellow), isomorphic to the fundamental parallelogram which
gets mapped to the u-plane for λ = g2YMN = 32. Right: the same region, but now at λ ≈ 35.45
when the two branch cuts on the real axis in the u-plane touch each other. Above this value of λ
the branch points move off the real axis into the complex plane.

In the particular case of the SU(2) theory, we know that the dyon singularity C ′ lies on

the imaginary axis in the â-plane and only approaches â = iM asymptotically as gYM → ∞.

Therefore this saddle-point cannot exhibit any non-analyticity as a function of gYM. On

the other hand, the positions of the branch cuts of G̃(u) on the u-plane in figure 6 suggest

that it is possible for the end-points of the branch cuts to touch each other at u = 0 for

some value of gYM, posing a possible source of non-analyticity when this happens. We now

explain the implication of this phenomenon.

The density function ρ(u) diverges at the end-points of the branch cuts. This is

reflected in the fact that the resolvent function G̃[u(w)] has two simple poles on the curve

CA in the w-plane, the locations of which (and their translates by 2ω2 on C ′
A) correspond

to the branch points in the u-plane. Therefore, if the two branch cuts in figure 6 were to

meet at u = 0, this would be signalled by the appearance of a double pole for G̃[u(w)] on

the torus. Since G̃[u(w)] ∼ (℘(w)+ 1
3E2)−1, this implies a double-zero for (℘(w)+ 1

3E2) at

u(w) = 0. A double pole in G̃[u(w)] appears when ℘′(w) vanishes, i.e. at the half-periods

of the torus where ℘′(ω1) = ℘′(ω2) = ℘′(ω1 + ω2) = 0. Noting that the origin u = 0

corresponds precisely to the half-period, w = ω1 = π/2, we expect the two branch cuts in

the u-plane to collide at the origin when

℘
( π
2

∣∣∣ τ̃
)

= −1

3
E2(τ̃) . (3.73)

Making use of the identity ℘
(
π
2

)
= 2

3 ( 2E2(2τ̃) − E2(τ̃)), this can be recast as a condition

on the complex structure parameter,

E2(τ̃) = 4E2(2τ̃) , (3.74)

which is satisfied when λ ≈ 35.5. Figure 7 depicts what happens to the cycles CA and C ′
A

on the auxiliary torus at this value of the gauge coupling. Beyond this value of the gauge

coupling the branch-points simply move off the real axis (see figure 8).8 At finite N , and

8The locations of the branch points on the u-plane can be determined by first solving for points w∗ on
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Figure 8. The positions of the two branch point singularities in figure 6, closest to u = 0, are
plotted in blue and red, for different values of λ in the range 32 ≤ λ ≤ 39. Near λ ≈ 35.45, the two
branch points collide at u = 0 and then move off along the imaginary axis in the u-plane.

for the specific case of N = 2, this phenomenon does not translate into a non-analyticity

of the partition function. Clearly, the free energy of the degenerate saddle-point does not

exhibit non-analyticities at this value of λ. This is confirmed by our observations on the

SU(2) theory where motion of the branch points into the complex plane cannot affect the

period â, which remains purely imaginary at arbitrarily large values of gYM (approaching

â = iM asymptotically).

In the large-N limit however, the situation is different. We will elaborate on this

below. Although the characterisation of the saddle-point is identical to the finite N case,

the motion of the branch points into the complex u-plane simultaneously implies that some

of the periods âj at the maximally singular point move off into the complex u-plane. This

takes the singular point away from Pestun’s contour Re(âj) = 0. Therefore, beyond this

critical value of the ’t Hooft coupling in the large-N theory, the large radius partition

function should be computed by a different saddle-point, as was concluded in [6, 7, 33].

