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Abstract

A multiscale theory of solids based on the concept of Representative Volume
Element (RVE) and accounting for micro-scale inertia and body forces is
proposed. A simple extension of the classical Hill-Mandel Principle together
with suitable kinematical constraints on the micro-scale displacements pro-
vide the variational framework within which the theory is devised. In this
context, the micro-scale equilibrium equation and the homogenisation re-
lations among the relevant macro- and micro-scale quantities are rigorously
derived by means of straightforward variational arguments. In particular, it is
shown that only the fluctuations of micro-scale inertia and body forces about
their RVE volume averages may affect the micro-scale equilibrium problem
and the resulting homogenised stress. The volume average themselves are
mechanically relevant only to the macro-scale.
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1. Introduction

Classical multiscale theories to predict the mechanical behaviour of solids
with a microstructure have their origins in the pioneering works of Hill
[9, 10, 11, 12], Hashin and Shtrikman [8], Budiansky [3] and Mandel [17],
among others. Over the last two decades or so, theories relying on the av-
eraging of stresses and strains over a representative volume element (RVE)
have become remarkably popular in the prediction of overall properties of
heterogeneous solids in non-linear regimes. Their use in practical applica-
tions relies almost exclusively on techniques of computational homogenisa-
tion [14, 18, 19, 29]. These techniques have reached such a level of maturity
that multiscale theories are now beginning to find their way in specialised ap-
plications with a very promising prospect of becoming a much needed tool to
help the design of new materials and the prediction of constitutive behaviours
resulting from the interaction of complex microstructural phenomena [22, 26].

Despite the success history of RVE-based multiscale thories, the con-
sideration of inertia and body forces in general appears not to have been
satisfactorily addressed to date. In the classical work of Hill [12] inertia and
body forces are not considered. In the more recent literature, body forces
are often removed from the theory on the basis of questionable arguments.
Inertia forces, in turn, have rarely been considered in this context. In the
few reported attempts to incorporate inertia effects, the theory appears to
be unclear and suffers from significant inconsistencies.

At present, the increasing interest in so-called metamaterials – microsc-
tructured materials displaying useful exotic macroscopic behaviour – puts
pressure on the development of robust multiscale theories capable of predict-
ing the overall response by accounting for the interaction of (possibly com-
plex) phenomena at the micro-scale [7]. In this context, the consideration
of inertia and body forces may become crucial. The macroscopic mechanical
response of acoustic metamaterials, for example, is dictated by dynamic phe-
nomena at the micro-scale. Any attempt to model such materials by means
of RVE-based multiscale theories must properly address the consideration of
micro-scale inertia effects.

Our purpose in the present paper is to show in a clear manner how in-
ertia effects and body forces in general can be rigorously accounted for in
such theories. To this end we cast the theory within a framework relying
entirely on the two fundamental principles of kinematical admissibility and
Multiscale Virtual Power – the latter expressed as a variational statement
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of an extended version of the Hill-Mandel Principle of Macrohomogeneity
[12, 17]. These provide the essential link between the macro- and micro-scale
kinematics and virtual power, respectively. Within this framework, once the
macro- and micro-scale kinematical variables are defined and appropriate
kinematical constraints are postulated to link them in a consistent manner,
all equations of the resulting multiscale theory – including RVE equilib-
rium and the homogenisation relations for force- and stress-like variables –
are derived (rather than postulated) exclusively by means of straightforward
variational arguments. Here we should point out that the recent literature
provides examples where extended versions of the Hill-Mandel Principle have
been used for this purpose, but a deeper look into the resulting models reveals
significant inconsistencies. Such inconsistencies stem either from insufficient
kinematical constraints being imposed to ensure a meaningful link between
the macro- and micro-scale kinematics or from the variationally inconsistent
manner in which kinematical constraints have been taken into account in the
treatment of the corresponding model. We begin by introducing the proposed
framework in Section 2, against the background provided by the well-known
classical theory (in the absence of inertia and body forces). Our main result
is presented in Section 3 where we extend these ideas to the case of non-zero
inertia and body forces. In this context, the role of inertia and body forces
naturally emerges very clearly, allowing one to easily see how they can be
taken into account in a consistent manner. A discussion of our findings fol-
lows in Section 4 and the paper closes with some concluding remarks made
in Section 5.

2. Classical theory. Review

Consider a solid continuum that occupies a region Ω of the three-dimensional
Euclidean space in its reference configuration. A wide family of so-called mul-
tiscale constitutive theories are derived based on the idea that any point x
of Ω is associated with a representative volume element (RVE), occupying a
reference domain Ωµ of characteristic length `µ much smaller than the char-
acteristic length ` of Ω. The domains Ω and Ωµ are referred to as the macro-
and micro-scale, respectively.

