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A general quantile function model for economic and

financial time series

Yuzhi Cai∗, Swansea University, UK

Abstract

This paper proposed a general quantile function model that covers both one and

multiple dimensional models and that takes several existing models in the literature

as its special cases. This paper also developed a new uniform Bayesian framework

for quantile function modelling and illustrated the developed approach through differ-

ent quantile function models. Many distributions are defined explicitly only via their

quanitle functions as the corresponding distribution or density functions do not have

an explicit mathematical expression. Such distributions are rarely used in economic

and financial modelling in practice. The developed methodology makes it more con-

venient to use these distributions in analyzing economic and financial data. Empirical

applications to economic and financial time series and comparisons with other types

of models and methods show that the developed method can be very useful in practice.

Key words: German DAX, currency exchange rates, quantile functions models, Bayesian

approach.
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1 Introduction

Making statistical inferences on the conditional quantiles of a financial or economic vari-

able has become more and more popular recently. See, for example, Jorion (2006). One

of the approaches to estimating conditional quantiles is based on the estimated distribution

function of the variable. In one dimensional cases, this is relatively easy to achieve. For

multivariate cases, Li and Racine (2008) proposed a nonparametric kernel-based method

for estimating a joint probability distribution function. They also proposed a method for

inverting this estimate to obtain quantile surfaces. Their quantile surface estimating method

has been shown to be very useful in practice. For example, Maasoumi and Racine (2013)

developed a new technique that used the estimated quantile surfaces obtained from Li and

Racine (2008) method and that resolved a classic problem of assigning weights to multiple

indicators.

Another one of the approaches to estimating conditional quantiles is to estimate the con-

ditional quantiles directly. This approach includes the semi-parametric quantile regression

models (Koenker, 2005) and the parametric quantile function models (Gilchrist, 2000).

Given a set of observations {yi, x1i, . . . , xpi} (i = 1, . . . , n), a one dimensional quantile

regression model for the τ th conditional quantile of Y , denoted by qτY |X , is defined by

qτY |X = h(ητ ,x), (1)

where h is a known function of the covariate x = (x1, . . . , xp) and ητ is the model param-

eter vector depending on τ (0 ≤ τ ≤ 1). Note that the effect of the error term of model (1)

is estimated through ητ non-parametrically. Hence, the whole model is semi-parametric.

ητ may be estimated by using various methods including Bayesian methods. See for

example, Koenker (1984), Koenker and D’Orey (1987, 1994), Kottas and Gelfand (2001),

Tsionas (2003), Yu and Moyeed (2001), Cai and Stander (2008), Lancaster and Jun (2010),

Wu and Liu’s (2009), Bondell et al. (2010) and references therein. A simple example of (1)
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is given by qτY |X = aτ0 + aτ1x1 + · · ·+ aτpxp with ητ = (aτ0, . . . , a
τ
p).

In multivariate cases, some work can also be found in the literature. For example,

Salibian-Barrera and Wei (2008) used the inverse of Rosenblatt’s transformation (Rosen-

blatt, 1952) to map a central confidence region defined in the unit hypercube back onto the

original sample space, so that weighted quantile regression estimator can be obtained. Wei

(2008) also developed an approach to estimating multivariate quantile contours.

Compared with the semi-parametric approach, much less work can be found in the

literature on the parametric quantile function approach. We will focus on this type of

models in this paper. A one dimentional parametric quantile function model is defined by

QY (τ | ξ,x) = h1(η1,x) + h2(η2,x)Q(τ,γ), (2)

where ξ = (η1,η2,γ) is the model parameter vector, hi (i = 1, 2) are known functions

of x and ηi, h2(η2,x) > 0 and Q(τ,γ) is the quantile function of the error term with an

explicit mathematical expression. A special case of model (2) is the linear quantile function

model given by QY (τ | ξ,x) = a0 + a1x1 + · · · + apxp + Q(τ,γ) with h1(η1,x) =

a0 + a1x1 + · · · + apxp, h2(η2,x) = 1 and η1 = (a0, . . . , ap). It is seen that, unlike

model (1), model (2) can guarantee the monotonicity of the estimated conditional quantiles

of Y due to the fact that QY (τ | ξ,x) is a well defined conditional quantile function.

