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Quantum simulation of ZnO nanowire piezotronics

Leisheng Jin and Lijie Li∗

College of Engineering, Swansea University,
Swansea, SA2 8PP, UK

(Dated: June 18, 2015)

We address the problem of quantum transport in a nanometre sized two-terminal ZnO device
subject to an external strain. The two junctions formed between the electrodes and the ZnO are
generally taken as Ohmic and Schottky type, respectively. Unlike the conventional treatment to
the piezopotential, we treat it as a potential barrier which is only induced at the interfaces. By
calculating the transmission coefficient of a Fermi-energized electron that flows from one end to the
other, it is found that the piezopotential has the effect of modulating the voltage threshold of the
current flowing. The calculations are based on the quantum scattering theory. The work is believed
to pave the way for investigating the quantum piezotronics.

PACS numbers: 03.65.Sq, 7.55.hf
Keywords: Piezotronics, Quantum simulation

I. INTRODUCTION

Piezotronics, coined by Zhonglin Wang in 2007 [1],
refers to the fabricated electronics whose charge trans-
port behaviour across a metal/semiconductor interface
or a p-n junction can be tuned by inner-crystal piezopo-
tential that plays the role of the gate voltage. ZnO as
a piezoelectric material possessing two important prop-
erties, i.e., semiconductive and piezoelectric, has been
extensively studied as one of the most ideal candidates
for piezotronic devices, and many applications material-
ized by ZnO such as actuators, sensors and energy har-
vesting devices have been achieved. For example, pH,
glucose and protein sensors fabricated using metal-ZnO
micro/nanowire-metal (MSM) structure were realized in
[2] [3] [4]. Instead of using a single nanowire, wearable
devices and pressure mapping sensors fabricated by ZnO
nanowire arrays were explored in [5] [6] [7] as well. Re-
sistive switching devices were also achieved using ZnO
nanowire arrays [8].

The fundamental physics behind the nanogenerator
based on the ZnO nanowire has previously been dis-
cussed. The Schottky theory to explain the tunability
of current transport in the piezotronics is deemed as the
mainstream. It was argued that the piezopotential in-
duced at the interface of the M−S is behaving as a po-
tential modulator (gate voltage) which exists in a certain
width, and the framework has been systematically pre-
sented by Zhang et al. in [9], and the theory was further
developed into a new branch called piezo-phototronics by
Liu et al. in [10]. These two studies have provided rea-
sonable explanations for the experiments. However, the
theory constructed by the above literatures is still under
the consideration of classical physics, i.e., the classical
current-voltage formula in the semiconductor physics for
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calculating the current have been employed [9]. This is
satisfactory for investigating the device which has a rela-
tively larger scale [11] (L � de Broglie wavelength of an
electron) but may not be very appropriate for the scale
when the quantum effect cannot be ignored (for example:
L ∼ λ) . In the latter case, the quantum effect will affect
the working status of the device, and some unexpected
quantum phenomenons emerge. Therefore, construct-
ing the theory of the electron transport in piezotronics
with the contents of quantum physics is becoming de-
sirable. Especially nowadays, the devices are drastically
decreased in size with the rapid development of fabri-
cation techniques. The development of the theory will
benefit to the exploration of the quantum piezotronics.
In this work, investigation has been conducted to under-
stand the quantum physics of the electron transport in
piezotronic nano devices. By taking M-S-M ZnO struc-
ture that has ballistic length as a paradigm, we postulate
the theoretical work for calculating the electrical current
in the two-terminal device. We treat the electron trans-
port from the perspective of quantum scattering theory.
Instead of seeing the electron as a classical partial, the
electron is treated as a quantum wave. The piezopoten-
tial induced at the interface were assumed to be taking
up a certain width [9], while in this work the piezopoten-
tial is calculated only at the interface, which is believed to
be more accurate, in particular, for the very short device.
The work is believed to shed some light on understanding
the next-generation quantum piezotronic devices. The
theoretical analysis will be given in the section 2, where
the basic background of the model and the fundamental
view of the electron transport in the two-terminal device
are described. Numerical simulation that is based on the
reasonable parameters will be conducted in the section 3,
and finally the conclusion is presented in the section 4.
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FIG. 1. Schematic of the ZnO device.