Classical multiscale theories [4, 5, 6, 23] that predict the macro-scale
mechanical behaviour from the constitutive properties of the correspond-
ing micro-scale can be entirely derived from two fundamental principles: (i)
kinematical admissibility ; and (ii) multiscale virtual power , that govern the
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transition between the two scales. Although by no means absolutely neces-
sary, the derivation of all equations of the theory as a consequence of these
two principles alone provides, in our view, a robust framework to treat the
problem. In particular, it allows extensions of the classical theory (such as
the one that is the subject matter of the present paper) to be devised in very
clear steps on solid theoretical grounds. We remark that this approach has
been recently employed with success by Sánchez et al. [27] in the derivation
of a multiscale theory accounting for material failure associated with micro-
scale strain localisation phenomena. We begin by illustrating in the following
the use of this idea in the case of the classical theory, where inertia and body
forces are asumed absent.

2.1. Kinematical homogenisation and kinematical admissibility

Let y ∈ Ωµ denote the coordinates of an arbitrary point of the RVE
associated with a point x ∈ Ω. Without loss of generality we shall assume
the origin of the micro-scale coordinate system to be located at the centroid
of Ωµ, i.e. ∫

Ωµ

y dΩµ = 0. (1)

A fundamental assumption in the present class of theories is that the micro-
scale displacement field uµ over Ωµ can be expanded as

uµ(y) = u(x) +∇u(x) y + ũµ(y)
= u(x) + [F(x)− I] y + ũµ(y),

(2)

where u(x) is the displacement of the corresponding point x of the macro-
scale, ∇(·) denotes the gradient of (·) with respect to the macro-scale coor-
dinates,

F = I +∇u (3)

is the macro-scale deformation gradient and

ũµ ≡ uµ − u− (F− I)y (4)

is defined as the displacement fluctuation field of the RVE. In view of (2)
and (3) the micro-scale deformation gradient field,

Fµ = I +∇µuµ, (5)
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with ∇µ denoting the gradient with respect to the micro-scale coordinates,
is equivalently expressed as

Fµ(y) = I +∇u(x) +∇µũµ(y) = F(x) +∇µũµ(y). (6)

That is, the micro-scale deformation gradient field is a sum of the macro-
scale deformation gradient, inserted uniformly throughout the whole domain
Ωµ, and a micro-scale displacement fluctuation gradient ∇µũµ.

2.1.1. Kinematical admissibility

In addition to the above, the following kinematical homogenisation (aver-
aging) relations, linking the micro-scale displacement and deformation gradi-
ent fields to their corresponding macro-scale point values at x, are postulated:

u =
1

|Ωµ|

∫
Ωµ

uµ dΩµ (7)

and

F =
1

|Ωµ|

∫
Ωµ

Fµ dΩµ, (8)

where |Ωµ| denotes the measure of Ωµ. The above postulates are equivalent
to a statement of kinematical admissibility of micro-scale displacement fields.
Indeed, (7) is itself a kinematical constraint imposed on uµ. Due to the split
(4) and (1), it is equivalent to∫

Ωµ

ũµ dΩµ = 0. (9)

The averaging relation (8), in turn, due to (6), is equivalent to the following
constraint on ∇µũµ: ∫

Ωµ

∇µũµ dΩµ = 0, (10)

or, after a straightforward integration by parts,∫
Γµ

ũµ ⊗ n dΓµ = 0, (11)
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where Γµ denotes the boundary of the RVE and n is the outward unit normal
to Γµ. That is, only displacement fluctuation fields that satisfy the kinemat-
ical constraints (9) and (11) can be regarded as kinematically admissible, i.e.
compatible with the kinematical averaging postulates (8) and (7). Hence,
we can define a functional space of kinematically admissible displacement
fluctuations , denoted Kin∗

ũµ
, as

Kin∗
ũµ
≡

{
v ∈ [H1(Ωµ)]3 :

∫
Ωµ
v dΩµ = 0;

∫
Γµ
v ⊗ n dΓµ = 0

}
. (12)

Note that constraint (9), which follows from (7), implies that translational
rigid displacement fluctuations are excluded from Kin∗

ũµ
. Rotational rigid

displacement fluctuations, in turn, are excluded from Kin∗
ũµ

due to constraint
(11) that follows from the deformation gradient averaging postulate (8). The
corresponding space of virtual kinematically admissible fluctuation fields,
denoted Var∗ũµ

