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Abstract 

Climate reconstructions produced using regression, with a proxy as the independent variable, 

are inevitably biased towards the mean, exhibit reduced variance and underestimate extremes.  

Scaling the mean and variance to fit those of the target climate data produces a more realistic 

range of reconstructed values but the cost, in terms of inflated error, is seldom assessed. We 

provide a simple metric that allows the loss of skill due to scaling to be quantified. It can be 

calculated retrospectively for published studies, some of which exhibit little or no 

reconstructive skill. Although scaled reconstructions must have a range that is close to that of 

the target climate data, there is no guarantee that the correct years are pushed to the extremes. 

We propose a simple non-parametric test for ‘Extreme Value Capture’ that gives the 

statistical significance of a given number of the correct years being ‘captured’ beyond the 

thresholds defined by the upper and lower 10% of the measured climate data. The methods 

are tested using three annually resolved case studies. A tree-growth based summer 

temperature reconstruction for northern Fennoscandia captures cold summers very well but 

the capture rate of the warmest summers is no better than might be expected purely due to 

chance. Such failure to correctly capture the warmest years has important implications for 

interpretation of the frequency and magnitude of very warm summers in the past.  

 

 Key words: Palaeoclimate, tree rings, regression, statistical methods, climate change, 

medieval warm period.  
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Introduction 

The standard approach to reconstructing the climate of the past, using annually resolved 

records such as tree rings or historical documents, is to use simple linear regression (National 

Research Council 2007). The strength of the relationship between the proxy and the climatic 

target is quantified using correlation statistics; typically the Pearson’s correlation coefficient 

(r) and the squared correlation coefficient (R
2
). The latter provides a measure of the amount 

of variance in the proxy that is common to the variance in the climate record. Where the 

climate records available for calibration are of sufficient length, it has become standard 

practice to test the temporal stability of the relationship by using split-period calibration and 

verification tests. For these tests the data are split into two, often equal, periods and the 

calibration is carried out on one half of the data (calibration) and tested on the other half 

(verification). The Reduction of Error (RE) and Coefficient of Efficiency (CE) statistics 

(Cook and Kairiukstis 1990) provide a measure of how well the reconstruction fits the 

measured data over the verification period; in contrast to correlation, both the RE and CE 

tests are sensitive to offsets between the measured and reconstructed values. RE and CE 

values of zero occur where the average squared difference between the measured and 

reconstructed values (the Mean Squared Error: MSE) is the same as that obtained when a 

horizontal line is used as an estimate for the climate of the verification period; in the case of 

RE this line represents the mean measured climate variable over the calibration period, and 

for CE it is the mean of the verification period. Often the statistics are calculated twice by 

switching the calibration and verification periods. Where the RE and CE values are positive, 

the relationship between proxy and climate target is considered temporally stable and then the 

proxy data over the full period of available climate data is used to perform the regression 
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analysis, using the proxy as the independent variable with which to reconstruct past climate 

(National Research Council 2007).  

 

Climate reconstructions produced in this way, however, suffer from a serious problem in that 

they inevitably underestimate the variability of past climate (von Storch et al. 2004; Esper et 

al. 2005). This underestimation occurs because climate proxies are never perfectly correlated 

with the target climate data, leaving a proportion of the variance in the proxy unexplained. 

Simple linear regression uses the principle of least squares, so that the regression line that 

defines the relationship between the proxy and the target is fitted to minimise the squared 

difference between each point and the line on the vertical (climate) axis. If the correlation 

were perfect between proxy and climate, the regression line would pass through every point 

and the MSE would be zero. Any subsequent reconstructed climate would have the same 

variance as the measured climate over the calibration period, and we presume also for the rest 

of the reconstruction. If the correlation between the proxy and the target were zero then the 

line that minimises the MSE would be horizontal and pass through the mean value of the 

measured climate. In this case all proxy values would predict the same (mean) value for the 

climate target and the climate reconstruction would be a horizontal line. When, as is always 

the case, the correlation between the proxy and the climate target falls between zero and 

(positive or negative) one, the reconstruction captures some, but not all, of the variance in the 

target climate variable, and the weaker the correlation, the closer the reconstruction comes to 

being a horizontal line. The loss of variance in this kind of regression-based reconstruction 

can, in essence, be viewed as a bias towards the mean. Where the purpose of a climate 

reconstruction is to compare the reconstructed climate of the past with the measured climate 

of the recent period, or with climate model output, then a bias towards the mean and the 

resultant underestimation of both positive and negative extremes can be highly problematic.   
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To overcome the bias towards the mean, and produce climate reconstructions that capture the 

full range of climate variability in the past, many authors now employ variance scaling, or 

variance matching (e.g. Briffa et al. 2013 and selected examples in Table 1). Rather than 

using the least squares regression equation to perform the reconstruction, the proxy data are 

re-scaled to fit the climate target data by simply giving them the same mean and variance 

over the calibration period. A simple way to achieve this is to first convert the proxy data into 

z-scores, by taking the difference between each value and the mean (of the period for which 

climate data are available) and dividing this by the standard deviation (also of the period with 

climate data). The z-scored data now have a mean of zero and standard deviation of one over 

the period with climate data. The z-scoring is then reversed, but rather than using the mean 

and standard deviation of the proxy, the values from the climate target are used. The result is 

a climate reconstruction that, over the period of overlap, has exactly the same mean and 

variance as the climate target data. Variance-scaled reconstructions can capture the full range 

of measured climate and, we presume, the full range of climate variability in the past. 