Based on our observations on the N = 2 and N = ∞ cases, we may conclude that for

any fixed N , the meeting of the branch points of G̃, and their subsequent motion off the

axis of real u, does not by itself imply non-analyticity in the partition function. A putative

non-analyticity can be expected when some of the periods at the saddle-point configuration

cease to be purely imaginary. From our analysis in section 2.3, this is likely to occur when

one of the differences âj,j+1 approaches iM and a massless hypermultiplet appears. For

theories with N > 2, this is a collision of the dyon singularity with a singularity which is

not maximal, but has a massless electric hypermutiplet.9 This leads to an Argyres-Douglas

type singularity. Beyond a critical value of the gauge coupling λc(N) ≡
(
g2YM

)
c
N we should

expect the partition function to be computed by a new saddle point of the ‘mixed’ type as

discussed in section 2.3. For any fixed N , we further expect λc(N) to be larger than the

value of λ at which the branch-points of G̃ collide (λ ≈ 35.45).

the torus that satisfy u′(w∗) = 0, corresponding to the extrema of u(w) and then obtaining the coordinates

of these points on the u-plane i.e. u(w∗).
9Points of maximal degeneration on the Coulomb branch (or massive vacua of N = 1∗ theory) are

permuted in a definite fashion by the microscope SL(2,Z) duality of N = 4 SYM. They cannot merge or

collide [14], as already seen for the SU(2) theory. In particular, this means that the dyon singularity (for

any N) cannot collide with the singularity where (N − 1) massless electric hypermultiplets appear.
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4 Large N vs. finite N

We have shown that one solution to the large volume saddle-point equations following from

Nekrasov’s partition function is a point of maximal degeneration on the Coulomb branch

satisfying Re(aD j) = Re(âj) = 0. It has been known for sometime that gauge-invariant

observables at such points are large-N exact [11], meaning that, up to vacuum-independent

mixing ambiguities they are computed by planar graphs at finite N . This is manifest from

the viewpoint of the Nekrasov action functional (at large R) since the relevant saddle-point

is obtained by the merger of N branch cuts {Cj} into a single cut, and all dependence on

N is in the effective modular parameter Imτ̃ = 4πi/g2YMN . Therefore, the density function

ρ(x) on this branch cut, the condensates and free energy depend only on the ’t Hooft

coupling, and their functional forms are unaffected by N (at this saddle-point).

The N−1 periods and their duals can be accessed by moving infinitesimally away from

the single-cut configuration. The N -dependence of the theory is encoded non-trivially in

the Seiberg-Witten periods at generic points in the moduli space. When the gauge coupling

is small (g2YM ≪ 1), the extents of the cuts Cj can be made parametrically small, and the

branch cuts can be be replaced by point-like singularities,

ρ(x) → 1

N

N∑

j=1

δ(x − iaj) , (4.1)

where one must also require the separations between the cuts ∼ |aj − ak| to be relatively

large. In this limit Nekrasov’s functional (3.1) reduces to the one-loop prepotential:

Eτ [ρ] →
1

4

∑

j,k

[
a2jk ln a

2
jk − 1

2
(ajk −M)2 ln(ajk −M)2 − 1

2
(ajk +M)2 ln(ajk +M)2

]

+
4π2

g2YM

∑

j

a2j . (4.2)

For finite values of N , this approximation will break down when the mean positions of the

cuts are close to each other, i.e. the differences |ajk| are comparable to the extents of the

cuts Cj . This is when instanton contributions can no longer be ignored. On the other hand,

in the ’t Hooft large-N limit, when instantons are exponentially suppressed (∼ e−N ), the

above picture should become exact. The saddle points of the large-N functional, which is

now precisely the one-loop prepotential, can be used to examine saddle points in a large-N

continuum picture:

1

N

∑

j ̸=k

→ −
∫ α

−α
du ρ̂(u) ,

∫ α

−α
du ρ̂(u) = 1 . (4.3)

ρ̂(u) can be interpreted as a large-N density for the periods aj , which can also be viewed

as the eigenvalues of the adjoint scalar Φ. Crucially, the large-N saddle point equation for

the continuum distribution of the eigenvalues is,

−
∫ α

−α
dv ρ̂(v)

[
1

2
K(u− v +M) +

1

2
K(u− v −M) − K(u− v)

]
=

8π2

λ
u .

u ∈ [−α,α] , K(x) = x ln(x2) . (4.4)
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This is the saddle-point equation (3.24) that we have already solved at fixed N , and all

results of section 3 automatically apply without any changes. The one crucial difference

is in the interpretation of the density function ρ̂(u) which now represents the large-N

distribution of the eigenvalues aj .