, coincides with Kin∗
ũµ

itself,

Var∗ũµ
≡

{
v = v1 − v2 : v1,v2 ∈ Kin∗

ũµ

}
= Kin∗

ũµ
. (13)

From (12) and (2) we have that, for a given macro-scale point displacement
and deformation gradient, u and F, the functional set of kinematically ad-
missible micro-scale displacement fields reads

Kin∗
uµ
≡

{
v = u + [F− I]y + ṽ : ṽ ∈ Kin∗

ũµ

}
. (14)

The corresponding space of virtual kinematically admissible micro-scale dis-
placements, in turn, is given by

Var∗uµ
≡

{
v = v1 − v2 : v1,v2 ∈ Kin∗

uµ

}
= Kin∗

ũµ
= Var∗ũµ

. (15)

2.1.2. Further kinematical constraints

It is worth remarking that the RVE kinematical constraints embedded in
the definition of the functional space Kin∗

ũµ
(or Var∗uµ

) above are the minimal
kinematical constraints compatible with the present family of multi-scale
theories of solid behaviour. That is, any relaxation of these kinematical
constraints would allow for micro-scale displacement fields that fail to satisfy
the fundamental kinematical averaging relations (8) or (7) and the resulting
model would violate essential postulates of the theory. The enforcement
of further, more stringent , kinematical constraints, on the other hand, is
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perfectly acceptable (and very sensible in many situations), provided the
resulting space of kinematically admissible fluctuations is a subspace of its
minimally constrained counterpart defined in (12). In fact, well-known multi-
scale models of solid can be cast within the present framework with the simple
introduction of further kinematical constraints as follows:

• Voigt-Taylor , uniform strain model or rule of mixtures . It assumes
a uniform deformation gradient, equal to F, over the entire RVE do-
main. This is equivalent to saying that the displacement fluctuations
vanish over Ωµ. Hence, within the present framework the Voigt-Taylor
model is retrieved by setting the actual space Kinũµ , of kinematically
admissible displacement fluctuations, simply as

Kinũµ = {0}. (16)

• Linear boundary displacements or uniform boundary strain model. This
widely used model assumes the displacement fluctuations to vanish on
Γµ so that the displacement field on the boundary of the RVE reads

uµ(y) = u + [F− I]y ∀y ∈ Γµ. (17)

The corresponding space of kinematically admissible displacement fluc-
tuations is

Kinũµ = {v ∈ Kin∗
ũµ

: v|Γµ = 0}. (18)

• Periodic boundary fluctuations model. This is the classical assumption
adopted in the analysis of periodic media. The RVE in this case is a
unit cell whose periodic repetition generates the macro-scale contin-
uum. The RVE here must satisfy certain geometrical constraints so as
to be compatible with the assumption of periodicity of the medium.
Under such conditions, parallel RVE boundary sides (in two dimen-
sions) or surfaces (in three dimensions) are identified in pairs. Within
each side or surface a one-to-one correspondance can be identified be-
tween its points and points of the corresponding pairing side or surface.
With (y+,y−) denoting an arbitrary pair of boundary points related
by this one-to-one correspondance, the periodicity constraint requires
that displacement fluctuations at y+ and y− be identical. The space
of kinematically admissible fluctuations in this case then reads

Kinũµ = {v ∈ Kin∗
ũµ

: v(y+) = v(y−) ∀ pairs (y+,y−)}. (19)
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Finally, we point out that without any kinematical constraints other than
the minimal requirements of the theory, i.e. by choosing

Kinũµ = Kin∗
ũµ
, (20)

it can be shown [6] that the resulting model predicts uniform traction on the
boundary of the RVE. In this case, with P denoting the First Piola-Kirchhoff
stress tensor at the macro-scale point x, Pµ the corresponding micro-scale
counterpart field, we have

Pµ(y) n(y) = P n(y) ∀y ∈ Γµ. (21)

2.2. Principle of Multiscale Virtual Power

The Hill-Mandel Principle of Macro-homogeneity [9, 12, 17] establishes
the energetic consistency between the two scales. In its original form [12],
it states that the volume average of the power of an equilibrium stress field
over an RVE subjected to either linear boundary displacements or uniform
boundary tractions equals the macro-scale stress power. Here, we rephrase
the Hill-Mandel Principle as a variational statement – named the Principle of
Multiscale Virtual Power – by requiring the stress virtual power to coincide
with the volume average of its micro-scale counterpart. That is, we require
that

