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Abstract We give a comparison of two no-arbitrage conditions for the
fundamental theorem of asset pricing. The first condition is named as the
no free lunch with vanishing risk condition and the second the no good deal
condition. We aim to derive a relationship between these two conditions.
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1 Introduction

Due to the seminal work [5,6] by Delbaen and Schachermayer, the fundamental
theorem of asset pricing became pivotal in mathematical finance, which is a
key result in establishing a mathematical framework for pricing and the key
condition in the so-called the no free lunch with vanishing risk condition [7].
Since then, many investigations are devoted to generalize this remarkable
condition to cover more general situations in the mathematical modelings,
cf., e.g., [1,3,8,9,11] and references therein. Most recently, Bion-Nadal and
Di Nunno [2] proposed a new condition for pricing in incomplete markets. This
condition is named as the no good deal condition, which should be linked to
the celebrated the no free lunch with vanishing risk condition. The objective of
the present paper is to compare these two conditions in some simplified models.
We aim to seek certain links between the free lunch with vanishing risk
condition and the no good deal condition by explicating them into several
simple models so that one can compare them more concretely. Our discussion
reveal (theoretically) the essential properties of these models from stochastic
analysis viewpoint.

The rest of the paper is organized as follows. In the next section, we start
with the basic concepts of the First and Second Fundamental Theorems of asset
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pricing in the continuous model. Then a general continuous market model is
defined and the fundamental theorems of asset pricing are proved in this
setting. In the latter scenario, we focus on conditions of the model which
satisfies no free lunch with vanishing risk condition. Tools from probability
such as martingale, equivalent martingale measure, stochastic integrals, and
Girsanov transformation are all used in this framework. In Section 3, we present
a complete comparison with a thorough derivation.

2 Preliminaries on two no-arbitrage conditions

This section is devoted to explicate the two no-arbitrage conditions in a unified
and convenient framework.

2.1 No free lunch with vanishing risk condition

Throughout this paper, we fix any T > 0. Let (Ω,F , {Ft}t∈[0,T ], P ) be a given
(complete) filtered probability space. Here as usual, the filtration (Ft)t∈[0,T ]

is assumed to be right-continuous and F0 contains all P -null sets. We are
concerned with a market model in which d + 1 assets are priced at time t ∈
[0, T ] with d ∈ N and T being interpreted as the terminal time. The assets
are classified into two categories—risky stocks and riskless bonds. Here in
our model, we consider d risky stocks and denote their price dynamics by a
d-dimensional stochastic process

St = (S1
t , . . . , Sd

t )t∈[0,T ].

For the riskless bonds, for the simplicity, we only consider one bond which is
denoted by S0

t with a fixed interest rate r > 0, namely, S0
t = S0

0ert, t � 0 with
given initial capital S0

0 > 0.
Let

St = (S0
t , S1

t , . . . , Sd
t )t∈[0,T ]

denote the corresponding price processes for this multi asset, which can be
viewed as a vector-valued stochastic process. In general, we take St to be a
semi-martingale on the given filtered probability space (Ω,F , (Ft)t∈[0,T ], P ).
The price of the ith asset at time t is modeled as non-negative random variable
Si

t. We assume that (S1
t , . . . , Sd

t )t∈[0,T ] is {Ft}-adapted.
Recall a trading strategy is an {Ft}-predictable R

d+1-valued process

ξt = (ξ0
t , ξt) = (ξ0

t , ξ1
t , . . . , ξd

t )t∈[0,T ].

The value ξi
t of a trading strategy ξt corresponds to the quantity of assets of

the ith asset held at time t. We simplify computation to use discounted asset
price processes. For i = 0, 1, . . . , d, we define

S∗,i
t :=

Si
t

S0
t

, t ∈ [0, T ].
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Then
S

∗
t = (S∗,0

t , S∗,1
t , . . . , S∗,d

t )

is the value of the vector of discounted assets prices at time t. Note that we
have

S∗,0
t ≡ 1, ∀ t ∈ [0, T ].

Next, let us give some definitions.

Definition 1 [14, Lemma 4.2.1] A trading strategy

ξt = (ξ0
t , ξ1

t , . . . , ξ
d
t )t∈[0,T ]

is called self-financing if the discounted value process

V ∗
t := ξt · S∗

t =
d∑

i=0

ξi
tS

∗,i
t

is a continuous, {Ft}-adapted process such that for each t ∈ [0, T ],

V ∗
t = ξ0

0 +
d∑

i=1

ξi
0S

∗,i
0 +

d∑
i=1

∫ t

0
ξi
sdS∗,i

s =: V ∗
0 + G∗

t , P -a.s. (1)

or equivalently in stochastic differential formulation

dV ∗
t = dG∗

t =
d∑

i=1

ξi
tdS∗,i

t , P -a.s.

with initial data

V ∗
0 := ξ0

0 +
d∑

i=1

ξi
0S

∗,i
0 .