The works of [6, 7] analysed this matrix model and its saddle-points, by directly taking

the large-R limit of Pestun’s matrix integral as originally presented in [1]:

ZS4 =

∫
dN−1a

∏

i<j

(ai − aj)2H2(ai − aj)

H(ai − aj +M)H(ai − aj −M)
e
− 8π2 R2

g2
YM

∑
k a2k |Zinst|2 (4.5)

where the function H(x) is defined as

H(x) ≡
∞∏

n=1

(
1 +

x2R2

n2

)n

e−x2R2/n . (4.6)

It can intuitively be understood as a combination of one-loop fluctuation determinants

obtained by integrating out heavy modes around a Coulomb-branch like configuration of

VEVs, and non-perturbative instanton contributions. In the limit MR ≫ 1, the integrand

can be expressed as the exponential of (4.2), assuming that instantons can be neglected in

the large-N limit.

4.1 The distribution of periods at large-N

When the eigenvalues of the large-R matrix integral condense on a single branch cut, we

obtain the maximally degenerate saddle-point. Given that the saddle-point equations are

identical, our analysis in section 3 directly yields the locations of the periods {âj = iaj}
on this branch cut. In particular, their positions, when mapped to the auxiliary torus (the

degenerate Donagi-Witten curve), are uniformly distributed along the cycles CA and C ′
A in

the w-plane, shown in figure 6. The values of the periods i.e. their locations in the x-plane

(x = iu) are given in the large-N continuum limit as (using eqs.(3.35) and (A.10))

â(w) = iu(w + ω2) = −M

2

ϑ′
3

(
w − π

2

)

ϑ3
(
w − π

2

) , (w + ω2) ∈ C ′
A . (4.7)

The parameter w should be viewed as a continuous label parametrising the points on the

cycle C ′
A on the torus. This result for the large-N eigenvalues â at the

(
1,
[
N
2

])
dyon

singularity coincides with the exact formula for the eigenvalues of the adjoint scalar (in

the N = 2 vector multiplet) in the massive vacua of N = 1∗ theory, derived sometime

ago in [10]. In that paper, the connection between supersymmetric gauge theories and

integrable systems [14, 34–36] was exploited to relate the adjoint scalar eigenvalues di-

rectly to the eigenvalues of the Lax matrix at equilibrium positions of the N -body elliptic

Calogero-Moser Hamiltonian. We note that it is only in the large-N limit that we are able

to identify the periods with eigenvalues of the adjoint scalar (see also [37]). At any finite

N they are distinct observables, not to be confused with each other.

At weak ’t Hooft coupling λ = g2YMN ≪ 1, eq. (4.7) can be simplified using the

identity (A.12),

â(t) → −2iM e−4π2/λ sin(2t) , t ∈
[
−π

2
,
π

2

]
. (4.8)
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Therefore, in this limit, â is purely imaginary as required and the density function ρ̂(â =

ia) ∼ 1/
√
Λ2 − a2, matching the result of Douglas and Shenker [37] for the pure N = 2

theory at large-N .

At strong ’t Hooft coupling λ ≫ 1, the eigenvalues at the singular point can be

evaluated after performing a modular transformation (A.13) which yields

â(t) → Mλ

8π2
t , t ∈

[
−π

2
,
π

2

]
. (4.9)

At arbitrarily strong coupling, the values of the periods â at this point are all real with a

uniform density. Therefore, the maximally singular point does not lie on Pestun’s contour

of integration Re(â) = 0. This is in line with our previous observation and that of [6, 7]

that at large-N , when λ is dialled beyond the critical value λc ≈ 35.45, the theory should

undergo a phase transition to a new saddle point.10 Therefore the new saddle-point cannot

be a point of maximal degeneration. Indeed, as explained in section 2.3, when some of

the period differences exceed M , the saddle-point conditions are non-trivial and are not

conditions for the maximal degeneration of the Donagi-Witten curve.

It has been argued in [6, 7] that, following an infinite sequence of phase transitions,

when λ ≫ MR ≫ 1, the large-N saddle point which dominates the partition function

is remarkably simple and given by the solution to Gaussian matrix model, namely the

Wigner eigenvalue distribution. The intuitive argument for this follows by assuming that

the extent of the distribution at strong coupling has is controlled by λ which is taken to be

much larger than M . Then, the one-loop prepotential can be formally expanded for small

M to yield

F1−loop → −M2

2

∑

j,k

ln(aj − ak)
2 +

8π2

λ
N
∑

j

a2j . (4.10)