P : δF =
1

|Ωµ|

∫
Ωµ

Pµ : δFµ dΩµ (22)

for all virtual macro-scale deformation gradients and micro-scale deformation
gradient fields, δF and δFµ, kinematically admissible in the sense of (8). By
taking (6) into account, the Hill-Mandel Principle can be expressed by the
following variational equation:

P : δF =
1

|Ωµ|

∫
Ωµ

Pµ : (δF +∇µδũµ) dΩµ, ∀δF; ∀δũµ ∈ Varũµ . (23)

2.2.1. Stress homogenisation and micro-scale equilibrium

The variational statement of the Hill-Mandel Principle plays a funda-
mental role in the definition of the transition between the micro- and macro-
scales. As direct consequences of (23) we have:
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• The stress homogenisation relation,

P =
1

|Ωµ|

∫
Ωµ

Pµ dΩµ, (24)

obtained from (23) by choosing δũµ = 0 and allowing arbitrary varia-
tions δF, and;

• The micro-scale equilibrium equation,∫
Ωµ

Pµ : ∇µδũµ dΩµ = 0, ∀δũµ ∈ Varũµ , (25)

obtained by setting δF = 0 and allowing any kinematically admissible
virtual displacement fluctuations in (23).

In the conventional approach to homogenisation problems under the assump-
tions of periodic displacement fluctuations or minimal kinematical constraint,
translational rigid body displacement fluctuations are prevented by fixing an
arbitrary point of the RVE. Here, translational rigid modes are dealt with
by imposing (9) (embedded in the definition of Varũµ). We remark, however,
that both approaches are mechanically equivalent in the absence of body
forces.

Remark 2.1. In contrast with the usual way in which multi-scale theories
are presented, within the present framework the stress homogenisation ex-
pression (24) and the micro-scale equilibrium equation (25) are not a priori
assumptions.1 Rather, they are derived here as direct consequences of the
variational statement (22) of the Hill-Mandel Principle – the Principle of
Multiscale Virtual Power.

Remark 2.2. In the above derivation, following the usual assumption in
the treatment of the classical theory (see for instance [12]), inertia and body
forces have been assumed zero. It should be noted, however, that any inertia
or body force field orthogonal to the space Varũµ is consistent with the varia-
tional equilibrium equation (25) [4, 23]. As we shall see, the extended theory
presented in Section 3 provides the natural framework to fully address the
consideration of inertia and body forces.

1In Hill’s original work [12], equilibrium and homogenisation of stress are a priori
assumptions which, combined, have the classical Hill-Mandel Principle as a consequence.

9



2.3. Summary. Macro-scale constitutive response

The complete classical multiscale theory can be summarised by the defor-
mation gradient averaging and stress homogenisation relations, given respec-
tively by (8) and (24), and the micro-scale equilibrium equation (25). With
these at hand, together with the choice of an appropriate space Kinũµ =
Varũµ , the macro-scale constitutive response at a point x of the macroscopic
continuum with a given associated RVE, is obtained as follows:

• Given the history of deformation gradient tF(x) at point x up to time
t, find a corresponding history tũµ of kinematically admissible micro-
scale displacement fluctuation fields ũµ ∈ Kinũµ , such that the RVE
equilibrium equation is satisfied:∫

Ωµ

Pµ(y, τFµ) : ∇µδv dΩµ = 0 ∀δv ∈ Varũµ ,∀τ ∈ [0, t], (26)

where the histories of Fµ and ũµ are related by:

τFµ(y) = τF(x) +∇µ
τ ũµ(y) (27)

and Pµ(y, ·) is a given constitutive response functional that maps histo-
ries of deformation gradient into the First Piola Kirchhoff stress tensor
at point y of the RVE:

Pµ(y, τ) = Pµ(y, τFµ). (28)

• With the solution of the above RVE equilibrium problem at hand,
obtain for all τ ∈ [0, t] the macro-scale First Piola-Kirchhoff stress
tensor according to the averaging relation (24).

3. Consideration of inertia and body forces

We shall now consider the situation where inertia and body forces may
be present. Then, let fb

µ denote the reference micro-scale body force field.
That is, the body force per unit volume of the reference configuration of the
RVE. In addition, let ρµ be the micro-scale reference mass density field.

Rather than assuming a particular format for the homogenisation of the
inertia and body forces, or for the corresponding RVE equilibrium equation,
we shall proceed here to derive them from an extended version of the Hill-
Mandel Principle, which enforces energy consistency between the two scales
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in the present case. Note that this approach is entirely in line with the
methodology adopted above in the formulation of the classical theory (in the
absence of inertia and body forces) where both the homogenisation of the
stress and the RVE equilibrium were derived from the variational statement
of the Hill-Mandel Principle.