Here,

G∗
t :=

d∑
i=1

∫ t

0
ξi
sdS∗,i

s

is the corresponding discounted gain process.

Definition 2 A self-financing trading strategy ξt is called an arbitrage
opportunity if V ∗

t satisfies the following conditions:
(i) V ∗

0 = 0;
(ii) ∃ a constant a0 such that P ({ω ∈ Ω: V ∗

t (ω) � a0,∀ t ∈ [0, T ]}) = 1;
(iii) V ∗

T � 0, P -a.s.;
(iv) P (V ∗

T > 0) > 0.
Moreover, a model satisfies the no-arbitrage condition if such a strategy does
not exist.
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It turns out that in the continuous-time setting, the no-arbitrage condition
does not guarantee the existence of an equivalent local martingale measure (see
[5, Example 7.7]). A stronger condition is needed. The following modification
of the no-arbitrage condition was introduced by Delbaen and Schachermayer
[5,6] and further considered by Shiryaev and Cherny [12].

Definition 3 [12, Definition 1.6] We say that a sequence of self-financing
trading strategies {ξk

t : t ∈ [0, T ]}k∈N realises free lunch with vanishing risk
condition, if the corresponding sequence of value processes {V ∗,k

t : t ∈ [0, T ]}k∈N

fulfills that for each k ∈ N,

(i) V ∗,k
0 = 0;

(ii) there exists a constant ak such that

P ({ω ∈ Ω: V ∗,k
t (ω) := ξt(ω) · S∗,k

t (ω) � ak, ∀ t ∈ [0, T ]}) = 1;

(iii) V ∗,k
T � −1/k, P -a.s.;

(iv) ∃ constants δ1, δ2 > 0 (independent of k) such that, ∀ k ∈ N,

P{V ∗,k
T > δ1} > δ2.

Moreover, a model satisfies the no free lunch with vanishing risk condition if
such a sequence of strategies does not exist.

Furthermore, we introduce the following definition.

Definition 4 We say that a sequence of self-financing trading strategies {ξk
t : t

∈ [0, T ]}k∈N fulfills the free lunch with bounded risk if it satisfies conditions (i)
and (ii) of Definition 3 as well as the following two conditions:

(a) there exists a constant a such that, for each k ∈ N,

P ({ω ∈ Ω: V ∗,k
t (ω) � a, ∀ t ∈ [0, T ]}) = 1;

(b) there exist constants δ1, δ2 > 0 such that, for each k,

P{V ∗,k
T > δ1} > δ2,

and for any δ > 0,
lim

k→∞
P{V ∗,k

T < −δ} = 0.

A model satisfies the no free lunch with bounded risk condition if such a
sequence of strategies does not exist.

Theorem 5 [5, Theorem 1.1] (Fundamental Theorem of Asset Pricing)
Assume that the asset price process St is a locally bounded, (d+1)-dimensional
vector-valued semi-martingale. Then there exists an equivalent local martingale
measure for St if and only if the no free lunch with vanishing risk condition
holds.
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2.2 No good deal condition

Here, we will focus on the no good deal condition. With the same preamble as
before, we work on the same probability set-up (Ω,F , {Ft}t∈[0,T ], P ). Following
Biog-Nasal and Di Nunno [2], we assume that the given {Ft}t∈[0,T ] satisfies that
FT = F . We work in an L∞-framework and consider claims as elements of the
space

L∞(Ft) := L∞(Ω,Ft, P )

of random variables with finite norm

‖X‖∞ := ess sup|X|, X ∈ L∞(Ft).

For any time t ∈ [0, T ], let Lt ⊆ L∞(Ft) denote the linear subspace representing
all market claims that are payable at time t. Note that on a complete market,
Lt = L∞(Ft). For a given asset X ∈ Lt, we denote the systems of prices by
xst, 0 � s � t � T. We assume that price xst(X), 0 � s � t � T, for marked
assets X ∈ Lt are given and we describe them in axiomatic form, where xst(X)
denote the price of asset X from s to t . Here, we set the bounds on prices:

mst(X) � xst(X) � Mst(X),

and we study the existence of a pricing measures P0 that allows a linear
representation

xst(X) = EP0 [X|Fs], X ∈ Lt,

fulfilling the given bounds. The pricing measure P0 will reflect the choices of
bounds. When we use + in the notation of space, we refer to the corresponding
cone of the non-negative elements.