Essentially the same procedure is used in the ‘composite plus scaling’ method used to collate 

and calibrate multiple proxies for use in reconstructions over very large geographical regions 

(e.g. Mann et al. 1999; Moberg et al. 2005; Neukom et al. 2011; Ahmed et al. 2013) and a 

scaling step is also applied in some spatial field reconstructions (Cook et al. 2007). There is, 

however, a “cost” involved in that variance-scaling must also increase the mean squared 

error. Regression-based reconstructions, by definition, produce the minimum MSE that is 

possible, so any change to the reconstruction must inevitably lead to an increased MSE.  

 

Where variance scaling is applied to climate reconstructions, authors generally acknowledge 

that there is an increase in error, relative to regression-based reconstructions, but argue that 
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this is outweighed by the much more realistic range of the reconstructed climate. At present, 

however, there is no simple method available to quantify the magnitude of the increase in 

error, or to test whether inflating the range of the reconstructed values results in the correct 

years being pushed to the extremes. Here we provide a metric, based upon the same logic as 

the RE and CE statistics, which quantifies the magnitude of increase in error, and therefore 

relative loss of signal. To compliment this we also provide a simple non-parametric statistical 

test to determine whether the capture of extremes is significantly better than one would 

expect to occur simply by chance.  

 

Equivalent variance explained (Rvs
2
) 

A useful way to envisage the strength of a climate reconstruction is to consider how much 

better it is than simply using the mean climate value for every year (the climatology). A 

simple measure of strength is the mean squared difference between each pair of measured and 

estimated values, which is the Mean Squared Error (MSE). If a reconstruction produces a 

MSE that is no smaller than that obtained when a horizontal line (mean climate) is used, then 

it clearly possesses little or no skill as a tool for reconstructing past climate. The bigger the 

difference between the MSE based on the mean (climatology) and the MSE based on the 

reconstruction the better, and this is effectively what the squared correlation coefficient 

measures over the period used for calibration, and it can be expressed as:  

 

R
2
 = 1- (MSEregression estimates/MSEclimatology)       [1] 

 

A climate reconstruction based on least squares regression is automatically scaled so that the 

MSE is minimised, so any change to the variance of the reconstruction will inevitably 

increase the MSE. By directly calculating the MSE of the variance-scaled reconstruction, and 
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comparing it to that obtained using the mean climatology, it is possible to derive a metric that 

can be viewed in the same way as R
2
; as a measure of the amount of variance explained 

relative to that explained by just using the average for every year: 

 

Rvs
2
 = 1 – (MSEscaled estimates/MSEclimatology)       [2] 

 

Applying this logic, one may conclude that a variance-scaled reconstruction that yields an 

Rvs
2
 value of zero or less has no skill because just using the mean climate value for every year 

would give a better estimate (lower MSE).  

 

The approach presented here is exactly the same as that used in calculating the RE and CE 

statistics, and the equations all have the same form, the only differences being the value that 

is used to define the climatology and the period over which the comparison is made. The RE 

and CE metrics are only suitable for a split-period test, where the mean values are taken from 

the calibration and verification periods respectively and the comparison is always made over 

the verification period. For R
2
 and Rvs

2
 the mean value is that of the whole period for which 

climate data are available and the comparison is also made over the whole period. The range 

for R
2
 is one to zero, because least squares regression cannot produce a MSE that is larger 

than that obtained using the mean value. However, the range for Rvs
2
, like that for RE and 

CE, extends below zero because scaling can potentially increase the MSE so much that it 

becomes larger than that obtained using the climatology.  

 

In fact it is not necessary to calculate Rvs
2
 directly because the difference between R

2 
and Rvs

2
 

is related to the strength of the correlation between the proxy and the climatic target, 

irrespective of the sign of the correlation, so that it can be defined as a function of the 
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modulus of pearson’s correlation coefficient (|r|), or the square root of the explained variance 

where:   

R
2
 – Rvs

2
 = (1 – |r|)

2
         [3] 

Expanding this equation: 

R
2
 – Rvs

2
 = (|r|)

2
 – 2|r| + 1        [4]

 

Which simplifies to: 

Rvs
2
 = 2|r| – 1          [5] 

 

From this simple equation it is clear that when the (positive or negative) correlation between 

the proxy and the climate target falls below 0.5, the Rvs
2
 value falls below zero, and so a 

variance-scaled reconstruction will have less skill, over the calibration period, than simply 

using the climatology. The relationship between R
2
 and Rvs

2
 is non-linear, so that for an |r|-

value of 0.9, giving an R
2
 of 0.81, a variance scaled reconstruction would have an equivalent 

Rvs
2
 of 0.8, so the loss of variance explained is very small (1.2%). For an |r|-value of 0.6, 

however, giving an R
2
 of 0.36 the equivalent Rvs

2
 value for a variance scaled reconstruction is 

0.2, so the loss of skill is considerable (44.4%). Given an |r|-value of 0.58 more than half of 

the skill is lost (R
2 

= 0.34, Rvs
2 

= 0.16).  Since the Pearson’s correlation coefficient (r) is the 

square root of R
2
, an equivalent value for a variance-scaled chronology (rvs), taking into 

account the sense of the relationship , can be derived where rvs is the (positive or negative) 

square root of Rvs
2
.  