3.1. Extended Hill-Mandel Principle

In order to account for inertia and body forces in the micro-to-macro
transition, we postulate an extended version of the Hill-Mandel Principle by
simply stating the Principle of Multiscale Virtual Power in terms of total
virtual powers at both macro- and micro-scales [1]. The extended principle
requires that the total macro-scale virtual power coincides with the volume
average of its micro-scale counterpart. That is, it requires the variational
equation

P : δF− f · δu =
1

|Ωµ|

∫
Ωµ

(Pµ : δFµ − fb
µ · δuµ + ρµüµ · δuµ) dΩµ (29)

to hold for all tensors δF and vectors δu and all virtual micro-scale defor-
mation gradient and displacement fields, δFµ and δuµ, kinematically admis-
sible in the sense of (8) and (7). In (29), üµ is the micro-scale acceleration
field. It should be noted that in stating the macro-scale total virtual power, a
macro-scale force vector f has been introduced as the dual of the macro-scale
displacement vector, with no reference to its specific nature (i.e. whether it
results specificaly from prescribed micro-scale body forces or inertia forces).
Its actual meaning – to be made clear by the homogenisation formulae link-
ing the macro-scale force vector f to the micro-scale fields it originates from –
will be determined as a consequence of (29) by means of simple, but rigorous,
variational arguments.

By decomposing δFµ and δuµ following (2) and (6), the Principle of
Multiscale Virtual Power can be re-written in the equivalent form:

P : δF− f · δu =
1

|Ωµ|

∫
Ωµ

[Pµ : (δF +∇µδũµ)− (fb
µ − ρµüµ) · (δu

+δFy + δũµ)] dΩµ∀δF, δu; ∀δũµ ∈ Varũµ .

(30)

3.2. Stress, inertia and body force homogenisation and RVE equilibrium

Following the procedure of Section 2, by setting δu = 0, δũµ = 0, and
allowing arbitrary variations δF in (30), we obtain the expression for the

11



stress homogenisation in the presence of micro-scale inertia and body forces:

P =
1

|Ωµ|

∫
Ωµ

[Pµ − (fb
µ − ρµüµ)⊗ y] dΩµ. (31)

Further, with δF = 0 and δu = 0, (30) yields the corresponding RVE equi-
librium equation:∫

Ωµ

[Pµ : ∇µδũµ − (fb
µ − ρµüµ) · δũµ] dΩµ = 0, ∀δũµ ∈ Varũµ . (32)

Finally, with δF = 0 and δũµ = 0, (30) results in the homogenisation ex-
pression for the macro-scale force f :

f =
1

|Ωµ|

∫
Ωµ

(fb
µ − ρµüµ) dΩµ. (33)

Obviously, one can conveniently split f as

f = fb − fρ, (34)

with

fb :=
1

|Ωµ|

∫
Ωµ

fb
µ dΩµ (35)

identified as the homogenised body force and

fρ :=
1

|Ωµ|

∫
Ωµ

fρµ dΩµ; fρµ := ρµüµ, (36)

as the homogenised inertia force. That is, as one might have intuitively
expected, the macro-scale body force fb turns out to be the volume aver-
age of its micro-scale counterpart over the RVE, and the same applies to
the macro-scale inertia force fρ. Here, these homogenisation formulae have
been naturally derived as consequence of the Euler-Lagrange equation of the
Principle of Multiscale Virtual Power.
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3.3. Inertia and body force fluctuation fields

To gain some further insight into the role of inertia and body forces in the
micro-scale it is convenient to define the micro-scale body force fluctuation
field ,

f̃b
µ := fb

µ −
1

|Ωµ|

∫
Ωµ

fb
µ dΩµ = fb

µ − fb, (37)

and the micro-scale inertia force fluctuation field ,

f̃ρµ := fρµ −
1

|Ωµ|

∫
Ωµ

fρµ dΩµ = fρµ − fρ, (38)

That is, the fields f̃b
µ and f̃ρµ measure the fluctuation of fb

µ and fρµ about their
respective volume averages, fb and fρ.