The large-N saddle-point is characterised by the Wigner semicircle distribution

ρ̂(a) =
8π

λM2

√
λM2

4π2
− a2 , (4.11)

and free energy

F → −1

2
N2M2R2 ln

λM2

8π2
. (4.12)

Although it is possible to find maximally degenerate vacua of the large-N theory which

exhibit the same scaling of the free energy with λ, the scaling of the eigenvalue distributions

and the moments with λ cannot be reproduced by such vacua. The Wigner distribution

implies that the condensates must scale as ⟨TrΦ2n⟩ ∼ NM2nλn in the large λ limit. On the

other hand, for the N -tuplet of maximally degenerate singularities (corresponding to the

confining and oblique confining phases of N = 1∗ SYM), a straightforward strong coupling

limit yields the scaling ⟨TrΦ2n⟩ ∼ NM2nλ2n.

10In fact, it is possible to exclude all points on the Coulomb branch that are maximally singular with

τ̃ = (pτ +k)/r where r ∼ O(N) and p r = N . In the limit of strong ’t Hooft coupling they all have periods

that are real-valued (and uniformly distributed) in this limit.
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5 Discussion

In this paper we have obtained a complete characterisation of a particular (maximally

degenerate) saddle-point of the partition function of N = 2∗ theory on a large S4 for fixed

N . For the SU(2) theory this is sufficient to compute the partition function, while for

higher rank gauge groups we also need to quantify the contributions from other saddle-

points. We have outlined the criteria and conditions to be satisfied by the Seiberg-Witten

periods at such additional saddle-points. The immediate outstanding question is whether

the ‘cuspy’ configurations studied in detail at large-N in [6, 7] can be shown to correspond

to the general category of saddle-points we have discussed.

We have argued in general that when the maximally singular saddle point approaches

(with increasing coupling strength) a point on the integration contour where an electric

hypermultiplet becomes light, the point of maximal degeneration ceases to be a saddle-

point and, subsequently, moves off into the complex plane. We can trace the origin of this

phenomenon to the fact that the prepotential is a function with branch point singularities

and when a saddle-point approaches such a point, we expect non-analytic behaviour of

some sort. It would be extremely interesting to understand this phenomenon in detail for

the SU(3) theory.

We have focussed attention exclusively on the critical points of the function F(ia) +

F(−ia) for real a. However, as is customary in the saddle-point method, one must also

look at critical points in the complex plane which can contribute to the integral in question

following smooth deformation of the integration path so that it passes through such complex

saddle points. It is important to understand whether such complex saddle points exist for

the Pestun partition function (at large volume) and whether they can compete with the

saddle-points already discussed in this paper and in previous works [6, 7]. One of the

puzzles that this may also potentially shed light on is the question of S-duality of the

N = 2∗ partition function on S4 for N > 2. S-duality on τ maps the dyon singularity

(which is the low-λ saddle point) to a maximal singularity where τ̃ = Nτ/4 + 1/2. This

latter singular point would descend to an N = 1∗ vacuum where SU(N) is first Higgsed to

an SU(2) which then confines. Such points correspond to specific multi-cut solutions of the

Nekrasov “matrix model”. However such a point also does not appear to satisfy the saddle-

point equations we have discussed for imaginary âi (or real ai). How S-duality manifests

itself in the large radius limit and the potential role played by complex saddle-points is a

very interesting and important issue for a complete understanding of the partition function.
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A Elliptic functions and modular forms

We provide some details of the properties of elliptic, quasi-elliptic functions and modular

forms that are useful for our calculations. For a more complete treatment we refer the

reader to [38] and [39].

– 36 –



J
H
E
P
1
2
(
2
0
1
5
)
0
1
6

A.1 Elliptic and quasi-elliptic functions

An elliptic function is a function on the complex plane, periodic with two periods 2ω1 and

2ω2. Defining the lattice Γ = 2ω1Z⊕ 2ω2Z and the basic period parallelogram as

D = {z = 2µω1 + 2νω2 |µ, ν ∈ [0, 1)} , (A.1)

the Weierstrass ℘-function is analytic in D except at z = 0, where it has a double pole.

℘(z) is an even function of z, defined via the sum

℘(z;ω1,ω2) =
1

z2
+

∑

(m,n) ̸=(0,0)

{
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}
. (A.2)

• The Weierstrass ℘-function satisfies

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 ; g2 = 60
∑

Ω−4
mn , g3 = 140

∑
Ω−6
mn , (A.3)

where Ωmn = 2mω1 + 2nω2 with (m,n) ̸= (0, 0) and g2, g3 are the Weierstrass

invariants.