 

Capture of extremes 

The key aims of variance scaling are to reduce the bias towards the mean inherent in 

regression-based reconstructions and to ensure that the magnitude of extreme values in the 

past is not underestimated. A logical measure of how well a reconstruction captures the 
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extreme values would be to define a threshold for extreme values and calculate how well a 

reconstruction captures the values beyond this threshold. A simple definition of the extremes 

is the thresholds beyond which the upper and lower 10% of the measured climate data fall. 

Since regression-based reconstructions are biased towards the mean, we would expect them 

to underestimate the number of years where the target climate fell beyond the thresholds for 

the highest and lowest 10% and a variance scaled reconstruction should perform more 

successfully.  

The ‘Extreme Value Capture’ (EVC) of a reconstruction can be calculated by first ranking the 

climate target values to identify the values beyond which the highest and lowest 10% lie and 

noting which years lie beyond those thresholds. The probability of a value falling within any 

10% band of the data, purely by chance, is 1 in 10 (p=0.1). Therefore a reconstruction that 

has been variance-scaled to have approximately the same range of values as the climate 

target, but has no skill in capturing extremes beyond pure chance, would still be expected to 

capture some years. The probability of capturing a given number of extreme years by chance 

can be calculated using the binomial distribution, providing a simple non-parametric test of 

statistical significance. The logic and assumptions are the same as those used in applying the 

Sign Test, the only difference being that the probability of a correct result occurring by 

chance is 1 in 10 (p=0.1) rather than 1 in 2 (p=0.5). Probabilities can be calculated using a 

wide variety of software, including Excel (using the BINOM function). One of the 

assumptions of the Sign Test, and of the EVC test, is that the extremes are independent of 

each other, and in time series data there can be series autocorrelation which violate this, 

although it is only likely to be important where autocorrelation is very strong, in which case 

the data are not really suitable for climate reconstruction using regression or variance scaling.  
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For example, if a calibration data set is available covering 100 years then there will be 10 

years in each of the upper and lower 10% bands. The probability of any year falling into any 

10% band is 1 in 10, so even a reconstruction with no skill at all is likely to capture one 

extreme year in the top 10% and one in the bottom 10%. Using the binomial distribution we 

can calculate that the probability of capturing 3 years from 10 is p=0.06, and so not 

statistically significant. However, the probability of capturing 4 years by chance is far more 

remote (p=0.011) and the probability of capturing 5 is close to one in a thousand (p=0.001). 

This simple test can be applied to either the two outer 10% bands combined, to give an 

indication of the overall skill of a reconstruction in capturing extremes, or perhaps more 

usefully, to the high and low extremes individually, to test for a bias in the ability of a 

reconstruction to capture either the very high or very low values.  

 

For example, given 150 years of climate data, 10% of which is 15, the critical number of 

correct captures at p=0.05 and p=0.01 are 4 and 5. In practice however, calculating exact 

probabilities for the EVC test is more complicated because the number of years with climate 

data available for calibration will rarely be roundly divisible by ten. In such cases, and as 

fractional observations are not possible in annually resolved datasets, it is necessary to 

calculate the significance of the number of captures for the higher and lower integer and 

combine them using a weighted average. For example, a sample of 154 years requires 15.4 

years per 10%, so the significance levels are calculated using the results from both 15 and 16 

years using a weighted average where the probability for 16 years is multiplied by 0.4 and the 

probability for 15 years multiplied by 0.6. To achieve a significance level of p=0.05 in this 

case requires at least 4 successful extreme value captures. The relative weighting means that 

they must come from the upper (or lower) 15 years only (indicated in Table 2 as 4/15). The 
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year ranked 16 cannot be included in the count of 4 captured extremes because 4/16 values is 

not significant at p=0.05. To achieve a significance level of p=0.01 for 15.4 observations by 

weighting requires at least 6 correct captures from the upper (or lower) 16 observations, so in 

this case the year ranked 16 can be included in the count of 6 (indicated in the table as 6/16). 

The calculations are included for the examples used below, but for convenience and to avoid 

this procedure we provide a table of critical values (Table 2). 

 

It is important to stress that it is only logical to apply the EVC test to reconstructions that are 

based either on inverse calibration, where the proxy is the independent variable and 

underestimation of variance is inevitable, or on matching the variance of the proxy to that of 

the climate target. In the latter case the total  number of years that can possibly fall beyond 

the upper and lower thresholds is strongly constrained to be very close to 10%, so that the 

number of ‘captures’ and the number of erroneous extreme years is effectively a closed set.  

It is not valid to apply it to reconstructions based on classical correlation, where the proxy is 

the dependent variable. In this case unexplained variance in the regression model inflates the 

variance of the reconstruction, so that the number of years that fall beyond the thresholds is 

not constrained, irrespective of the results of the EVC test. 