With the introduction of the above split of fb
µ and fρµ into (31) we obtain

P =
1

|Ωµ|

{∫
Ωµ

[Pµ − (f̃b
µ − f̃ρµ)⊗ y] dΩµ − (fb − fρ)⊗

∫
Ωµ

y dΩµ

}
(39)

which, in view of (1), results in the following expression for the stress ho-
mogenisation:

P =
1

|Ωµ|

∫
Ωµ

[Pµ − (f̃b
µ − f̃ρµ)⊗ y] dΩµ. (40)

Analogously, with the use of (37) and (38) in (32), we obtain∫
Ωµ

[Pµ : ∇µδũµ − (f̃b
µ − f̃ρµ) · δũµ] dΩµ − (fb − fρ) ·

∫
Ωµ

δũµ dΩµ = 0,

∀δũµ ∈ Varũµ . (41)

By noting that Varũµ ⊂ Var∗ũµ
= Kin∗

ũµ
, the constraints of definition (12)

imply that the second integral on the left hand side of (41) vanishes – the
volume averages fb and fρ are orthogonal to Varũµ – and the equilibrium of
the RVE can be equivalently expressed by the variational equation∫

Ωµ

[Pµ : ∇µδũµ − (f̃b
µ − f̃ρµ) · δũµ] dΩµ = 0, ∀δũµ ∈ Varũµ , (42)
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where only the fluctuating components f̃ρµ and f̃b
µ of the micro-scale inertia

and body force take part.2

Finally, for the sake of completeness, by using in (40) the general tensor
relation ∫

Ωµ

S dΩµ =

∫
Γµ

Sn⊗ y dΓµ +

∫
Ωµ

divµS⊗ y dΩµ, (43)

valid for any sufficiently smooth tensor field S, together with the strong form
of (42), we obtain the alternative expression for the homogenised stress which
uses only boundary information:

P =
1

|Ωµ|

∫
Γµ

Pµn⊗ y dΓµ (44)

or, simply,

P =
1

|Ωµ|

∫
Γµ

tµ ⊗ y dΓµ (45)

where tµ = Pµn is the Piola stress vector on Γµ. Note that tµ is a purely re-
active boundary traction, i.e, tµ ⊥ Varũµ . Obviously, this expression remains
valid in the absence of body forces.

3.4. Summary. Macro-scale response with micro-scale inertia and body forces

In the presence of inertia and micro-scale body forces or, more precisely,
non-zero inertia and body force fluctuations at the micro-scale, the macro-
scale stress response at a point x of the macro-continuum is obtained as
follows:

2Although not specifically relevant to the treatment of micro-scale inertia and body
forces, it is worth noting that a completely analogous argument, taking into account the
kinematical constraint (10) embedded in the definition of Varũµ

, leads to a similar con-
clusion regarding the role of the micro-scale stress field in the RVE equilibrium equation.
That is, only the micro-scale stress fluctuation field ,

P̃µ := Pµ −P,

may produce non-zero virtual power. Hence, (42) is equivalent to∫
Ωµ

[P̃µ : ∇µδũµ − (f̃b
µ − f̃ρµ) · δũµ] dΩµ = 0, ∀δũµ ∈ Varũµ ,

where only fluctuations of micro-scale forces and stresses are of relevance.
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• Given the history tF(x) of deformation gradient at point x up to time
t, the history tf̃b

µ of the reference micro-scale body force fluctuation

field and the initial conditions ũµ(t0), and ˙̃uµ(t0), for the displacement
and velocity fluctuation fields at the initial time t0, we solve the RVE
equilibrium problem: find a corresponding history tũµ of kinematically
admissible displacement fluctuation fields ũµ ∈ Kinũµ such that∫

Ωµ

Pµ(y, τFµ) : ∇µδv dΩµ −
∫

Ωµ

[f̃b
µ(τ)− f̃ρµ(τ)] · δv dΩµ = 0

∀δv ∈ Varũµ , ∀τ ∈ [0, t].

(46)

• With the solution of the RVE equilibrium problem at hand, obtain for
all τ ∈ [0, t] the macro-scale First Piola-Kirchhoff stress tensor accord-
ing to the stress homogenisation relation (40) or (45). The homogenised
macro-scale inertia and body forces, in turn, are obtained according to
(36) and (35), respectively.

4. Discussion

In the absence of inertia and body forces, the classical procedure sum-
marised in Section 2.3 determines the macro-scale First Piola-Kirchhoff stress
tensor at a point of the macro-continuum as a function solely of the history
of the macro-scale deformation gradient at that point. That is, the pro-
cedure implicitly defines a local constitutive response functional P for the
macro-scale stress such that

P(t) = P(tF). (47)

In this case, the macro-scale stress response resulting from the multiscale
modelling is purely constitutive in that it depends only on the history of the
macro-scale deformation gradient.