Next, we consider no good deal pricing measures. The good deal bound is
a way to restrict the choice of equivalent martingale measures, usually denoted
by Q, in incomplete markets. The idea is to consider martingale measures that
not only rule out arbitrage possibilities, but also deals with ‘too good to be
true’. As usual, we work with general price systems and not with specific price
dynamics.

Following Chicharee and Sa Requejo [4], a good deal of level δ > 0 is a
non-negative FT -measurable payoff X such that

E(X) − EQ(X)√
Var(X)

� δ.

Accordingly, a probability measure Q is equivalent to P is a no good deal pricing
measure if there are no good deals of level δ under Q, i.e.,

EQ[X] � E[X] − δ
√

Var(X), X � 0. (2)

Note that (2) holds for all X ∈ L∞(FT ) as we have

X + ‖X‖∞ � 0.
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Hence, also the relation

EQ[X] � E[X] + δ
√

Var(X), X � 0

holds true for all X ∈ L∞(FT ). This motivates the following extended general
definition of no good deals pricing measure.

Definition 6 [2, Definition 6.1] A probability measure Q (equivalent to P ) is
called a no good deal pricing measure if there exists a δ > 0 such that there is
no good deals of level δ > 0 under Q (equivalently, for any δ > 0, there is no
good deal of level δ), i.e.,

−δ � E(X) − EQ(X)√
Var(X)

� δ

for all X ∈ L2(FT , P ) ∩ L1(FT , Q).

3 Comparing two no-abitrage conditions and further discussion

Let d,m ∈ N be fixed. We consider the following stochastic differential equation
on [0, T ] × R

d :
dXt = μ(t,Xt)dt + σ(t,Xt)dWt, (3)

where
μ : [0, T ] × R

d → R
d, σ : [0, T ] × R

d → R
d⊗m,

and Wt is an m-dimensional Brownian motion. Under the usual linear growth
condition and the following Lipschitz condition:

|μ(t, x)| + ‖σ(t, x)‖ � Ct(1 + |x|), x ∈ R
d, t ∈ [0, T ],

|μ(t, x) − μ(t, y)| + ‖σ(t, x) − σ(t, y)‖ � Ct|x − y|, x, y ∈ R
d, t ∈ [0, T ],

for some function Ct > 0 on t ∈ [0, T ], (3) admits a unique strong solution
(Xt)t�0 for a given initial data X0 ∈ R

d. In the sequel, we will also use the
following integral formulation for the process Xt :

Xt = X0 +
∫ t

0
μ(u,Xu)du +

∫ t

0
σ(u,Xu)dWu, t ∈ [0, T ].

In the special case, let (St)t∈[0,T ] be the (one-dimensional) risky asset price
process satisfying the following Black-Scholes pricing dynamics:

dSt

St
= μdt + σdWt

along with a bank account dS0
t = rS0

t dt with interest rate r > 0 and the
regularised initial capital S0

0 = 1, where μ and σ are positive constants. Given
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initial data S0 > 0, the risky asset St is determined uniquely by the above
equation, and St is given explicitly by

St = S0 exp
[(

μ − 1
2

σ2
)
t + σWt

]
.

The discounted price process is given by S∗
t = St/S

0
t . We then have discounted

price

S∗
t = S0 exp

[(
μ − r − 1

2
σ2

)
t + σWt

]
. (4)

Now, applying the Itô formula to (4), we have

dS∗
t = (μ − r)S∗

t dt + σS∗
t dWt. (5)

Let us clarify a bit here that our asset price processes here is St = (S0
t , St)

and according to Definition 1 (with d = 1), the discounted value process for a
self-financing trading strategy ξt = (ξ0

t , ξt) is

V ∗
t = V ∗

0 +
∫ t

0
ξsdS∗

s , t ∈ [0, T ].

Since we are concerned with comparing the two no-arbitrage conditions, we
simply take V ∗

0 = erT in our later derivations. This is just for the sake to make
the comparison conditions neat in our conclusions. Of course, one can take any
non-negative constant as the initial V ∗

0 and then by a constant shift to erT . By
(5), the terminal value for self-financing trading strategy ξt is then

V ∗
T = erT +

∫ T

0
ξtdS∗

t

= erT +
∫ T

0
ξtS

∗
t {(μ − r)dt + σdWt}

= erT + (μ − r)
∫ T

0
ξtS

∗
t dt + σ

∫ T

0
ξtS

∗
t dWt

= erT + (μ − r)S0

∫ T

0
ξte(μ−r− 1

2
σ2)t+σWtdt

+ σS0

∫ T

0
ξte(μ−r− 1

2
σ2)t+σWtdWt.

