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a b s t r a c t

The primary aim of this investigation was to understand the effect of temperature fluctuations on a
number of various solder materials namely SAC105, SAC305, SAC405 and Sn–36Pb–2Ag. To achieve this
objective, three different classic joint assemblies (a ball joint, a test specimen joint and finger lead joint)
were modeled which provided the foundation for the creep and fatigue behaviors simulation. Anand’s
viscoplasticity as a constitutive equation was employed to characterize the behavior of solders numeri-
cally under the influence of thermal power cycles (80–150 �C) and thermal shock cycles (�40 to 125 �C).
To extend the research outcome for industrial use, two additional research activities were carried out.
One of them was to obtain lifetime-predictions of solder joints based on Coffin Manson concept. The
other one focused on parameterization to obtain the ideal solder thickness under the consideration of
plastic strain and economic benefit.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solders, made of fusible metal alloys, are used to join two parts
together in an electronic assembly. Apart from the mechanical
bonding, they also provide an electrical interconnection between
the two parts [1]. Due to the differences in material properties such
as the coefficients of thermal expansion (CTE) of the metal parts,
thermal stresses arise in the assembly, which consequently lead
to a reduction in the lifetime of the joint [2]. In thermal fatigue,
there is a transition from fatigue failure to creep failure as the tem-
perature increases (creep dominates at higher temperature) and
the situation becomes even more complicated if both fatigue and
creep interact with each other during thermal or power cycling
of electronic packages.

Lead based solders have been used for many years in the indus-
try because of their good material properties. Due to the new leg-
islation ‘‘Restriction of Hazardous Substances Directive’’ in 2006,
lead based solders are gradually being replaced by lead free solders
in the electronic industry [3]. At present, the creep behavior and
lifetime expectation of these lead free solders are not well under-
stood under the influence of temperature fluctuations. Therefore,
much effort is being expended in time-consuming experimental

investigations to obtain data on the creep behavior and the lifetime
expectation.

The literature review highlighted three typical but different
joint assemblies (a ball joint, a test specimen joint and finger lead
joint) for which clear joint geometry, solder properties and loading
cycles were given, in conjunction with experimental test data.
With this combination of test case information, it was possible to
run a series of simulations using Anand’s viscoplasticity model to
gain information about the impact of temperature fluctuations on
different solders. Empirical methods were then used to predict
the life of these joints in terms of the number of cycles to failure
(Nf).

In our view this paper will provide a starting point from which
other researchers can obtain geometry, material properties and
boundary conditions to benchmark their own use of computational
creep models of lead-free solders. In comparison to the previous
work, this investigation provides a good assessment of various sol-
der behaviors in different geometries and load cycles under a con-
stant simulation settings.

2. Modeling methodology and benchmark simulations

A printed circuit board (PCB) is an electronic assembly in which
electronic chips or leads are fastened via solder joints [4]. Such
assemblies play an important role for computers [5] and other

http://dx.doi.org/10.1016/j.microrel.2014.02.017
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appliances. Therefore, three of the most widely used solder joint
models were chosen and designed after reviewing current litera-
ture. Figs. 1 and 2 illustrate the finger lead joint made of a copper
finger lead, a thin solder layer (thickness of 200 lm, length of
2400 lm and width of 800 lm) and a copper plate. The test spec-
imen joint (Fig. 3) whose geometry was also used by [6], consisted
of two identical sized copper plates and a thin solder layer (thick-
ness of 180 lm, width of 1000 lm and length of 3000 lm). The ball
solder joint (Fig. 4) as described in [7,8] is used in the Ball Grid
Array (BGA) assembly, and consists of two identical sized copper
plates and a solder ball (width of 0.484 mm, top diameter of
0.484 mm and Ball diameter of 0.744 mm).

Modeling is an extremely useful tool in the early design stage to
reduce the cost and time of testing. The accuracy of the results

significantly depends on the choice of the constitutive equations
employed and the material parameters used for modeling [9].