• Under a modular transformation, of the complex structure parameter τ = ω2/ω1 of

the torus, the ℘-functions transforms with weight two:

℘
(z
τ
; ω1, −

ω1

τ

)
= τ2 ℘(z; ω1, τω1) . (A.4)

• The following formula can be used to infer the behaviour of ℘(z) in the limit

Im(τ) ≫ 1 [38]

℘(z;ω1,ω2) =

(
π

2ω1

)2
[
−1

3
+

∞∑

n=−∞
csc2

(
z − 2nω2

2ω1
π

)
−

∞′∑

n=−∞
csc2

(
nω2

ω1
π

)]
.

(A.5)

• The Weierstrass ζ-function is a quasi-elliptic function, analytic in D but with a simple

pole at z = 0

℘(z) = −ζ ′(z) , ζ(z + 2ω1,2) = ζ(z) + 2ζ(ω1,2) (A.6)

• A slight modification renders the Weierstrass ζ-function periodic along one of the

periods of the torus C/Γ

ζ̃(z) = ζ(z) − ζ(ω1)

ω1
z . (A.7)

The new function is periodic along the A-cycle, but only quasiperiodic along the

B-cycle.

ζ̃(z + 2ω1) = ζ(z) , ζ(z + 2ω2) = ζ(z)− iπ

ω1
, (A.8)

where we have used the identity

ω2ζ(ω1)− ω1ζ(ω2) = iπ . (A.9)
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• The quasiperiodic function ζ̃(z) is the logarithmic derivative of the Jacobi theta

function

ζ̃(z) =
π

2ω1

ϑ′
1

(
πz
2ω1

)

ϑ1

(
πz
2ω1

) ≡ − iπ

2ω1
+

π

2ω1

ϑ′
3

(
πz′

2ω1

)

ϑ3

(
πz′
2ω1

)

∣∣∣∣∣∣
z′=z−ω1−ω2

. (A.10)

• The Jacobi-theta functions satisfy the heat equation:

∂2ϑν(u|τ)
∂u2

= − 4

iπ

∂ϑν(u|τ)
∂τ

. (A.11)

• The logarithmic derivative of ϑ3 has a useful q-expansion

ϑ′
3(z)

ϑ3(z)
= −4

∞∑

n=1

qn−1/2 sin 2z

1 + 2qn−1/2 cos 2z + q2n−1
(A.12)

where q = e2πiτ .

• Under the special modular transformations τ → τ + 2 and τ → −1/τ ,

ϑ3(z, τ + 2) = ϑ3(z, τ) , ϑ3

(
z

τ
,−1

τ

)
=

√
−iτ e−z2/iπτ ϑ3(z, τ) , (A.13)

A.2 The Eisenstein series

There are a number of ways to introduce the Eisenstein series (see [39])

Ek(τ) =
1

2

∑

m,n∈Z
(m,n)=1

1

(mτ + n)k
, τ =

ω2

ω1
(A.14)

where τ is the complex structure parameter of the torus defined by C/Γ and (m,n) denotes

the greatest common divisor. Each series has a q-expansion

E2(τ) = 1− 24
∞∑

n=1

σ1(n) q
n , q = e2πiτ (A.15)

E4(τ) = 1 + 240
∞∑

n=1

σ3(n) q
n ,

E6(τ) = 1− 504
∞∑

n=1

σ5(n) q
n ,

where σj(n) is a sum over each positive integral divisor of n raised to the jth power. Under

the S-transformation τ → −1/τ , the modular forms with the exception of E2(τ), transform

covariantly with a specific modular weight

Ek(−1/τ) = τk Ek(τ) k ≥ 4 , E2(−1/τ) = τ2E2(τ) +
6τ

iπ
. (A.16)
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The anomalous transformation of E2(τ) can be fixed by a shift.

Ê2(τ, τ̄) = E2(τ)−
3

πIm(τ)
. (A.17)

This is a modular form of weight two, although it is not holomorphic. Further useful

relations include

ζ(ω1) =
π2

12ω1
E2(τ) , g2 =

4π4

3(2ω1)4
E4(τ) , g3 =

8π6

27(2ω1)6
E6(τ) . (A.18)
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