Next, let

f(t, x) :=
1
σ

ξte(μ−r− 1
2
σ2)teσx.

Then we have

∂f

∂x
= ξte(μ−r− 1

2
σ2)teσx,

∂2f

∂x2
= σξte(μ−r− 1

2
σ2)teσx,

∂f

∂t
=

1
σ

(μ − r − 1
2

σ2)ξte(μ−r− 1
2
σ2)teσx +

1
σ

e(μ−r− 1
2
σ2)teσx ∂ξt

∂t
,
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where we assumed that ξt is differentiable with respect to t. Clearly, in terms
of the Itô formula [10, Theorem 4.2.1],∫ T

0

∂f

∂x
(t,Wt)dWt

= f(T,WT ) − f(0,W0) −
∫ T

0

[1
2

∂2f

∂x2
(t,Wt) +

∂f

∂t
(t,Wt)

]
dt

=
1
σ

ξT e(μ−r− 1
2
σ2)T eσWT − 1

σ
ξ0 −

∫ T

0

[1
2

σξte(μ−r− 1
2
σ2)teσWt

+
1
σ

(μ − r − 1
2

σ2)ξte(μ−r− 1
2
σ2)teσWt +

1
σ

e(μ−r− 1
2
σ2)teσWt

∂ξt

∂t

]
dt

=
1
σ

ξT e(μ−r− 1
2
σ2)T eσWT − 1

σ
ξ0

−
∫ T

0

[ 1
σ

(μ − r)ξt +
1
σ

∂ξt

∂t

]
e(μ−r− 1

2
σ2)teσWtdt.

Thus, we get

V ∗
T = erT + (μ − r)S0

∫ T

0
ξte(μ−r− 1

2
σ2)t+σWtdt + σS0

{
1
σ

ξT e(μ−r− 1
2
σ2)T eσWT

− 1
σ

ξ0 −
∫ T

0

[ 1
σ

(μ − r)ξt +
1
σ

∂ξt

∂t

]
e(μ−r− 1

2
σ2)teσWtdt

}
= erT + S0ξT e(μ− 1

2
σ2)T eσWT − S0

∫ T

0

∂ξt

∂t
e(μ−r− 1

2
σ2)teσWtdt

=
∫ T

0

( 1
T

erT +
1
T

S0ξT e(μ−r− 1
2
σ2)T eσWT − S0

∂ξt

∂t
e(μ−r− 1

2
σ2)teσWt

)
dt. (6)

Now, we set

X(t) :=
1
T

erT +
1
T

S0ξT e(μ−r− 1
2
σ2)T eσWT − S0

∂ξt

∂t
e(μ−r− 1

2
σ2)teσWt .

Then by Definition 3 (iv), there are constants δ1, δ2 > 0 such that

P

{∫ T

0
X(t)dt > δ1

}
> δ2.

For any p > 0, by Chebyshev’s inequality,

δ2 � P

{∣∣∣ ∫ T

0
X(t)dt

∣∣∣ > δ1

}
�

E| ∫ T
0 X(t)dt|p

δp
1

.

For any p, q > 1 and 1
p + 1

p = 1,

E

(∣∣∣ ∫ T

0
X(t)dt

∣∣∣p) � T p/q

∫ T

0
E(|X(t)|p)dt.
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More generally, when p = q = 2, in that case, we can get

δ2δ
2
1

T
�

∫ T

0
E(X(t)2)dt.

Let us calculate
∫ T
0 E(X(t)2)dt. To make our calculation easier, we simply

assume that ξt = Ct for some constant C > 0. By the identity

E(eσWt− 1
2
σ2t) = 1,

we then have∫ T

0
E(X(t)2)dt

=
∫ T

0
E

( 1
T

erT +
( 1

T
S0ξT e(μ−r− 1

2
σ2)T eσWT − S0Ce(μ−r− 1

2
σ2)teσWt

))2
dt

=
1
T

e2rT + S2
0C2e(2(μ−r)+σ2)T

(
T − 2

σ2 + (μ − r)
+

1
σ2 + 2(μ − r)

)
+2S2

0C2 e(μ−r)T

σ2 + (μ − r)
− C2S2

0

σ2 + 2(μ − r)

+2S0CeμT − 2S0C

T (μ − r)
eμT +

2S0C

T (μ − r)
erT

=: I

� δ2
1δ2

T
. (7)

Now, we let

J := e(2(μ−r)+σ2)T
(
T − 3

2(σ2 + (μ − r))

)
+

2(μ − r)T + 1
σ2 + 2(μ − r)

+
e2rT

TS2
0C2

+
2eμT

S0C
.