2.1. Visco-plastic models

In general, the unified viscoplastic model considers the inelastic
strain rate variation by using a flow law and the variation of the
state variables described by evolution equations. Some unified
viscoplastic models are the Anand model, McDowell model, Basa-
ran et al., Wei et al. and Chaboche’s model. The Anand model is
one of the simplest models which can be implemented in the FE
codes. Chaboche’s viscoplastic model includes combined kine-
matic/isotropic hardening effects whereas Anand model considers
only the isotropic hardening effects. McDowell’s model comprises
the features of Anand model and Chaboche’s model. It uses the
Zener Hollowman parameter for creep activation mechanisms
and combined kinematic/isotropic hardening [10].

2.2. Anand model

Anand is a common alternative model to creep for simulation of
viscoplastic behavior in solders. Many previous simulations have
been carried out with the Anand model and published [11,12].
The Anand model is expressed by a flow equation and three evolu-
tion equations, as written mathematically below.

Flow equation

_ep ¼ A exp � Q
RT

� �
sinh n

r
s

� �h i1=m
ð1Þ

where _ep represents the inelastic strain rate, A is a pre-exponential
factor, Q is used for the activation energy, R stands for gas constant,
T is absolute temperature, n is the multiplier of stress, r is the
equivalent stress, m is strain rate sensitivity.

Evolution equations

_s ¼ h0ðjBjÞa
B
jBj

� �
_ep ð2Þ

where

Fig. 1. Finger lead model (top view).

Fig. 2. Finger lead joint (front view).

Fig. 3. Test specimen joint.

Fig. 4. Ball joint.

Table 1
Anand parameters for various solders [12,13].

Symbol Units SAC105 SCA305 SAC405 Sn36Pb2Ag

S0 MPa 2.348 2.150 1.3 12.41
Q/R K�1 8076 9970 9000 9400
A S�1 3.773 17.994 500 4000000
n 0.995 0.350 7.100 1.5
M 0.445 0.153 0.300 0.303
h0 MPa 4507.5 1525.98 5900 1379

Ŝ MPa 3.583 2.536 39.4 13.79

N 0.012 0.028 0.030 0.07
A 2.167 1.690 1.100 1.3
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B ¼ 1� s
s�

ð3Þ

And s* can be determined mathematically using

s� ¼ ŝ
_ep

A
exp

Q
RT

� �� 	n

ð4Þ

In this case, the hardening/softening is abbreviated by h0,
whose strain rate sensitivity is shorten by a. s* represents a satura-
tion value of deformation resistance s, and n is the strain rate sen-
sitivity for the saturation value of deformation resistance. Some of
the Anand parameters used for the simulations are shown in
Table 1.

The material properties used for the simulation are listed in
Table 2.

The finite element program ANSYS workbench 14.0 was em-
ployed to simulate the creep and fatigue behavior for various types
of solders including hypoeutectic lead-free solders SAC105,
SAC305, SAC405 and lead solder Sn–36Pb–2Ag. Two types of tem-
perature loadings were used in the models, namely thermal power
cycles (80–150 �C) and thermal shock cycles (�40 to 125 �C). This
loading impact on the materials was simulated by using the consti-
tutive equation based on Anand’s viscoplasticity model. The tem-
perature profile for thermal power cycles (80–150 �C) followed a
typical zigzag profile (Fig. 5) whose first ramp up rate of 700 �C/s
heats up the assembly from 80 �C to 150 �C within 0.1 s followed
by a second cooling rate of 7 �C/s for 10 s. For the thermal shock
profile (Fig. 6), the ramp rates for heating and cooling the assembly
between the temperature extremes of �40 �C and 125 �C takes
15 s. The dwell time for both extremes is 30 min.

The 3D models were meshed structurally using solid 186 ele-
ments (Fig. 7) which were defined by 20 nodes and allowed to ex-
hibit quadratic displacement behavior [18]. The minimum number
of substeps was set at 5 and the maximum number was 20 for all
load steps using the multistep function available in workbench
14.0.

2.3. Life prediction models

The concept of the fatigue life models is to determine the num-
ber of cycles that an assembly can endure before failure. Several fa-
tigue models were investigated and proposed to predict the fatigue
life on the basis of [19]:

� Stress.
� Strain energy density.
� Creep strain.
� Damage mechanics.