Gilchrist (2000) discussed some methods for estimating ξ based on distributional least

squares or distributional absolutes criteria. Cai (2009, 2010b) and Cai et al. (2013) pro-

posed Bayesian approaches to estimating parameters of different types of model (2), in-

cluding polynomial and linear/non-linear time series quantile functions models.

In multivariate cases, even less work can be found in the literature on quantile function

models. Cai (2010a) introduced a multivariate quantile function model and illustrated the

usefulness of the model via a financial data set.

The main contributions of this paper include: (i) a general multivariate quantile func-

3



tion model is proposed which includes the quantile function models mentioned above as

its special cases; (ii) a new uniform Bayesian framework for estimating such models is

developed. We hope that this paper will help readers to develop their own quantile func-

tion models in either one or multiple dimensional cases and to have a means for estimating

model parameters in practice.

2 A general quantile function model

To simplify the notation, from now on we use the small letter y to represent both a realiza-

tion of a random variable Y and a variable of a function. Then a general quantile function

model for a set of continuous financial variables y = (y1, . . . , ym) given x is defined by

h(y | η,x) = Q(τ,γ), (3)

where 0 ≤ τ ≤ 1, Q(τ,γ) is a one dimensional quantile function with parameter γ, and

h(y | η,x) is a known function of its arguments with parameter η. Let β = (η,γ). As the

Q(τ,γ) in model (3) is a quantile function of a distribution, we have

τ = P (U ≤ τ) = P [Q−1{h(y | η,x)} ≤ τ ] = P{h(y | η,x) ≤ Q(τ,γ)},

where U is a uniformly distributed random variable between 0 and 1. Therefore, Aτ = {y |

h(y,η) ≤ Q(τ,γ)} forms a region such that the probability of y ∈ Aτ is τ . For example, if

τ = 0.25, then the probability of y ∈ A0.25 is 0.25. Furthermore, the boundary of Aτ may

be determined by h(y | η,x) = Q(τ,γ). This boundary defines the τ th quantile surface

that we want to estimate.

Note that if model (3) holds and if h is a continuous function of y, then the resulting

quantile regions are unions of compact sets and the resulting quantile surfaces are nested.

In the rest of the paper, we assume that y follows a joint distribution defined by model (3).

Note that determining the distribution of the error term of a parametric statistical model
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can be difficult. However, compared with the models for the means, such as conventional

regression models, it is a relatively easier task for the quantile function models because

quantile functions have some good properties. For example, under certain conditions quan-

tile functions can be added, multiplied, transformed and/or combined to form new quantile

functions, i.e. new models.

For example, the distributions of financial returns are usually asymmetric with long tails

on both sides. Note that the Pareto distribution is one of the commonly used distributions

for extremes. So we may use a Pareto quantile function S1(τ, γ1) = τ γ1 (τ ∈ (0, 1), γ1 < 0)

and the reflection of another Pareto quantile function S2(τ, γ2) = −(1 − τ)γ2 (γ2 < 0) as

building blocks. Then the sum of a linear transformation of S1 and a linear transformation

of S2 gives a new quantile function Q(τ,γ) = τγ1−1
γ1

− (1−τ)γ2−1
γ2

, where γ1 and γ2 jointly

model the tails of this new distribution. When γ1 ̸= γ2 the distribution is skewed. In fact,

this quantile function is the quantile function of the generalized lambda distribution (see

Freimer et al. (1988)). Of course, if we use other distributions as building blocks then

various new distributions may be constructed in practice.

Note that a quantile function obtained by using quantile function properties usually

does not have an explicit inverse function. Hence the corresponding distribution/density

function does not have an explicit mathematical expression, as for the above generalized

lambda distribution. This is why many distributions defined via their quantile functions

have not been used in practice. However, the methodology developed in this paper will

enable us to use such distributions in financial and economic modelling easily.

