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Relativistic integrable field theories like the sine-Gordon equation have an infinite set of conserved
charges. In a light-front formalism these conserved charges are closely related to the integrable
modified KdV hierarchy at the classical level. The latter hierarchy admits a family of symplectic
structures which we argue can be viewed as deformations of the relativistic sine-Gordon symplectic
structure. These deformed theories are integrable but no longer relativistic and the basic excitations
of the theory, the solitons, have an interesting non-relativistic dispersion relation that in a certain
limit becomes the dispersion relation of dyonic giant magnons of string theory in the AdS/CFT
correspondence. We argue that the deformed classical theories can be lifted to quantum theories
when the sine-Gordon theory is embedded in a larger theory that describes the string world-sheet
sigma model in AdS5 × S5.

1. The sine-Gordon theory is the most iconic relativis-
tic integrable field theory in 1 + 1 dimensions. It even
plays a role as a limited sector of the integrable structure
that lies behind the hidden Integrability of the AdS/CFT
correspondence. In this case, classical integrability can
be seen explicitly on the world-sheet of the string, and
the sine-Gordon theory describes the sector where the
string moves in R× S2 ⊂ AdS5 × S5.

What is interesting is that it provides a very simple
arena to describe certain integrable deformations of the
string world-sheet sigma model that potentially yield de-
formations of the complete AdS/CFT duality. The ap-
proach in this letter is complementary to the approach of
[1–5] who consider integrable deformations of the string
world-sheet sigma model directly in the Hamitonian for-
malism. Here, we shall follow [6–8] and work in a light-
front formalism that makes the relation with the well-
known integrable hierarchies and the soliton solutions
more concrete.

2. The sine-Gordon equation takes the form

∂+∂−φ+ sinφ = 0 , (1)

where x± = t ± x are light-cone coordinates. It is fa-
mously integrable since there exists an infinite series
of conserved charges Q(s) of odd spin s. The pair
p± = Q(±1) are the components of the energy-momentum
vector. All these charges Poisson commute in the classi-
cal theory:

{Q(s), Q(s′)} = 0 . (2)

It is useful, in the following, to work in a light-front for-
malism on surfaces x− = const. The Poisson bracket is
then

{φ(x+, x−), ∂+φ(y+, x−)} = δ(x+ − y+) . (3)

The conserved charges generate Hamiltonian symme-
tries that are conveniently written in terms of q = ∂+φ

∂q

∂t(s)
= {q,Q(s)} , (4)

where x± ≡ t(±1). The flow t(3) is identified with the
mKdV equation

∂q

∂t(3)
= −∂3

+q −
3

2
q2∂+q , (5)

while the other positive flows t(s), s > 0, are polynomial
in q and its ∂+-derivatives and give the whole mKdV
hierarchy of integrable equations. In contrast, the nega-
tive flows t(s), s < 0, turn out to be non-local. The first
non-trivial one is

∂q

∂t(−3)
= cosφ∂−1

+

(
cosφ∂−1

+ sinφ
)

+ sinφ∂−1
+

(
sinφ∂−1

+ sinφ
)
.

(6)

Written in terms of q̃ = ∂−φ = −∂−1
+ sinφ, the negative

flows give another copy of the mKdV hierarchy.
It is a key property that such an integrable hierarchy

can be described in terms of a multi-Hamiltonian struc-
ture [9–11], so that the same flows can be written in terms
of an infinite set of other Poisson brackets

∂q

∂t(±s)
= {q,Q(±s±2n)}(±2n) = θ∓n

δQ(±s±2n)

δq
, (7)

with both s and s + 2n > 0. Here, θn are the non-local
differential operators

θn = (−1)n(∂2
+ + ∂+q∂

−1
+ q)n∂+ = θ0θ

−1
−nθ0 . (8)

Notice that in (7) there are two separate towers, since

{q,Q(±s)}(±2n) = 0 for s− 2n < 0 (9)
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for each value of s > 0. All the Poisson brackets are co-
ordinated , meaning that any linear combination is also
a valid Poisson bracket and so satisfies the Jacobi iden-
tity. For n 6= 0, they are non-local, and their rigorous
description is still an open problem (see [12, 13] and the
references therein). The original symplectic structure (3)
is { , }(0), which is the only relativistic invariant one,
and θ1 provides the, so-called, second Hamiltonian struc-
ture [9, 10].