However, if inertia or body forces are taken into account the above no
longer holds true in general. Indeed, note that the stress determination
procedure of Section 3.4 in fact defines the macro-scale First Piola-Kirchhoff
stress as a function of the history of the macro-scale deformation gradient and
the history of the micro-scale inertia and body force fluctuation fields. As
for the history of micro-scale inertia forces, we should note that the histories
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tF and tu implicitly contain the data ü and F̈ required by the dynamic
RVE equilibrium problem whose solution gives the microscale acceleration
field üµ. As the microscale inertia forces are determined from üµ through
(36)2 we have that the stress response functional, in this case denoted Sα,
is such that for a given set α ≡ {ũµ(t0), ˙̃uµ(t0)} of initial conditions for the
micro-scale displacement and velocity flutuation fields we have

P(t) = Sα(tF, tu, tf̃
b

µ). (48)

The functional S in this case cannot in general be classed as a constitutive
functional in the classical sense because, in addition to the standard depen-
dence upon the deformation gradient history, the stress here depends also on
external prescribed loading – more precisely, on the micro-scale body force
fluctuation fields – and on the history of the macro-scale displacement. The
dependence of the stress response on the histories of displacements or ex-
ternal agents is non-conventional and does not fit within the classical and
widely accepted framework of simple materials [20, 21].

Of course, the stress dependence upon inertia or body forces will be of
practical relevance only in situations where their fluctuations are of sufficient
intensity to have a significant effect on the solution of the RVE equilibrium
problem (46) and on the stress homogenisation (40) or (45). It is worth
remarking here however that, even in such cases, the macro-scale First Piola-
Kirchhoff stress (as obtained in (45)) remains identifiable in terms of RVE
boundary data alone – a property pointed out by Hill [12] as fundamental in
the definition of macro-scale variables.

The consideration of body forces in the multiscale modelling of solids has
been recently addressed in [16, 15, 25]. In the context of a homogenisation
procedure based on the Irving-Kirkwood statistical mechanical theory [13],
Mandadapu et al. [16] arrived at an expression for the homogenised body
force which reduces to that of (35) for a suitable choice of weighting function
in their theory. Interestingly, following a variational approach similar to the
one reported here, where macro- and micro-scale body forces are correctly
accounted for, Ricker et al. [25] concluded that the extended Hill-Mandel ap-
proach is consistent only with self-equilibrated micro-scale body forces (and
consequently zero macro-scale body force). Their analysis was conducted un-
der the assumption of periodic RVE boundary conditions. Their conclusion
is at odds with the findings of the present paper and can be explained as
follows. In [25], no kinematical constraint has been imposed on the micro-
scale displacement field to link it to the macro-scale displacement. That is,
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without a constraint of the type (7), the kinematically admissible displace-
ments within the RVE domain are independent of the macro-displacement.
As a consequence, the corresponding space of virtual RVE displacements
contains rigid translations and the extended Hill-Mandel Principle can only
hold if the volume average of the micro-scale body forces vanishes. Hence,
the conclusion of [25] is variationally consistent with the kinematics they
adopted. However, since body forces are work-conjugate to displacements,
the inclusion of the virtual power of (macro- and micro-scale) body forces
into the Hill-Mandel Principle must be accompanied by an appropriate kine-
matical constraint that, just as (6) and (10) link the macro- and micro-scale
displacement gradients, links the macro- and micro-scale displacements in a
physically meaningful way. This issue is fully resolved with the simple incor-
poration of the fundamental constraint (7). Within the present framework,
where the entire theory derives from the fundamental concept of kinematical
admissibility and the Principle of Multiscale Virtual Power, once the con-
straint (7) is in place, the homogenisation formulae and RVE equilibrium
equation that correctly account for possible non-zero inertia and body forces
follow naturally from straightforward variational arguments. Note that, due
to the nature of constraint (7), only the fluctuating (zero volume average)
components of the micro-scale inertia and body force fields contribute to the
micro-scale virtual power and are relevant to the RVE equilibrium equation.
Their uniform (volume average) component is orthogonal to the space Varũµ

(see Remark 2.2) and therefore ”invisible” to the RVE equilibrium problem.
That is, the uniform components fρ and fb of the micro-scale inertia and
body forces, defined in (36) and (35), are balanced by a purely reactive force
field generated by the kinematical constraint (7). We remark that the present
findings – fluctuation and volume average force components only ”visible” at
the micro- and macro-scale respectively – are consistent with those reported
by Sanchez-Palencia [28] in the context of asymptotic expansion treatment
of rapidly varying body force fields in linear elasticity of periodic media.