II. THEORETICAL ANALYSIS

In the device (schematically shown in Fig. 1), the ZnO
nanowire is seen as a quantum wire, which is very short
in z-direction (about 80nm) and has an extremely small
area of cross section in x−y plane. The electron transport
in z-direction can be seen as ballistic, and only a few
electron energy states exist in x−y plane. For an electron
in quantum wire, its energy is given by:

E =
π2~2

2m

(
n2x
L2
x

+
n2y
L2
y

+
~2k2z
2m

)
nx, ny = 1, 2, ... (1)

where the electron in z-direction is modelled by plane
waves with wave number kz. ~ is the Planck’s constant
divided by π. nx and ny are energy quantum number in
x and y directions, respectively. m is the effective mass
of the electron. Lx and Ly are the lengths in x−y plane.
Three modes of the energy in quantum wire are plotted
in Fig. 2. The electrons in the nanowire will occupy the
energy level from low to high, and in the equilibrium
state the highest occupied energy is called quasi Fermi
levels, represented by F+ for electrons with +k and F−
for the electrons with −k.

The left (Source) and right (Drain) electrodes of the
device are assumed to be reservoirs of electrons, i.e., the

FIG. 2. Energy modes of electrons in ZnO wire.

FIG. 3. Energy distribution of electrons in the electrodes.

electrons are kept presumably in equilibrium state, even
under an applied voltage. The potential inside of the
electrodes is approximately constant while the potential
at the boundaries has a step which confines the electrons.
The whole potential profile of the electrodes can be seen
as a finite square well as shown in Fig. 3. The allowed ki-
netic energy and wave functions of electrons inside of the
electrodes can be obtained straightforwardly by solving
the Schrodinger equation, as:

Tn =
~2k2n
2m

=
n2π2~2

2mL2

ψn(z) =
√

2/L sin knz =
1

i
√

2L
(eiknz − e−iknz) (2)

where L is the length of the electrodes in z-direction and
n (n=1,2,3) is the energy quantum number. kn is z-
direction component of wave vector at energy state n.
The electrons occupy the energy state according to the
Pauli exclusion principle that demands one energy state
can only be taken by two electrons if considering the spin.
The highest energy state occupied by electrons is Fermi
energy EF or so-called chemical potential µ. When the
electrodes and the ZnO nanowire are connected and there
is no bias applied to S and D, the Fermi energy must be
constant through the device. Otherwise, there will be
current flowing. This scenario is plotted in Fig. 4, where
the chemical potential µS , F+, F− and µD are being flat.
The number of electrons with k+ wavenumber equals to
the number of the electrons with k− wavenumber so there
is not current. If a DC voltage Ve is applied to the source
(S) and drain (D), the electron equilibrium state will
be broken. As shown in Fig. 5 the unbalance between
the electrons with k+ and k− occurs with F+ is higher
than F−, which leads to some uncompensated electrons
that have energy between F+ and F - flowing into the
drain, i.e., current induced. The quasi Fermi level now
has the following relations with chemical potential, which
are: F+ = µS and F− = µD. Also, the relation of the
shift between the potential energies of electrodes and the
applied Ve is given by µD − µS = −qVe , where q is the
charge of a single electron.

Under an applied voltage Ve, the current in a ballistic
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FIG. 4. Electron states when the device is in equilibrium.

FIG. 5. Electron states when the device is applied a voltage.

quantum wire is given by the famous Landauer formula,
which is:

Iin = −q2 Ve
π~

(3)

Iin is the current brought by the uncompensated elec-
trons. However, in this device, the quantum wire is
made by ZnO, which is semiconducting material, and
the electrodes are made of metals such as Ag. When
a two-terminal device is fabricated, the M-S interfaces
would be formed into ohmic or Schottky junction. In
this work, we consider the general case, that is ohmic at
left end and Schottky at right. Due to the depletion re-
gion formed at the interface, the current Iin, therefore,
transmits through the device partially, and the transmit-
ted current can be obtained by:

IT = TIin = −q2 Ve
π~
T (4)

where T is the transmission coefficient for an electron
that has the Fermi energy in the left electrode. From
Eq. (4), it can be seen that the problem of calculating the
current in the short device is transformed into a quan-
tum scattering problem. Thus, the key is to analyse the
transmission coefficient T .