The combination

θ = −θ1 + 2θ0 − θ−1 (10)

gives the Poisson bracket of the gauge-fixed world-sheet
sigma model of the bosonic string moving on R × S1

[6, 7, 11], which is non-relativistic once the Virasoro con-
straints are imposed. One can now imagine deforming
the theory by changing the symplectic structure. In par-
ticular we shall be interested in the deformation inspired
by (10)

{Φ,Ψ}(0) −→ {Φ,Ψ}σ = κ
(
−σ−2{Φ,Ψ}(−2)

+
(
1 + σ−4

)
{Φ,Ψ}(0) − σ−2{Φ,Ψ}(2)

)
,

(11)

where σ ∈ [1,∞] and κ is an overall normalization. It
is clear that for finite σ the deformed theory will not be
relativistic either. In this new theory one can ask what
are the energy and momentum. We can identify these as
the generators of space-time translations

∂±q = {q, pσ±}σ , (12)

giving

pσ± = κ−1
∞∑
n=0

σ−2nQ(±2n±1) . (13)

3. The picture above generalises to a class of gen-
eralised sine-Gordon (GSG) theories that are associated
to any symmetric space F/G [14]. They describe the
Pohlmeyer reduction of sigma models with F/G as tar-
get. A symmetric space is naturally associated to an
involution σ− of the Lie algebra f that provides the de-
composition into eigenspaces f = g ⊕ p, with σ−(g) = g
and σ−(p) = −p. We can then construct a twisted affine
loop algebra by associating each elements of g and p with
appropriate powers of an arbitrary parameter z:

f̂ =
⊕
n

(
gz2n ⊕ pz2n+1

)
. (14)

The basic field is γ ∈ G ⊂ F . The equation-of-motion
can be written in Lax form as an f̂-valued connection
with light-cone components

L+(z) = ∂+ + γ−1∂+γ − zΛ ,

L−(z) = ∂− − z−1γ−1Λγ ,
(15)

where z is the spectral parameter and Λ is a constant
element of p. The equation-of-motion is then the flatness
condition

[L+(z),L−(z)] = 0 . (16)

The theory can be formulated in a manifestly relativis-
tic way as a gauged WZW model for the field γ ∈ G ⊂ F
gauged with respect to a subgroup H ⊂ G defined as the
centraliser of Λ acting as γ → hγh−1. The WZW model
is then perturbed by the potential term Tr(γ−1ΛγΛ).
The level k of the WZW term is the discrete coupling
of the theory. In the on-shell gauge Aµ = 0 the equation-
of-motion is precisely the flatness condition (16) [15].

The sine-Gordon theory itself is the example
SO(3)/SO(2) with

γ =

(
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

)
, Λ =

(
0 −1 0
1 0 0
0 0 0

)
. (17)

In this case there is no WZ term and the coupling k
needs not be quantised. The theory has a set of conserved
quantities Q[b] for each element of the affine algebra such
that b ∈ Cent (Ker adΛ). For sine-Gordon theory one has
Q(2n+1) = Q[z2n+1Λ].

The next simplest theory is associated to the symmet-
ric space S3 = SO(4)/SO(3) and is constructed via the
obvious generalisation of (17). This is the complex sine-
Gordon theory. In this case, embedding SO(3) in the
bottom right-hand corner of the 4-dimensional defining
representation of SO(4), Ker adΛ contains 2 elements

Λ =
1

2

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , τ =

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 . (18)

Here, τ is the generator of H = SO(2). This means that
there are now two infinite series of commuting conserved
quantities Q[z2n+1Λ] and Q[z2nτ ]. The pair Q[z±1Λ] are
once again identified with the light-cone components p±,
up to a scaling. But now there is a new spinless charge
Q[τ ] which is simply the SO(2) charge of the complex
sine-Gordon theory.

The whole story of the Poisson brackets goes through
exactly as for the sine-Gordon theory [8]. When formu-
lated on the field q = γ−1∂+γ, one can write

{Φ,Ψ}(2n) = −
∫
dx+ Tr

(δΦ
δq

(
adΛD

−1
+

)2n
D+

δΨ

δq

)
,

(19)

where D+ = ∂+ + q. For SO(3)/SO(2) these Poisson
brackets reduce to those given in (7) up to an overall fac-
tor of 1

2 . Just as in the sine-Gordon case, one can define a
family of symplectic structures {F,G}σ and we normalize
it with κ = 4π[k(1−1/σ2)]−1. In the limit σ →∞ with k
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fixed we recover the Poisson bracket of the GSG theory.
However, in the alternative limit σ → 1 as k → ∞ with
g = k(σ−σ−1)/4π fixed, one finds the Poisson bracket of
the gauge-fixed bosonic string sigma model on R× F/G
where g is the sigma model coupling. Note that in this
case the non-local looking form of the Poisson bracket is
an artefact of the gauge fixing procedure [6].

In the deformed theory the energy, momentum and
U(1) charge become

E =
k

4π
(σ + 1/σ)

∑
n∈Z

σ−|2n+1|Q[z2n+1Λ] ,

p =
k

4π
(σ − 1/σ)

∑
n∈Z

sign(n)σ−|2n+1|Q[z2n+1Λ] ,

Q =
k

4π

∑
n∈Z

σ−2|n|Q[z2nτ ] .