 

Examples 

Ice-break data and spring temperatures 

Amongst  the most powerful sources of information on the climate of the past are historical 

archives, especially those that refer to events that are strongly constrained by climate, such as 

phenology (e.g. flowering or harvest dates) or the freezing and/or melting of water bodies 

(Brázdil et al. 2005, 2010). One such record is that of the date of break-up of the winter ice 

blocking the flow of the Tornio River, close to the Arctic Circle between northern Sweden 
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and Finland (Kajander 1993; Magnuson et al. 2001; Klingbjer and Moberg 2003). Loader et 

al. (2011) used this record to reconstruct the mean temperature of April-May back to AD1693, 

using an overlap with measured climate data of 150 years (AD1860 to 2009). The correlation 

between the Julian day of ice break and spring temperature over that period is –0.82, so 67% 

of the variance in break-up date is explained by April-May temperature. Loader et al. (2011) 

made their reconstruction using regression, but despite the very high correlation, the full 

range of spring temperatures over the calibration period (-3.9˚C to 5.5˚C = 9.3˚C) is 

underestimated by about 20% (-2.9˚C to 4.6˚C = 7.4˚C). Using the same data to produce a 

variance-scaled reconstruction increases the MSE, so that the equivalent variance explained 

drops from 67% to 64% (R
2
 = 0.67, Rvs

2
 = 0.64), but the range of temperatures is much more 

realistic (-4.0˚C to 5.1˚C, = 9.1˚C), (Table 3, Fig. 1).  

 

Given 150 years of data the two 10% extremes contain 15 years each. The regression-based 

reconstruction performs well in capturing the extreme years, with 5 and 6 of the 15 years 

captured in the highest and lowest 10% bands respectively (Fig. 1, Table 4), both of which 

are significant (p< 0.01, Table 2), and an overall capture rate of 37% (p< 0.001).  Variance 

scaling raises the capture rate by two years at either extreme (p< 0.001), giving 50% overall, 

which is a gain of 36%. These results suggest that for a small cost in terms of increased MSE, 

variance scaling removes the underestimate of the full range of climate variability and also 

improves the capture rate of extremes. When the ice-break data are used to reconstruct April-

May temperatures there appears to be very little bias in skill for reconstructing very warm 

and very cold years.  

 

Tree growth and summer temperature 
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McCarroll et al. (2013) present a pine (Pinus sylvestris L.) tree growth index for the northern 

timberline region of Europe based on combining nine tree-growth proxies from four sites. 

The climatic target used was the June to August mean temperature of the same region, 

calculated as an average of data from several climate stations. Trees growing in this 

timberline region are very sensitive to summer temperature, and the mean growth index is 

based on a very large set of data, so the correlation with summer (June to August) mean 

temperature is amongst the highest yet reported for any climate reconstruction based on trees 

(r = 0.81). 

 

The tree growth index was used to reconstruct June to August (JJA) temperatures using 

regression, but as expected there is an underestimate of the variance of summer temperature, 

with the true range over the calibration period (5.8˚C) being underestimated (4.6˚C) by more 

than 20% (Table 3). To reduce this bias towards the mean a variance-scaled reconstruction 

was also produced, where the mean and variance were adjusted to fit the mean and variance 

of the climatic target data over the whole period for which climate data was available 

(AD1890 to 2005) and McCarroll et al. (2013) argue that this “gives a more realistic picture of 

the magnitude of past climate change at the expense of inflating the error”. However, the 

magnitude of error inflation was not quantified and the gains, in terms of the capture of 

extremes, were not investigated. Using the methods described in this paper we can now say 

that the reconstruction based on regression explained 66% of the variance (R
2
 = 0.66) but that 

variance scaling inflated the MSE, giving an equivalent value (Rvs
2
 = 0.62)) of 62%, which is 

a signal loss of about 5.5%.  

 

Given 116 years of climate data for calibration, the number of years in the highest and lowest 

10% is 11.6. The threshold for the upper 10% of years is 12.6˚C and the regression-based 
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reconstruction only captures two of the 11 or 12 years by placing them above the threshold 

(Fig. 1), which is not statistically significant (p = 0.2). Using variance scaling captures one 

more year, but the probability of capturing 3 of the 11 or 12 years is about 8%, so the result is 

still not statistically significant (p > 0.05).  The critical threshold for correct captures at p = 

0.05 for a sample size of 11.6 is 5 from 12 (Table 2). 

 

The regression-based reconstruction performs much better for the coldest 10% of summers, 

capturing 6 years below the threshold (Fig. 1), which is strongly significant (p < 0.001: Table 

2), but variance-scaling hardly improves this, with only the 12th year added, which weighted 

at 0.6 gives a capture rate of 6.6 for 11.6 years (57%).  Taking both extremes together, 

covering 20% of the years, the capture rate is 41% which is strongly significant (n = 23.2, p < 

0.001, Table 2).  

 

These results demonstrate that even when the correlation between proxy and target is 

unusually high, at 0.81, the ability of a regression-based reconstruction to capture extreme 

years is not guaranteed. In this case cold summers are captured much more efficiently than 

hot summers, to the extent that the capture rate of hot summers is not statistically significant 

(p > 0.05). Variance scaling improves the capture of extremes only very slightly, and the 

capture of warm summers alone is still not statistically significant (p > 0.05). It is not 

surprising that the growth of pine trees close to the tree line of northern Europe is more 

sensitive to cold summers than to warm summers, and the ‘Extreme Value Capture’ method 

allows this bias to be identified and quantified. In this example the “cost” of variance-scaling, 

in terms of loss of signal is small, but the gain in terms of the capture of extremes is also 

small.  
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Oxygen isotopes in tree rings and summer rainfall 

It has been argued, from first principles (Treydte et al. 2014, Barbour 2007; Danis et al. 2006; 

Saurer et al. 1997), that the oxygen isotope ratios in the latewood cellulose of British oak 

trees should provide an indication of the amount of summer rainfall (Young et al. In 

revision). Isotopic data, averaged from several sites across the UK, were calibrated using the 

total June to August precipitation for the England and Wales region (Wigley et al. 1984) over 

the period AD1850 to 2012. Given the correlation coefficient of –0.69 a regression-based 

reconstruction underestimates the true range of precipitation totals (343mm) by more than 

28% (245mm), whereas a variance-scaled reconstruction produces a range of values (353mm) 

within 3% of the target range (Table 3).  