In order to calculate the T , a method that can be used
to calculate the transmission coefficient of arbitrary po-
tential barrier is used [12]. As shown in the Fig. 6, the
potential inside the wire in z-direction has been divided
into many small rectangles, the potential U(zj) of jth

segment is given by U(zj) = V [(zj−1 + zj)/2], where j is
the number of the segment(j=0, 1, 2, 3, N, N+1), and
V (z) is the potential energy of the whole device includ-
ing the electrodes. If the j is taken larger and larger, the
continuous potential variation will be recovered gradu-
ally. For a single rectangular potential barrier j, the
time-independent wavefunction of an electron inside j is
described by the Schrodinger equation:

Eψ(zj) +
~2

2m

d2ψ(zj)

dx2
− U(zj)ψ(zj) = 0 (5)

where the E is the overall energy of the electron. The
wave function of ψj can be derived easily:

ψj = Aje
ikjz +Bje

−ikjz (6)

where kj =
√

2m(E − U(zj))/~. According to the quan-
tum theory, the ψj and dψj/dz should be continuous at
each boundary, then the amplitude Aj and Bj can be
determined by the following equation [12]:

(
Aj

Bj

)
=

j=1∏
l=0

Ml

(
A0

B0

)
(7)

where Ml is given by:

Ml =

[
(1 + Sl)e

−i(kl+1−kl)zl (1− Sl)e
−i(kl+1+kl)zl

(1− Sl)e
i(kl+1+kl)zl (1 + Sl)e

i(kl+1−kl)zl

]
(8)

and Sl = kl/kl+1.The scattering matrix M can then be
obtained as:

M =

[
M11 M12

M21 M22

]
=

N∏
l=0

Ml (9)

Finally, the T can be calculated by: T =
kN+1/k0|k0/(kN+1M22)|2, provided the A0=1 and
BN+1=0.

The potential energy function V (z) has to be clarified
if calculating the T by the above method. First, the
potential variation under an applied Ve is assumed to be
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linear as the quantum wire is not a perfectly metallic
wires but a short nanoscale device, and the electrodes
have a relatively bigger cross-section area. The source
and drain capacitances can then be simply represented
by parallel plate capacitors. The potential energy in the
wire can be described by:

Vw(z) = Vw0 − qVe
CD(z)

CES(z)
(10)

where CES = CD + CS is total electrostatic capacitance
at point at z, and CD and CS are the capacitance linking
the point at z to drain and source, respectively. Vw0 is
the initial potential energy field of the electrons in the
quantum wire. We have presented the picture of poten-
tial Vw0 in Fig. 6, where at the left end and right end the
potential variations due to the M-S contact have been
considered. The Vw0 in the M-S contact region can be
calculated by Poisson equation, In the simulation, when
calculating the potential of the Schottky junction, we use
the equation Vw0 = −q2Nd/(2εs)[z

2
d − (zd − z)2], where

the origin is taken at the right interface, and the direc-
tion of z is pointing to the left. As the electron flows from
the left to the right, the Schottky at the right end is for-
wardly biased. The zd is the depletion layer width, and
it can be obtained as zd =

√
2εs(φb − Ve)/qNd. Nd is

the donor density and φb is the built-in potential which
can be calculated easily with the work function of the
electrode. Similarly, the variation potential energy in a
ohmic junction can be derived by passion equation as
well, i.e. Vw0 = q2Nd/(2εs)[z

2
0 − (z0 − z)2], where z0 is

the width of the charged region where ohmic junction is
formed. Apart from the charged region at the two in-
terfaces, the Vw0 in the rest region can be derived by
continuous condition.