Clearly,
I � S2

0C2J.

Thus, if

J � δ2
1δ2

TC2S2
0

, (8)

then ∫ T

0
E (X(t))2 dt � δ2δ

2
1

T
.

Obviously, (8) is stronger than (7).
On the other hand, towards the no good deal condition, we recall that

the price is given by the system {xs,t}0�s<t�T , instead of price process itself,
X := {Xt}0�t�T , which is determined by (3). Therefore, with d = m = 1, for
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the coefficients μ : [0, T ]×R → R and the non-degenerate σ : [0, T ]×R → R\{0},
we define

xs,t(X) :=
∫ t

s
μ(u,Xu)du +

∫ t

s
σ(u,Xu)dWu. (9)

Furthermore, we have (cf., e.g., [13])

Xt = X0 +
∫ t

0
σ(u,Xu)dW̃u, t ∈ [0, T ], (10)

with

W̃t := Wt +
∫ t

0
σ−1(u,Xu)μ(u,Xu)du, t ∈ [0, T ].

Next, define Q via

dQ := e
∫ T
0

σ−1(u,Xu)μ(u,Xu)dWu− 1
2

∫ T
0

[σ−1(u,Xu)μ(u,Xu)]2dudP.

Then, by the Girsanov theorem, W̃t, t ∈ [0, T ], is a Q-Brownian motion.
Taking expectation on both sides of (10) yields

EQ(Xt) = EQ(X0) + EQ

∫ t

0
σ(s,Xs)dW̃s = X0

and

E(Xt) = X0 + E

∫ t

0
μ(s,Xs)ds.

Therefore,

E(Xt) − EQ(Xt) = E

∫ t

0
μ(s,Xs)ds. (11)

Next, we turn to the special case of the (previously introduced) asset price
process St = (S0

t , St) for

dS0
t = rS0

t dt, S0
0 = 1,

and
dSt = μStdt + σStdWt, S0 > 0,

with solutions S0
t = ert and the Black-Scholes price process

St = S0 exp
[(

μ − 1
2

σ2
)
t + σWt

]
, t ∈ [0, T ].

We have the associated xs,t defined as follows:

xs,t :=
∫ t

s
rS0

udu +
∫ t

s
μSudu +

∫ t

s
σSudWu, 0 � s < t � T.
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Recall from (4) and (5) that the discounted price process

S∗
t =

St

S0
t

= S0 exp
[(

μ − r − 1
2

σ2
)
t + σWt

]
and its equation

dS∗
t = (μ − r)S∗

t dt + σS∗
t dWt.

Recall further that, by (6), we have the discounted terminal value V ∗
T for ξt =

Ct :

V ∗
T =

∫ T

0

( 1
T

erT + CS0e(μ−r− 1
2
σ2)T eσWT − CS0e(μ−r− 1

2
σ2)teσWt

)
dt

= erT + TCS0e(μ−r− 1
2
σ2)T eσWT −

∫ T

0
CS0e(μ−r− 1

2
σ2)teσWtdt.

It is clear that
V ∗

T ∈ L2(FT , P ) ∩ L1(FT , Q).

Therefore, for the payoff X := V ∗
T , by utilising the identity

E(eσWt− 1
2
σ2t) = 1,

we have

E(X) − EQ(X) = E

(∫ T

0
rS0

t dt +
∫ T

0
μS∗

t dt

)
(12)

and

Var(X) = E

(∫ T

0
r2(S0

t )2dt +
∫ T

0
σ2S∗2

t dt

)
. (13)

Then, according to Definition 6 and by (12) and (13), the no good deal condition
is fulfilled if

−δ �
E(

∫ T
0 rS0

t dt +
∫ T
0 μS∗

t dt)√
E(

∫ T
0 r2(S0

t )2dt +
∫ T
0 σ2S∗2

t dt)
� δ. (14)

Compute (14),

E

(∫ T

0
rS0

t dt +
∫ T

0
μS∗

t dt

)
= E

(∫ T

0
rertdt + μ

∫ T

0
S0e(μ−r− 1

2
σ2)t+σWtdt

)
= (erT − 1) +

μS0

μ − r
(e(μ−r)T − 1)

and √
E

(∫ T

0
r2(S0

t )2dt +
∫ T

0
σ2S∗2

t dt

)

=

√
r

2
(e2rT − 1) + σ2S2

0

e(2(μ−r)+σ2)T − 1
2(μ − r) + σ2

.
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Then we can get

E(
∫ T
0 rS0

t dt +
∫ T
0 μS∗

t dt)√
E(

∫ T
0 r2(S0

t )2dt +
∫ T
0 σ2S∗2

t dt)
=

(erT − 1) + μS0

μ−r (e(μ−r)T − 1)√
r
2 (e2rT − 1) + σ2S2

0
e(2(μ−r)+σ2)T −1

2(μ−r)+σ2

.