The Palmgren–Miner rule predicts the fatigue life based on the
assumption of linear accumulation of damage in specimens
subjected to variable amplitude (VA) loading [16]. The

Table 2
Material properties of solders and copper.

Material
Properties

Units Solder

SAC105
[13,14]

SAC305
[13,15]

SAC405
[16,15]

Sn36Pb2Ag
[17]

Density kg m�3 7334.2 7400 7440 8410
CTE K�1 1.95E�05 2.00E�05 2.00E�05 2.40E�05
Young’s modulus Pa 4.41E+10 5.12E+10 4.46E+10 3.36E+10
Poison’s ratio – 0.42 0.4 0.42 0.4
Tensile yield

strength
Pa 2.27E+07 3.35E+07 2.85E+07 3.02E+07

Compressive yield
strength

Pa 2.88E+07 2.96E+07 3.19E+07 3.12E+07

Tensile ultimate
strength

Pa 2.93E+07 3.95E+07 3.99E+07 3.39E+07

Compressive
ultimate
strength

Pa 4.94E+07 5.85E+07 3.62E+07 4.94E+07

Material Properties Units Copper [17]

Density kg m�3 8960
CTE K�1 1.70E�05
Young’s modulus Pa 1.28E+11
Poison’s ratio – 0.34
Tensile yield strength Pa 7.00E+07
Compressive yield strength Pa 6.90E+07
Tensile ultimate strength Pa 2.20E+08

Fig. 5. Power cycle (80–150 �C).

Fig. 6. Thermal shock cycle (�40 to 125 �C).
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Monkmann–Grant method is used to calculate the time of rupture
based on creep. This method belongs to the category of the primary
damage mechanism [23].

Strain based models take into consideration of the loss of
ductility in the solders and probably be more suitable for ductile
solders such as leaded solders. Strain energy density based criterion
emphasize on the strength and ductility of the solder and be
more applicable to modern Sn–Cu–Ag solders. Damage mechanics
deals with the concept of crack initiation and propagation in
solders. In general, different models are suitable for different
scenarios, but common practice is to use them concurrently. For
this analysis, the Coffin–Manson model was used to calculate
the number of cycles to failure (Nf) because of its simplicity
and reliability in other applications [9,20,21,22]. According to this
method, the total number of cycles to failure can be defined by
either Creep Strain or Creep Energy Density through the following
relations [20]:

Nf ¼ A Decrð ÞB ð5Þ

Nf ¼ C DWcrð ÞD ð6Þ

where A and B are the material constants. The term Decr is known as
creep strain, but in our case it is equivalent plastic strain, which can
be obtained from FEM simulations for each individual load step.
Equivalent plastic strain obtained from FEM simulations contains
two strain components: time dependent creep strain and time
independent plastic strain. For the sake of our analysis it was
not possible to isolate true creep strain components. In this case,
the hardening effect will be considered in the Anand model
used in the previous stage. Once the above values are known, the
life prediction curves can be plotted. An accurate life prediction
can be achieved when a simulation runs with constants whose

Fig. 7. Mesh element used in modeling.

Fig. 8. Equivalent plastic strain for various solders in test specimen (a) and finger
lead design (b) under power cycling using Anand model.
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values were experimentally derived from similar boundary condi-
tions to those used in the simulation [19].

3. Results and discussions

Simulations for the finger lead benchmark with ternary tin–sil-
ver–copper solders SAC105, SAC305, SAC405 and a lead solder
Sn36Pb–2Ag, were carried out using the Anand constitutive equa-
tion. Fig. 8 shows several plastic strain creep curves of different
solders used for test specimen and finger lead model. The strain-
time curve shows two distinctive regions. In the first region, an ini-
tial high strain rate slows down with increased time until it almost
becomes constant where a balance between work hardening and
the recovery process occurs.

As seen from the comparative results in Fig. 8a and b, SAC305
has the highest creep resistance among the solders followed by
either SAC105 or SAC405 and Sn36Pb–2Ag. SAC405 has a lower
creep resistance than SAC305 which does not conform to the
experimental results. It has been shown in the literature that the
increased silver content prevents shear plastic deformation of the
solder bump [24]. However, some of the outcomes reflect the con-
clusions drawn from experimental results. For example, it was no-
ticed from the experimental outcome that SAC105 has a very good
creep resistance compared to the lead solders at lower stress,
which was also shown from the simulations [25].