It should be noted that we have ignored the charging
effect of the wire in Eq. 10, assuming one electron that
flows into the nanowire would not affect the local poten-
tial. Substituting CS(z) = εA/z, CD(z) = εA/(Lz − z)
into Eq. 10, the Vw(z) can then be explicitly expressed
as:

Vw(z) = Vw0 − qVe
1/CS(z)

1/CD(z) + 1/CS(z)

= Vw0 − qVe
z

Lz
(11)

When the substrate of the device is stretched or com-
pressed, there will be strain induced in the quantum
wire along the z-axis, and due to the piezoelectricity,
the quantum wire will generate piezoelectric charge at
the interface of the ZnO wire and the electrode. Mean-
while, the induced piezoelectric charges change the local
electrical field and the potential. Thus at the left and
right interfaces, the piezopotential Vp has to be consid-
ered according to piezoelectricity theory. Assuming there
is a tensile stain s33 in z-direction, then negative charge
will be induced at the right interface and positive charge

will be at the left interface, and if we define the density
of the piezoelectric charge induced at the interface is ρp
at the two interfaces, the piezoelectric potential can be
obtained by using the Poisson equation:

−d
2Vp(z)

dz2
= q

ρp(z)

εs
(12)

Take the left interface for instance, by integrating the
Eq. 12 over the piezoelectric width zpl, we can get:

Vp(z) =
q

εs
ρp(zpl − z/2)z

zl ≤ z ≤ zpl (13)

Overall, under an applied voltage Ve , and meanwhile,
suffering a strain along the z-axis, the potential V (z) in
the device can be represented by a piece wise function,
that is:

V (z) =


VL z < zl
Vw + qVp(z) zl ≤ z ≤ zpl
Vw zpl < z < zpr
Vw + qVp(z) zpr ≤ z ≤ zN
VR z > zN

(14)

where VL and VR are the potential in the two electrodes,
Vp(z) is the piezoelectric potential generated at the inter-
face, which depends on the strain at the point z. zpl and
zpr are the assumed width that has piezoelectric charge
at the left and right interface, respectively. For the left
(z < z0) and right (z > zN ) region, where the potential
is constant, the solutions to the Schrodinger equation are
plane waves, which are expressed as:

ψL(z) = A0e
ikLz +B0e

−ikLz (15)

and

ψR(z) = AN+1e
ikRz +BN+1e

−ikRz (16)

with kL =
√

2m(E − VL)/~ and kR =
√

2m(E − VR)/~
as the wavenumber, where E is the total energy of the
electron. In this work, only the electrons that come
from the source are considered so the plane wave that
come from drain are ignored, i.e. BN+1 = 0. Com-
bining the Eqs. 6 - 16, the transmission coefficient T
(T = kN+1/k0|k0/(kN+1M22)|2) of an electron that has
Fermi energy can be numerically calculated.

III. NUMERICAL SIMULATION AND
DISCUSSION

For the ZnO nanowire, the ballistic channel length l
can be evaluated by comparing the transit time τ and its
average scattering time τm, that is
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FIG. 6. Energy diagram of the device when there is no applied
voltage and strain.

τ

τm
=
l2/µmVe
mµm/q

=
ql2

mVeµ2
m

(17)

where m is the effective mass of the electron and
µm is electron’s mobility. Assuming the Ve=1 V,
µm=500cm2/V s and The l is calculated, when τ/τm=1,
to be about 92 nm. In our simulation the length of the
nanowire Lz will be taken as 80nm as to satisfy the bal-
listic transport regime.

As the zpl is very narrow (zpl � Lz), the variation of
the Vp(z) can be ignored, and we take zpl equal to the
width of one segment. For the right interface, the in-
duced charge is positive so the Vp(z) at right interface
is negative, and by symmetry we can take the −Vpa to
represent the piezoelectric voltage over there. As the po-
larization of the piezoelectric Pz can also be expressed
as: Pz = e33s33 = qρpzpl , the Vpa can then be re-
written as: Vpa = zple33s33/(2εs), in which the strain
and the piezoelectric potential is related [9]. The strain
s33 is varying in [-0.5/100, 0.5/100] in this simulation.
The piezoelectric constants are taken as e31=-0.51 C/m2,
e33=1.22C/m2 and e15=-0.45C/m2, respectively, and the
relative dielectric constant εs=8.91. The material of the
two electrodes is Ag. The donor density Nd in the ZnO
is taken as 1 × 1016/cm3. The built-in potential of the
Schottky barrier φb=0.3 eV. An electron that comes from
the source with E = EF ≈ 5.49eV . The potential field
in the nanowire is divided into 360 grids (z1 to z361).