Now, substituting the result above into (14), we derive

−δ �
(erT − 1) + μS0

μ−r (e(μ−r)T − 1)√
r
2 (e2rT − 1) + σ2S2

0
e(2(μ−r)+σ2)T −1

2(μ−r)+σ2

� δ. (15)

Now, we can summarize the above derivation as the following main result.

Theorem 7 Assume

T � 3
2(σ2 + (μ − r))

, δ �
√

2
r
, r � (μ − μS0) ∨ 0. (16)

Then condition (15) can imply condition (7), which indicates that the no good
deal condition for fundamental theorem is stronger than the no free lunch with
vanishing risk condition.

Proof We first note that (15) can be reduced to

e(2(μ−r)+σ2)T �
((

1 − rδ2

2

)
e2rT + 2(μS0 + 1)erT

+
[ μS0

μ − r
e(μ−r)T − μS0(μ − r) + μ2S2

0

μ2S2
0

]2

−(μ − r)2

μ2S2
0

− 2(μ − r)
μS0

+
2μS0

μ − r
+

μ2S2
0

(μ − r)2

+
rδ2

2
+

δ2σ2S2
0

2(μ − r) + σ2
+ 1

)2(μ − r) + σ2

δ2σ2S2
0

. (17)

If (15) is true, then putting (17) into the left-hand side (LHS) of (8) yields that

LHS of (8) �
((

1 − rδ2

2

)
e2rT + 2(μS0 + 1)erT

+
[ μS0

μ − r
e(μ−r)T − μS0(μ − r) + μ2S2

0

μ2S2
0

]2

−(μ − r)2

μ2S2
0

− 2(μ − r)
μS0

+
2μS0

μ − r
+

μ2S2
0

(μ − r)2
+

rδ2

2

+
δ2σ2S2

0

2(μ − r) + σ2
+ 1

) 2(μ − r) + σ2

δ2σ2S2
0

(
T − 3

2(σ2 + (μ − r))

)
+

2(μ − r)T + 1
σ2 + 2(μ − r)

+
e2rT

TS2
0C2

+
2eμT

S0C
. (18)
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Let us assume that the right-hand side (RHS) of (18) � 0. Then it is easy to
find

1 − rδ2

2
� 0, T − 3

2(σ2 + (μ − r))
� 0,

−(μ − r)2

μ2S2
0

− 2(μ − r)
μS0

+
2μS0

μ − r
+

μ2S2
0

(μ − r)2
� 0.

Therefore, we get that under conditions (16), condition (15) can imply
condition (8). As condition (8) is stronger than condition (7), we then
verify that condition (15) implies condition (7). �
Remark 8 When

T − 3
2(σ2 + (μ − r))

� 0,

it might not be feasible to compare. We cannot compare them in a short time.

On the other hand, we would like to examine whether (7) implies (15).
Assume that (7) is true. Then we have

e(2(μ−r)+σ2)T
(
T − 2

σ2 + (μ − r)
+

1
σ2 + 2(μ − r)

)
� δ2

1δ2

TS2
0C2

− 1
TS2

0C2
e2rT − 2e(μ−r)T

σ2 + (μ − r)
+

1
σ2 + 2(μ − r)

−2eμT

S0C
+

2eμT

TS0C(μ − r)
− 2erT

TS0C(μ − r)
. (19)

Letting RHS of (19) � 0, we need

T − 2
σ2 + (μ − r)

+
1

σ2 + 2(μ − r)
� 0, 1 − 1

T (μ − r)
� 0.

We can show that

T � σ2 + 3(μ − r)
[σ2 + (μ − r)][σ2 + 2(μ − r)]

, T � 1
μ − r

,

so that

T � σ2 + 3(μ − r)
[σ2 + (μ − r)][σ2 + 2(μ − r)]

∨ 1
μ − r

. (20)

Consequently, we conclude that under condition (20), (7) implies (17). From
(17), we work backwards[
(erT − 1) +

μS0

μ − r
(e(μ−r)T − 1)

]2
� δ2

(r

2
(e2rT − 1) + σ2S2

0

e(2(μ−r)+σ2)T − 1
2(μ − r) + σ2

)
,

then we obtain

0 � (erT − 1) +
μS0

μ − r
(e(μ−r)T − 1) � δ

√
r

2
(e2rT − 1) + σ2S2

0

e(2(μ−r)+σ2)T − 1
2(μ − r) + σ2

.
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The above is equivalent to (15). We summarize our discussion by the following
theorem.