 

The regression-based reconstruction is based on a correlation that explains 48% of the 

variance, but it performs poorly in capturing the extremes with just 3 and 4 from the upper 

and lower 10% (Fig. 1), neither of which is statistically significant (Critical threshold for 16.3 

years at p = 0.05 is 5 from 17: Table 2). Variance-scaling increases the mean squared error, 

so that the equivalent explained variance (Rvs
2
 = 0.38) drops to 38% (Table 3), however, the 

skill in capturing the highest and lowest extremes improves considerably (Table 4), with 7 

and 9 (43% and 55%) of the upper and lower extremes captured, both of which are strongly 

significant (p < 0.001).  In this case variance-scaling improves the capture of extremes by 

more than 128%. These results suggest that in return for a loss in signal strength (in terms of 

mean squared error), the range of the reconstruction is much more realistic and the extremes 

of that range include a significant number of the correct years. There is no evidence of a 

strong bias and it seems that oxygen isotopes in British oak tree ring cellulose can be used to 

reconstruct wet and dry summers with approximately equal skill. Stable carbon isotopes from 
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the same tree rings provide a strong record of summer temperature (Young et al. 2012a, 

Table 1).  

 

Discussion and Conclusions 

One of the central aims of palaeoclimate research is to improve understanding of 

contemporary climatic changes through comparison of the climate of the past with that of the 

present. The regression methods that are commonly used, however, inevitably result in an 

underestimation of the variability of climate in the past and thus a bias towards the mean, 

with an attendant underestimation of the magnitude and frequency of past extremes.  

Variance scaling, where the mean and variance of the reconstruction are adjusted to fit the 

mean and variance of the climate target over the period for which meteorological data are 

available, overcomes this problem but at the cost of increasing the mean squared error. 

Authors generally acknowledge the loss of signal, but do not quantify it or demonstrate that 

there is an improvement in estimating the magnitude and frequency of extreme years.  

 

Just as the squared correlation coefficient (R
2
) provides a measure of the strength of a climate 

reconstruction based on regression, an equivalent measure Rvs
2
 provides a measure of the 

strength of a climate reconstruction based on variance scaling. Since a regression-based 

reconstruction always minimises the MSE, it is inevitable that inflating the variance of the 

reconstruction to fit the climate target data will increase the error, so Rvs
2
 must always be 

lower than R
2
 and the difference between them provides a measure of the loss of signal as  a 

result of variance-scaling. Since Rvs
2
 is a linear function of the modulus of Pearson’s 

correlation coefficient (r as a positive value), the calculation is simple and can be applied 

retrospectively to estimate the loss of signal in published climate reconstructions based on 

variance-scaling (Table 1).  
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When the modulus of the Pearson’s correlation coefficient falls below 0.5 (R
2
< 0.25), 

inflating the variance of a reconstruction to meet the climate target results in such a large 

inflation of the mean squared error that it becomes larger than that obtained simply by using 

the mean value of the climate data for every year and so, by analogy with the Reduction of 

Error and Coefficient of Efficiency statistics, the reconstruction can be regarded as having no 

skill. We conclude therefore that:  

 

 Variance scaling should not be applied where the squared correlation between proxy 

and target falls below 0.25 (|r|< 0.5)  

 

 The amount of variance explained by a scaled reconstruction is less than that 

explained by a reconstruction based on regression and can be conveniently quantified 

using Rvs
2
, which is a linear function of  the modulus of Pearson’s correlation 

coefficient (r) where Rvs
2 

= 2|r|-1.   

 

 The loss of skill as a consequence of scaling a reconstruction can be expressed as a 

percentage ((R
2
 - Rvs

2
)/R

2
)*100  

 

Variance-scaling inevitably expands the range of values in a reconstruction, and this is 

sometimes quantified by quoting the difference between the total range of measured and 

estimated values of the climate target value over the period with climate data. Such a 

comparison is of questionable value, because it is inevitable that variance scaling will 

perform better than regression in this regard. The critical test is to determine whether the 

actual years that are pushed to the extremes are the correct years. We propose a simple non-
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parametric ‘Extreme Value Capture’ (EVC) test, based on the binomial distribution, which 

determines whether the number of years correctly placed above and below the thresholds 

defined by the upper and lower 10% of measured climate data is significantly more than the 

number that might be expected purely on the basis of chance.  