Based on the parameters taken above, the potential en-
ergy diagram of the device including two electrodes has
been plotted in Fig. 6, where the Schottky barrier at the
right side is about 0.3 eV, and an electron that have en-
ergy EF from the left electrode with amplitudeA0 andB0

is shown, represented by the red and blue arrows in the
figure. The amplitude of the incoming electron in each
segment are presented by Aj and Bj , and when the elec-
tron reach the right electrode, it has only the amplitude
AN+1 as we assume there is no electron coming from right
electrode. The transmission coefficient T when there is
no strain in the nanowire is firstly calculated in Fig. 7. In
Fig. 7(a), the potential energy diagram under the applied
voltage Ve is shown. The potential is linearly decreased

FIG. 7. Transmission result when the device is applied a
voltage Ve (0-1V). a) potential energy. b) Transmission vs
Ve. c) Transmission current Iz vs Ve.

FIG. 8. Transmission result when the device is applied a
voltage Ve (0-1V) and suffering a stretched strain 05/100. a)
potential energy. b) Transmission vs Ve. c) Transmission
current Iz vs Ve.
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FIG. 9. Energy band (a), Transmission vs Ve (b), and Trans-
mission current Iz vs Ve (c) for different strains.

FIG. 10. Switch voltage Vt when the device suffering a strain
from -0.5/100 to 0/5/100.

from the left to right, as we added the negative voltage to
the left. In Fig. 7, it is seen the variation of the T versus
applied voltage Ve. The transmission coefficient displays
a bit nonlinearity while in some regions the T is oscillat-
ing periodically due to the resonance through the virtual
states above the barrier. In Fig. 7(c), the current with the
varied applied voltage Ve has been plotted by employing
the quantum transport Eq. 4. Furthermore, when there
is a strain of 0.5/100 along the z-axis of the device, the
potential diagram, transmission coefficient and quantum

current have been calculated in Fig. 8. As we can see in
Fig. 8, due to the strain, the piezopotential is appearing
at the two interfaces, indicated by the arrows. Using this
method, we can accurately model the piezopotential. In
the conventional treatment, the piezopotential can only
be assumed in the layer [9]. In Figs. 8(b) and (c) the
transmission coefficient T and transmitted current ver-
sus Ve under the strain of 0.5/100 have been plotted.
Compared with Figs. 7(b) and (c), there is less oscilla-
tion, and the switch voltage for opening up the device
is increased. That is because the piezopotential induced
at the interface have led to the potential inside the de-
vice discontinuous as well as making the barrier at the
right interface higher. Fig. 9 displays results for en-
ergy band, T -V , and I-V for various strains. The results
reflect a combination of the asymmetric and symmetric
effects. When the strain is 0, there is no piezoelectric ef-
fect. Combined piezoelectric and piezoresistance effects
appear as the device under a non-zero strain. In order
to investigate how the strain affects the switch voltage of
the device, we have calculated the switch voltage when
the device is suffering the external strain from -0.5/100
to 0.5/100, it is found from Fig. 10 that when the device
is compressed the switch voltage keeps constant, while
the threshold will be increased linearly when the device
is stretched. That is because the current transport in
this device is determined by the barrier at the right, and
only if the device surfers a stretched strain the barrier at
the right interface become higher. Under the quantum
regime, the piezopotential is considered as being induced
by surface charges and has no significant effect on the
Schottky potential in the nanowire body. Therefore as
the device under a tensile stress, the piezopotential is
larger than the Schottky barrier height (SBH), rising up
Vt. On the contrary, as the piezopotential is smaller than
the SBH for the case of the device having a compressive
strain, the Vt is constant (governed by the SBH).

IV. CONCLUSION

As the device dimension reduces to the scale compara-
ble to the de Broglie length, quantum mechanics theory
has to be used. In this paper, quantum analysis of the
piezotronics of ZnO two-terminal device has been per-
formed. One dimensional chemical potential of the device
has been derived including the strain induced charges and
the Schottky junction effect. Transmission probability of
electrons along the calculated potential has been calcu-
lated using the quantum scattering theory. It is found
that the threshold point of the gate voltage has been in-
fluenced by the piezoelectric effect, which coincides with
the results from the conventional theory. Moreover the
electrical current fluctuates when the gate voltage is at
threshold region due to quantum tunnelling resonance.
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