Theorem 9 Under conditions

T � σ2 + 3(μ − r)
[σ2 + (μ − r)][σ2 + 2(μ − r)]

∨ 1
μ − r

,

(7) implies (15), which means that the no good deal condition for fundamental
theorem is weaker than the no free lunch with vanishing risk condition.

We now turn to the situation in higher dimensions. We consider a finite
time interval [0, T ] as the interval during which trading may take place. Let
(Ω,F , P ;Ft) be a given complete probability space on which defined a stranded
m-dimensional Browning motion W = {Wt, t ∈ [0, T ]}. In particular, W =
(W 1,W 2, . . . ,W m) is an m-dimensional process defined on the time interval
[0, T ]. Our multi-dimensional model has d + 1 assets, where d is a positive
integer.

Sometimes, the money market asset is referred to as a riskless asset, denoted
by S0

t , which is given by
dS0

t

S0
t

= rdt.

We assume that there are d stock with continuous, adapted price process St =
(S1

t , . . . , Sd
t ), which satisfying the following higher-dimensional Black-Scholes

pricing dynamics:

dSi
t

Si
t

= μidt +
m∑

j=1

σijdW j
t , 1 � i � d.

Here, the solution can be explicitly given as follows:

Si
t = Si

0 exp
((

μi − 1
2

m∑
j=1

(σσT)ij
)

t +
m∑

j=1

σijW j
t

)
, (21)

where Si
0 is a positive constant and μi is the ith component of a d-dimensional

drift vector, and σ = (σij)1�i�d,1�j�m is a (d × m)-matrix.
Now, applying the Itô formula yields

dS∗i
t = S∗i

t (μi − r)dt + S∗i
t

m∑
j=1

σijdW j
t . (22)

A self-financing trading strategy in this case is a (d + 1)-dimensional process

ξt = (ξ0
t , ξ1

t , . . . , ξd
t ), t ∈ [0, T ].
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The value at t of the portfolio associated with ξt is given by

V ∗
t = ξt · S∗

t = V ∗
0 +

d∑
i=1

∫ t

0
ξi
sdS∗,i

s , t ∈ [0, T ].

Putting (22) into above, we get

V ∗
T − V ∗

0 =
d∑

i=1

∫ T

0
ξi
tdS∗i

t

=
d∑

i=1

∫ T

0
ξi
t

(
S∗i

t (μi − r)dt + S∗i
t

m∑
j=1

σijdW j
t

)

=
d∑

i=1

∫ T

0
ξi
tS

∗i
t (μi − r)dt +

d∑
i=1

m∑
j=1

∫ T

0
ξi
tS

∗i
t σijdW j

t .

Next, let
ξ0
T = 1, S0

T = erT .

Then
V ∗

0 = ST
0 = erT

and

V ∗
T = erT +

d∑
i=1

∫ T

0
(μi − r)ξi

tS
i
0 exp

((
μi − r − 1

2

m∑
j=1

(σσT)ij
)

t +
m∑

j=1

σijW j
t

)
dt

+
d∑

i=1

m∑
j=1

σij

∫ T

0
exp

((
μi − r − 1

2

m∑
l=1

(σσT)il
)

t +
m∑

l=1

σilW l
t

)
dW j

t .

Remark 10 For fixed i, j, (σσT)ij is given by

(σσT)ij =
m∑

k=1

σikσjk.

Proposition 11 For each i = 1, 2, ..., d, the price process Si
t can be represented

as
Si

0e
(μi−r− 1

2
(σi)2)t+σiBt ,

where

(σi)2 =
m∑

j=1

(σij)2 = (σσT)ii > 0,

and Bt, t ∈ [0, T ], is a one-dimensional Brownian motion such that
m∑

j=1

σijdW j
t = σidBt. (23)
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Proof From (23), we have

dBt =

∑m
j=1 σijdW j

t

σi
.

According to definition of quadratic variation, we have

d〈B,B〉(t) =
1

(σi)2

〈 m∑
j=1

σijdW j
t ,

m∑
j=1

σijdW j
t

〉
=

1
(σi)2

m∑
j=1

(σij)2dt = dt.

Therefore, Bt is a one-dimensional Browning motion and

Si
t = Si

0e
(μi−r− 1

2
(σi)2)t+σiBt .