(20)

so that pσ± = (ξE ± p)/2, with ξ = (σ2 − 1)/(σ2 + 1).

4. This identification is supported by taking a soliton
of the GSG theory and evaluating its energy, momentum
and charge [16–18]. A soliton depends on the complex
parameters z± = e−θ±iα:

Q[z±(2n+1)Λ] =
4 sin((2n+ 1)α)

2n+ 1
e∓(2n+1)θ ,

Q[z±2nτ ] =
4 sin(2nα)

n
e∓2nθ , n ≥ 0 ,

(21)

and so

E

σ + 1/σ
± p

σ − 1/σ
=

k

2πi
log
[z∓ − σ±1

z∓ + σ±1
· z
± + σ±1

z± − σ±1

]
(22)

and

Q =
k

2πi
log
[ (σz+)2 − 1

σ2 − (z+)2
· σ

2 − (z−)2

(σz−)2 − 1

]
. (23)

When the soliton is semi-classically quantized using the
Bohr-Sommerfeld method, the charge Q is an integer and
so this fixes α = α(θ).

One can verify that tanh θ = ∂E/∂p which identifies
θ as the rapidity. The dispersion relation of the solitons
then follows as [22]

sin2
(ξE

4g

)
− ξ2 sin2

( p
4g

)
= (1− ξ2) sin2

(πQ
2k

)
. (24)

Note that, written in this way, it can be presented as an
exact equation by giving the exact σ(g, k) below.

In the relativistic limit σ → ∞ this gives the usual
relativistic dispersion relation of the GSG theory

E2 − p2 =
4k2

π2
sin2

(πQ
2k

)
. (25)

In the string sigma model limit, σ → 1 as k → ∞, we
have

E2 = Q2 + 16g2 sin2
( p

4g

)
, (26)

which is the dispersion relation of the dyonic giant
magnons [19].

5. In order to complete the relation to the AdS/CFT
one needs to add fermions. This is done by taking F/G
to be a semi-symmetric space. In the case of AdS5 × S5

the semi-symmetric space is [20, 21]

PSU(2, 2|4)/Sp(2, 2)× Sp(4) (27)

and the GSG theory is then an N = (8, 8) supersymmet-
ric theory with H = SU(2)4 R-symmetry.

In this context there is an exact conjecture for the
S-matrix of the deformed theory based on a quantum
group deformation of the magnon S-matrix of the string
sigma model with deformation parameter q = exp

(
iπ/k

)
[22, 23]. The dispersion relation of the magnon/soliton
excitations are precisely given in the quantum theory by
(24) with integer charges Q but with the exact relation

σ − σ−1 = 4g sin(π/k) . (28)

These excitations transform in particular representations
of the quantum supergroup Uq(psu(2|2))×2 which in-
cludes Uq(H) as its bosonic subgroup.

It is possible to check the S-matrix ansatz in the semi-
classical limit, that is g, k → ∞ with fixed ratio g/k. In
addition, the states with large charge, that is those where
Q/k is fixed as k → ∞, are realised as semi-classical
soliton states in the field theory. The S-matrix of these
states can then be compared against the classical scat-
tering of the solitons of the deformed GSG theory using
the Jackiw-Woo formula [25]

S(E) ∼ exp

[
i

∫ E

dE′∆t(E′)

]
, (29)

where ∆t(E) is the classical time delay experienced by
one soliton as it moves through another. In the deformed
theory, the time delay is equal to that in the GSG the-
ory because the equation-of-motion is independent of the
deformation, but the energy must be the deformed quan-
tity (20). The soliton time delays can be extracted from
the exact two soliton solutions constructed by the dress-
ing method in [17] as will be shown elsewhere.

6. To compare with the work of [1–5], note that the
deformation of the string sigma model considered in those
references corresponds to taking k imaginary. This means
that q = e−ε/2g is real and σ = eiβ , and so this excludes a
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direct connection with the GSG model. The deformation
parameter of [1–5] is

ε = sinβ . (30)

which is restricted to [0, 1]. The deformation with real
q is also considered in [26] (g there is our 2g and ν =
ε), where it is shown that the corresponding deformed
action constructed in [5] is consistent with the S-matrix
of [22, 23] at leading order in perturbation theory.

If one näıvely takes the deformed action of [5] and takes
q to be a complex phase, then the action is no longer real.
This is mirrored by the S-matrix in the vertex representa-
tion which is not unitary. However, unitarity at the level
of the S-matrix can be restored by transforming from the
vertex to the IRF representation [24]. In the relativistic
limit σ → ∞ this transformation is consistent with the
topological quantization of soliton boundary conditions
required to make sense of the WZ term in the Lagrangian
formulation [18]. However, it remains to be seen how to
implement the vertex-to-IRF transformation at the level
of the action for generic values of σ.
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