These observations shed light on an issue which, in our view, appears to
be quite unclear in the recent literature (see [24]). The apparent confusion
surrounding this issue seems to stem partly from the non-conventional nature
of the kinematical constraint (7) – a volume integral constraint – imposed
upon the microscale displacement field. However, once the theory is properly
cast in variational form, the consequences of this constraint (in particular,
the reactive nature of the uniform component of the microscale inertia and
body forces) can be rigorously dealt with in exactly the same way as the
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conventional kinematical constraints of solid mechanics by simply observ-
ing the orthogonality between the functional spaces of reactive forces and
kinematically admissible virtual displacements. As an interesting practical
consequence of these variational considerations we have the following. Note
that under the assumptions of minimal kinematical constraint or periodic
boundary fluctuations the domain integral constraint (7) serves only to pre-
vent rigid translations. Hence, in these cases an RVE equilibrium problem
mechanically equivalent to (46) can be defined by relaxing the constraint (7)
of Varũµ and loading the RVE only with the fluctuating components f̃ρµ and

f̃b
µ of the inertia and body forces. Obviously, in such cases another kine-

matical constraint (e.g. the typical boundary point displacement constraints
[23] used in RVE computations in the absence of inertia and body forces)
must be imposed to prevent rigid translations in the mechanically equivalent
problem. This approach is likely to be simpler in practical computations as
it does not require the domain integral constraint to be considered at all.
However, if the full inertia or body forces are applied to the RVE (i.e. fluc-
tuating plus volume average components) then the constraint (7) must be
imposed in the solution of the RVE equilibrium problem. Also noteworthy is
the fact that, under the assumption of linear RVE boundary displacements,
rigid translations are fully prevented by the boundary constraints alone and
(7) is a further kinematical constraint. Hence, unlike the periodic boundary
fluctuations and the minimally contrained models, in this case there is in
general no mechanically equivalent RVE equilibrium problem that does not
require the domain integral constraint (7) to be imposed explicitly.

5. Conclusion

An RVE-based multiscale theory of solids accounting for the effects of
micro-scale inertia and body forces has been proposed and discussed in de-
tail. The theory was cast within a framework relying entirely on the two
fundamental principles of kinematical admissibility and Multiscale Virtual
Power . These principles are regarded as fundamental in that they provide
the essential link between the macro- and micro-scale kinematics and virtual
power, respectively. In this context, it has been shown that a simple exten-
sion of the Hill-Mandel Principle that accounts for the total virtual power,
together with a suitable set of kinematical constraints upon the RVE displace-
ments, provide an appropriate framework to address the effects of inertia and
body forces on the micro-to-macro transition. Within this framework, the
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RVE equilibrium equation and the homogenisation relations among the rel-
evant macro- and micro-scale quantities are naturally derived by means of
straightforward variational arguments. The following findings are of partic-
ular relevance:

• As one would intuitively expect, the macro-scale inertia and body force
are obtained simply as the volume average of the micro-scale inertia and
body force fields over the RVE domain, respectively;

• The contribution of the micro-scale inertia and body force fields to the
homogenised stress is such that the macro-scale stress tensor remains,
as in the classical theory of Hill [12], representable exclusively in terms
of RVE boundary tractions;

• Only fluctuations of the micro-scale inertia and body force fields about
their homogenised (volume average) values are of relevance to the RVE
equilibrium equation. Uniform micro-scale inertia and body force fields
are ”invisible” to the RVE equilibrium problem (as they produce no
virtual power in the micro-scale) and, therefore, do not contribute to
the homogenised stress.

To the authors’ knowledge, these findings are novel in this context and clarify
the issue of inertia and body forces within this class of multiscale theories
– an issue which appears to not to have been satisfactorily addressed in
the literature. We finish by noting that a generalisation of the framework
adopted here – where the entire theory can be derived from the principles of
kinematical admissibility and Multiscale Virtual Power alone – is currently
under development [1, 2] and will be the subject of a forthcoming publi-
cation. The generalised framework extends the concepts discussed here to
tackle non-classical multiscale problems involving, for example, kinematical
discontinuities, higher order kinematics or distinct kinematics at micro- and
macro-scales.
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2, LNCC-MCTI Laboratório Nacional de Computação Cient́ıfica, Brazil.

[2] Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA. 2014. Unified
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[5] de Souza Neto EA, Feijóo RA. 2008. On the equivalence between spa-
tial and material volume averaging of stress in large strain multi-scale
constitutive models. Mech. of Materials 40(10):803–811.
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