We are done. �
Proposition 11 shows that the result from multi-dimensional model is

essentially similar to the one-dimensional case. In other words, one-dimensional
model is a special case in higher-dimensional model. By Definition 3 (iv) and
Proposition 11, if there are constants δ1, δ2 > 0, then free lunch with vanishing
risk exists:

P

{∫ T

0

( 1
T

erT +
1
T

Si
0ξ

i
T e(μi−r− 1

2

∑m
j=1(σσT)ij )T e

∑m
j=1 σijW j

T

−Si
0

∂ξt

∂t
e(μi−r− 1

2

∑m
j=1(σσT)ij)te

∑m
j=1 σijW j

t

)
dt > δ1

}
> δ2. (24)

Set

X(t) :=
erT + Si

0ξ
i
T e(μi−r− 1

2

∑m
j=1(σσT)ij)T e

∑m
j=1 σijW j

T

T

− Si
0

∂ξt

∂t
e(μi−r− 1

2

∑m
j=1(σσT)ij)te

∑m
j=1 σijW j

t .

Then (24) reduce to

P

{∫ T

0
X(t)dt > δ1

}
> δ2.

For any p � 1, by Markov’s inequality, we can get

δ2 � P

{∣∣∣ ∫ T

0
X(t)dt

∣∣∣ > δ1

}
�

E| ∫ T
0 X(t)dt|p

δp
1

.

More specifically, taking p = 2 and by Cauchy’s inequality, we get

δ2δ
2
1

T
�

∫ T

0
E (X(t))2 dt.
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We calculate
∫ T
0 E (X(t))2 dt. By

E(e−
1
2

∑m
j=1(σσT)ijt+

∑m
j=1 σijW j

t ) = 1, ξi
t = Cit,

where i = 1, . . . , d, j = 1, . . . ,m. We can get the following inequality:

1
T

e2rT + Si
0
2
Ci2e2((μi−r)+

∑m
j=1(σσT)ij)T

×
(

T − 2∑m
j=1(σσT)ij + (μ − r)

+
1∑m

j=1(σσT)ij + 2(μi − r)

)
+2Si

0
2
Ci2 e(μi−r)T∑m

j=1(σσT)ij + (μi − r)
− Ci2Si

0
2∑m

j=1(σσT)ij + 2(μi − r)

+2Si
0C

ieμiT − 2Si
0C

i

T (μi − r)
eμiT +

2Si
0C

i

T (μi − r)
erT � δ2

1δ2

T
. (25)

In the no good deal condition, the price is xi
s,t, 0 � s < t < T. We define

μ : (0, T ) × R → R
d, σ : (0, T ) × R → R

d⊗m,

such that

xi
s,t(X) :=

∫ t

s
μi(u,Xu)du +

m∑
j=1

∫ t

s
σij(u,Xu)dW j

u. (26)

Considering a special case of (26) with the riskiness bond, for each i = 1, ..., d
we have

xi
s,t(St) :=

∫ t

s
rS0

udu +
∫ t

s
μiSi,∗

u du +
m∑

j=1

∫ t

s
σijSi,∗

u dW j
u. (27)

By the definition, the no good deal condition can be satisfied if

−δ �
E(

∫ T
0 rS0

t dt +
∫ T
0 μiS∗i

t dt)√
E(

∫ T
0 r2(S0

t )2dt +
∑m

j=1

∫ T
0 (σσT)ij(S∗i

t )2dt)
� δ. (28)

We can then get the following explicit expression:

−δ �
(erT − 1) + μiS0

μi−r
(e(μi−r)T − 1)√

r
2 (e2rT − 1) +

∑m
j=1(σσT)ijSi

0
2 e

(2(μi−r)+
∑m

j=1
(σσT)ij )T−1

2(μi−r)+
∑m

j=1(σσT)ij

� δ. (29)

Let us finish our paper by summarising our above discussion as the following
results.
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Theorem 12 Under assumptions

T � 3
2(

∑m
j=1(σσT)ij + (μi − r))

, δ �
√

2
r
, r � (μi − μiSi

0) ∨ 0,

we conclude that condition (29) can imply condition (25), which shows that in
financial markets with multi-assets, the no good deal condition for fundamental
theorem is more general than the no free lunch with vanishing risk condition.

Theorem 13 Assume that

T �
∑m

j=1(σσ∗)ij + 3(μi − r)
[
∑m

j=1(σij)2 + (μi − r)][
∑m

j=1(σσT)ij + 2(μi − r)]
∨ 1

μ − r
.

Then condition (25) implies condition (29), which indicates that the no good
deal condition for fundamental theorem is weaker than the no free lunch with
vanishing risk condition.
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