 

Three examples demonstrate the utility of the EVC test. The most surprising result is that for 

summer temperature reconstruction in northern Fennoscandia based on a tree-growth index 

(McCarroll et al. 2013). Although the reconstruction is based on an exceptionally high 

correlation between proxy and target (June to August temperature) of r = 0.81, the EVC test 

reveals a clear asymmetry in the ability to capture extreme years. Cold summers are 

identified very effectively but the capture rate for warm summers is no better than might be 

expected simply by chance (p > 0.05). Such a strong asymmetry in the capture of extremes 

has important implications for the interpretation of palaeoclimate reconstructions, particularly 

with regard to comparing the magnitude and frequency of warm extremes in the past with 

those over the period for which meteorological measurements are available. Missing the 

warmest years will also result in low-frequency temperature reconstructions of past warm 

periods being underestimated, since low frequency curves in calibrated reconstructions 

should simply represent a smoothing of the high frequency signal.   
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Figure captions 

 

Figure 1. Comparison of measured (smooth black lines, presented in rank order) and reconstructed 

climate parameters using regression and scaling. The red lines and dashed boxes show the extent and 

target range for the lowest and highest 10% of measured values. A: Spring temperature reconstructed 

using ice break dates on the Tornio River, B: Summer temperature reconstructed using tree growth in 

northern Fennoscandia and C: Summer precipitation reconstructed using stable oxygen isotopes in 

British oak tree rings. 
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Table 1. A selection of publications that have used variance-scaling to reconstruct past 

climate with Pearson’s correlation coefficient (r) and squared correlation coefficient (R
2
), the 

equivalents for a variance-scaled reconstruction (rvs and Rvs
2
) and the percentage loss of 

signal due to variance-scaling.  

 

Reference Proxy Target r R2 Rvs
2 rvs % 

loss 

McCarroll et al. 
(2013) 

Tree growth 
June-August 
Temperature 

0.81 0.66 0.62 0.79 5.5 

Kiss et al. (2011) 
Documentary 
(vine & grain) 

May-July 
temperature 

0.75 0.57 0.51 0.71 10.5 

Rinne et al. 
(2013) 

Tree ring δ18O 
May-August 
Precipitation 

–0.73 0.53 0.46 –0.68 13.7 

Young et al. 
(2012a) 

Tree ring δ13C 
June-August 
Temperature 

0.69 0.480 0.39 0.62 20.0 

Büntgen et al. 
(2006) 

Tree ring 
density 

June-September 
Temperature 

0.69 0.48 0.38 0.62 20.0 

Young et al. 
(in Revision) 

Tree ring δ18O 
June-August 
Precipitation 

–0.69 0.48 0.39 –0.62 20.0 

Young et al. 
(2012b) 

Tree ring δ13C 
June-July 

% cloud cover 
–0.67 0.42 0.34 –0.58 19.0 

Trouet et al. 
(2012) 

Tree ring MXD 
June-August  
Temperature 

0.65 0.42 0.30 0.55 28.6 

Dorado-Liñán et 
al. (2012) 

Tree ring width 
& density 

May-September 
Temperature 

0.62 0.38 0.24 0.49 37.6 

Yang et al. 
(2010) 

Tree ring width 
12 month 

Precipitation 
0.59 0.35 0.18 0.42 48.3 

Sano et al. 
(2011) 

Tree ring δ18O 
June-September 

PDSI 
–0.58 0.34 0.16 –0.40 52.4 

Liu et al. 
(2012) 

Tree ring width 
12 month 

Precipitation 
0.56 0.31 0.12 0.35 61.7 

Poljanšek et al. 
(2013) 

Tree ring width 
June-July 
Sunshine 

0.54 0.29 0.08 0.28 72.6 

Büntgen et al. 
(2008) 

Tree ring width 
& density 

May-September 
Max.Temperature 

0.53 0.28 0.06 0.24 78.6 

Opala & 
Mendecki(2014) 

Tree ring width 
Winter 

Temperature 
0.43 - 
0.47 

0.18 - 
0.22 

<0 <0 >100 

Popa & Kern 
(2009) 

Tree ring width 
June-August 
Temperature 

0.43 0.18 0.14 <0 175.7 

Büntgen et al. 
(2010) 

Tree ring width 
June-September 

scPDSI 
-0.42 0.18 -0.16 <0 190.7 
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Table 2. Critical values for the ‘Extreme Value Capture’ test where p is the probability of capturing at 

least the tabulated number of correct years. N represents the highest or lowest 10% of years or their 

combination.  

N 
p< 

0 .1 .2 .3 .4 

0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001 

                