Another conclusion drawn by Ref. [7] was that SAC105 exhibits
a poor thermal cycling performance in comparison to SAC305,
which is also reflected in the current results.

Fig. 9 illustrates several plastic strain curves obtained by simu-
lations with finger lead, test specimen and ball joints using Anand
model under the thermal shock condition. The outcomes are simi-
lar to the results from the power cycles conditions in terms of the
relative creep resistance of the solders used.

The contour plots of the Equivalent von-Mises stresses are
shown in Fig. 10 for the three benchmark problems, exposed to dif-
ferent thermal cycles: test specimen (a), finger lead (b) and ball
solder (c). The evolution of maximum stresses in the finger lead oc-
curred at the corners whereas in the test specimen and ball solder
the maximum stress developed at the interface between the solder
and copper plates.

The finger lead benchmark with SAC105 solder was simulated
under different thermal loadings to answer the question ‘‘Which
of the thermal cycles generated more strain in the joint?’’ The an-
swer of this question was that the power cycle developed a faster
plastic strain accumulation than the thermal shock cycle illus-
trated in Fig. 11.

To predict the lifetimes of SAC305 and Sn–36Pb–2Ag, the re-
sults from the finger lead simulation under the power cycle were
used with the parameters listed in Table 3.

As can be seen in Fig. 12, SAC305 had a shorter lifetime than the
lead solder under the power cycle condition at the lower strain
range whereas at the higher strain range, lead solder has a shorter
lifetime in comparison with lead free solder SAC305.

A parameterization study was conducted with the objective to
obtain a minimum plastic strain as a function of solder thickness.
Hereby, the Anand parameters for SAC105, SAC305, SAC405 and
Sn–36Pb–2Ag and the material thickness between 0.1 mm and
0.5 mm were used for this investigation.

As can be seen in Fig. 8a and b, the strain rate values of different
geometries and load cycles vary with a factor of 1000.

To determine then the Nf for all models despite the huge varia-
tion, two different strain ranges were selected namely 0.0004 and
0.05. The values of Nf at strain range 0.0004 are listed in Tables 4
and Table 5 listed the values of Nf at strain range 0.05.

As seen in Fig. 13, the equivalent plastic strain in all solders falls
steeply between 0.1 mm and 0.3 mm. After thickness of 0.3 mm,
the equivalent plastic strain decreases at a slow rate. The signifi-
cant finding to emerge from this research activity is that the solder
thickness also plays an important part in the outcome of the joint
reliability. In respect of cost versus lifetime, a thickness of 0.3 mm
might be the ideal solution.

4. Conclusions

� The results of Sn36Pb2Ag, SAC105 and SAC305 were in good
agreement with the conclusions from other experimental work
in terms of the increasing order of creep resistance. Interest-
ingly, SAC405 did not follow the trend.

Fig. 9. Equivalent plastic strain for various solders in test specimen (a) and finger
lead design (b) and ball solder design (c) under thermal shock cycling using Anand
model.
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� The creep behavior of the lead free solders was successfully
simulated for all models under the power cycles and thermal
shock cycles loadings. Surprisingly, it was not possible to simu-
late the creep behavior of lead solder used in the finger lead
model under thermal shock.
� Corners and interfaces are the areas where solders experience

the maximum stresses.

� Power cycles develop higher strain in the joints in comparison
with thermal shock cycles.
� Whilst there is a large amount of prior work, detailed bench-

mark case studies with clear geometry, material properties
and experimental data have been hard to come by, and would
justify future work concentrating on such benchmarks specifi-
cally for model validation purposes.

Fig. 10. Equivalent von-Mises stress for various solders in test specimen with thermal shock (a) and finger lead design with power cycle (b) and ball solder design with
thermal shock (c) using Anand model.
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� The parameterization study emphasized the important factor of
solder thickness for joint reliability.
� This research has highlighted many questions about the mate-

rial properties, which need further investigation. It would be
ideal to obtain material properties with the same temperature
profile used for the simulation.
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