3 2/3 3/3 3/3 2/3 3/3 3/3 2/3 3/3 -- 2/3 3/3 -- 2/3 3/3 -- 

4 2/4 3/4 4/4 3/5 3/4 4/4 3/5 3/4 4/4 3/5 3/4 4/5 3/5 3/4 4/5 

5 3/5 3/5 4/5 3/5 3/5 4/5 3/5 3/5 4/5 3/5 3/5 4/5 3/6 4/6 4/5 

6 3/6 4/6 4/6 3/6 4/6 4/6 3/6 4/6 4/6 3/6 4/6 5/7 3/6 4/7 5/7 

7 3/7 4/7 5/7 3/7 4/7 5/7 3/7 4/7 5/7 3/7 4/7 5/7 3/7 4/7 5/7 

8 3/8 4/8 5/8 3/8 4/8 5/8 3/8 4/8 5/8 3/8 4/8 5/8 3/8 4/8 5/8 

9 3/9 4/9 5/9 3/9 4/9 5/9 3/9 4/9 5/9 3/9 4/9 5/9 3/9 4/9 5/9 

10 4/10 5/10 5/10 4/10 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 

11 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 

12 4/12 5/12 6/12 4/12 5/12 6/12 4/12 5/12 6/12 4/12 5/12 6/12 4/12 5/12 6/12 

13 4/13 5/13 6/13 4/13 5/13 6/13 4/13 5/13 6/13 4/13 5/13 6/13 4/13 5/13 6/13 

14 4/14 5/14 6/14 4/14 5/14 6/14 4/14 5/14 6/14 4/14 5/14 6/14 4/14 5/14 7/15 

15 4/15 5/15 7/15 4/15 6/16 7/15 4/15 6/16 7/15 4/15 6/16 7/16 4/15 6/16 7/16 

16 5/16 6/16 7/16 5/17 6/16 7/16 5/17 6/16 7/16 5/17 6/16 7/16 5/17 6/17 7/16 

17 5/17 6/17 7/17 5/17 6/17 7/17 5/17 6/17 7/17 5/18 6/17 7/17 5/18 6/17 7/17 

18 5/18 6/18 7/18 5/18 6/18 7/18 5/18 6/18 7/18 5/18 6/18 7/18 5/18 6/18 7/18 

19 5/19 6/19 7/19 5/19 6/19 7/19 5/19 6/19 8/20 5/19 6/19 8/20 5/19 6/19 8/20 

20 5/20 6/20 8/20 5/20 6/20 8/20 5/20 6/20 8/20 5/20 6/20 8/20 5/20 6/20 8/21 

21 5/21 7/21 8/21 5/21 7/22 8/21 5/21 7/22 8/21 5/21 7/22 8/21 5/21 7/22 8/21 

22 5/22 7/22 8/22 5/22 7/22 8/22 5/22 7/22 8/22 5/22 7/22 8/22 5/22 7/23 8/22 

23 6/23 7/23 8/23 6/24 8/23 8/23 6/24 7/23 8/23 6/24 7/23 8/23 6/24 7/23 8/23 

24 6/24 7/24 8/24 6/24 7/24 8/24 6/24 7/24 8/24 6/25 7/24 8/24 6/25 7/24 9/25 

25 6/25 7/25 9/25 6/25 7/25 9/25 6/25 7/25 9/25 6/25 7/25 9/26 6/26 7/25 9/26 

26 6/26 7/26 9/26 6/26 7/26 9/26 6/26 7/26 9/26 6/26 7/26 9/26 6/26 7/26 9/26 

27 6/27 8/27 9/27 6/27 8/28 9/27 6/27 8/28 9/27 6/27 8/28 9/27 6/27 8/28 9/27 

28 6/28 8/28 9/28 6/28 8/28 9/28 6/28 8/28 9/28 6/28 8/29 9/28 6/28 8/29 9/28 

29 6/29 8/29 9/29 6/29 8/29 9/29 6/29 8/29 9/29 6/29 8/29 9/29 6/29 8/29 9/29 

30 6/30 8/30 10/30 6/30 8/30 10/31 6/30 8/30 10/31 6/30 8/30 10/31 6/30 8/30 10/31 

31 7/31 8/31 10/31 7/32 8/31 10/31 7/32 8/31 10/31 7/32 8/31 10/31 7/32 8/31 10/32 

32 7/32 8/32 10/32 7/32 8/32 10/32 7/32 8/32 10/32 7/33 8/32 10/32 7/33 8/32 10/32 

33 7/33 8/33 10/33 7/33 8/33 10/33 7/33 8/33 10/33 7/33 8/33 10/33 7/33 9/34 10/33 

34 7/34 9/34 10/34 7/34 9/34 10/34 7/34 9/34 10/34 7/34 9/35 10/34 7/34 9/35 10/34 

35 7/35 9/35 10/35 7/35 9/35 10/35 7/35 9/35 10/35 7/35 9/35 10/35 7/35 9/36 10/35 

36 7/36 9/36 11/36 7/36 9/36 11/36 7/36 9/36 11/37 7/36 9/36 11/37 7/36 9/36 11/37 

37 7/37 9/37 11/37 7/37 9/37 11/37 7/37 9/37 11/37 7/37 9/37 11/37 7/37 9/37 11/38 

38 7/38 9/38 11/38 7/38 9/38 11/38 7/38 9/38 11/38 7/38 9/38 11/38 7/38 9/38 11/38 

39 8/39 9/39 11/39 8/40 9/39 11/39 8/40 9/39 11/39 8/40 9/39 11/39 8/40 9/39 11/39 

40 8/40 9/40 11/40 8/40 10/41 11/40 8/40 10/41 11/40 8/41 10/41 11/40 8/41 10/41 11/40 
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N 
p< 

.5 .6 .7 .8 .9 

0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001 

                

3 2/3 3/3 -- 2/3 3/3 -- 2/3 3/3 -- 2/3 3/4 -- 2/3 3/4 -- 

4 3/5 3/4 4/4 3/5 3/4 4/4 3/5 3/4 4/5 3/5 3/4 4/5 3/5 3/4 4/5 

5 3/6 4/6 4/5 3/6 4/6 4/5 3/6 4/6 4/5 3/6 4/6 4/5 3/6 4/6 4/5 

6 (3) 4/7 5/7 (3) 4/7 5/7 3/7 4/7 5/7 3/7 4/7 5/7 3/7 4/7 5/7 

7 3/7 4/7 5/8 3/7 4/7 5/8 3/7 4/8 5/8 3/7 4/8 5/8 3/8 4/8 5/8 

8 3/8 4/8 5/8 3/8 4/8 5/8 3/8 4/8 5/8 3/8 4/8 5/8 3/8 4/9 5/9 

9 4/10 4/9 5/9 4/10 4/9 5/9 4/10 4/9 5/9 4/10 4/9 5/9 4/10 5/10 5/9 

10 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 4/11 5/11 6/11 

11 4/12 5/12 6/12 4/12 5/12 6/12 4/12 5/12 6/12 4/12 5/12 6/12 4/12 5/12 6/12 

12 4/12 5/12 6/12 4/12 5/12 6/12 4/13 5/13 6/13 4/13 5/13 6/13 4/13 5/13 6/13 

13 4/13 5/13 6/13 4/13 5/13 6/13 4/13 5/13 6/13 4/14 5/13 6/13 4/14 5/14 6/13 

14 4/14 5/14 7/15 4/14 5/14 7/15 4/14 5/14 7/15 4/14 5/14 7/15 4/15 5/14 7/15 

15 4/15 6/16 7/16 4/15 6/16 7/16 4/15 6/16 7/16 4/15 6/16 7/16 5/16 6/16 7/16 

16 5/17 6/17 7/16 5/17 6/17 7/16 5/17 6/17 7/17 5/17 6/17 7/17 5/17 6/17 7/17 

17 5/18 6/17 7/17 5/18 6/18 7/17 5/18 6/18 7/17 5/18 6/18 7/17 5/18 6/18 7/18 

18 5/19 6/18 7/18 5/19 6/18 7/18 5/19 6/18 7/18 5/19 6/19 7/18 5/19 6/19 7/18 

19 5/19 6/19 8/20 5/19 6/19 8/20 5/20 6/19 8/20 5/20 6/19 8/20 5/20 6/19 8/20 

20 5/20 6/20 8/21 5/20 6/20 8/21 5/20 6/20 8/21 5/21 7/21 8/21 5/21 7/21 8/21 

21 5/21 7/22 8/21 5/21 7/22 8/21 5/21 7/22 8/22 5/21 7/22 8/22 5/22 7/22 8/22 

22 5/22 7/23 8/22 5/22 7/23 8/22 5/22 7/23 8/22 5/22 7/23 8/22 5/22 7/23 8/23 

23 6/24 7/23 8/23 6/24 7/24 8/23 6/24 7/24 8/23 6/24 7/24 8/23 6/24 7/24 8/23 

24 6/25 7/24 9/25 6/25 7/24 9/25 6/25 7/24 9/25 6/25 7/25 9/25 6/25 7/25 9/25 

25 6/26 7/25 9/26 6/26 7/25 9/26 6/26 7/25 9/26 6/26 7/25 9/26 6/26 7/26 9/26 

26 6/26 7/26 9/26 6/27 7/26 9/27 6/27 7/26 9/27 6/27 7/26 9/27 6/27 8/27 9/27 

27 6/27 8/28 9/27 6/27 8/28 9/27 6/28 8/28 9/27 6/28 8/28 9/28 6/28 8/28 9/28 

28 6/28 8/29 9/28 6/28 8/29 9/28 6/28 8/29 9/28 6/28 8/29 9/28 6/29 8/29 9/29 

29 6/29 8/29 9/29 6/29 8/30 9/29 6/29 8/30 9/29 6/29 8/30 9/29 6/29 8/30 10/30 

30 6/30 8/30 10/31 7/31 8/30 10/31 7/31 8/31 10/31 7/31 8/31 10/31 7/31 8/31 10/31 

31 7/32 8/31 10/32 7/32 8/31 10/32 7/32 8/31 10/32 7/32 8/31 10/32 7/32 8/32 10/32 

32 7/33 8/32 10/32 7/33 8/32 10/33 7/33 8/32 10/33 7/33 8/32 10/33 7/33 8/32 10/33 

33 7/34 9/34 10/33 7/34 9/34 10/33 7/34 9/34 10/33 7/34 9/34 10/34 7/34 9/34 10/34 

34 7/34 9/35 10/34 7/35 9/35 10/34 7/35 9/35 10/34 7/35 9/35 10/34 7/35 9/35 10/34 

35 7/35 9/36 10/35 7/35 9/36 11/36 7/36 9/36 11/36 7/36 9/36 11/36 7/36 9/36 11/36 

36 7/36 9/36 11/37 7/36 9/37 11/37 7/36 9/37 11/37 7/36 9/37 11/37 7/37 9/37 11/37 

37 7/37 9/37 11/38 7/37 9/37 11/38 7/37 9/37 11/38 7/37 9/38 11/38 7/37 9/38 11/38 

38 7/38 9/38 11/38 8/39 9/38 11/38 8/39 9/38 11/39 8/39 9/38 11/39 8/39 9/39 11/39 

39 8/40 9/40 11/39 8/40 9/40 11/39 8/40 9/40 11/39 8/40 9/40 11/40 8/40 9/40 11/40 

40 8/41 10/41 11/40 8/41 10/41 11/40 8/41 10/41 11/40 8/41 10/41 11/40 8/41 10/41 11/40 
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