The fitted quantile function models may be checked via conventional methods. For

example, the residuals of a fitted model can be checked for independence and randomness.

A quantile-quantile plot (QQ-plot) or a probability-probability plot (PP-plot) may be used

to check the specifications of the model. Formal statistical tests may also be carried out.

Now let us consider several special cases. If m = 1, let y = y, and h(y | η,x) =

(y − h1(η1,x))/h2(η2,x), then model (3) becomes y = h1(η1,x) + h2(η2,x)Q(τ,γ),
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which in fact defines the quantile function of y given by model (2).

Furthermore, if p = 1 and h1(η1, x) = a0+
∑k1

j=1 ajx
j, h2(η2, x) = b0+

∑k1
j=1 bjx

j,

then model (3) defines a polynomial quantile function model studied by Cai (2010b):

Qy(τ | β,x) = a0 + a1x+ · · ·+ ak1x
k1 + (b0 + b1x+ · · ·+ bk2x

k2)Q(τ,γ). (4)

If y is a time series, let y = yt, xi = yt−i (i = 1, . . . , p), h1(η1,x) = a0+
∑p

j=1 ajyt−j,

and h2(η2,x) = η, then model (3) defines an AR quantile function model, see Cai (2009):

Qyt(τ | β,x) = a0 + a1yt−1 + · · ·+ apyt−p + ηQ(τ,γ). (5)

Compared with a conventional AR(p) model yt = ϕ0+ϕ1yt−1+· · ·+ϕpyt−p+εt, where

εt ∼ N(0, σ2), we see that model (5) and the conventional AR(p) model are equivalent if

Q(τ,γ) is the quantile function of N(0, 1) and η = σ. So the autocorrelation structures can

also be dealt with by quantile function models easily.

For financial time series, the conditional variance of yt may also depend on the lag

values yt−1, . . . , yt−q for some q > 0. So if η =
√

b0 +
∑q

j=1 bjy
2
t−j , then we have

Qyt(τ | β,x) = a0 +

p∑
j1=1

aj1yt−j1 +

√√√√b0 +

q∑
j2=1

bj2y
2
t−j2

Q(τ,γ). (6)

See Cai et al. (2013) for further details. It is seen that in this case the autocorrelation

structure can also be dealt with.

If m > 1, p = 0 and h(y | η,x) =
∑m

k=1

(
yk −

∑k−1
j=0 ak k−j−1yk−j−1

)2
, then

model (3) defines a multivariate quantile function model

m∑
k=1

(
yk −

k−1∑
j=0

akk−j−1yk−j−1

)2

= Q(τ,γ), (7)
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which was further studied by Cai (2010a).

Therefore, model (3) covers both one-dimensional and multi-dimensional quantile func-

tion models. The function h(y | η,x) is able to describe not only dependence structures

between variables but also autocorrelation structures of a financial time series.

Many other dependence structures between financial or economic variables can also

be studied by using a quantile function model. For illustration purposes, we consider the

two-dimensional case, i.e. m = 2, via the following four models, where y1 and y2 may

represent any two financial variables of interest.

Model 1: a0 + a1 sin(y1) + a2y2 = Q(τ,γ).

In this model we let Q(τ,γ) be the quantile function of the log-normal distribution with

mean 0 and variable 1. This model describes a cyclic dependence structure between two

financial variables.

Model 2: a0 + a1y1 + a2y2 + a3y1y2 = Q(τ,γ).

In this model we let Q(τ,γ) be the quantile function of the t-distribution with 5 degrees of

freedom. This model describes a linear relationship between two financial returns and their

interactions.

Model 3: a0 + a1y
2
1 + a2y2 = Q(τ,γ).

In this model we let Q(τ,γ) be the quantile function of the Weibull distribution with shape

parameter 1 and scale parameter 2. This model describes the quadratic relationship between

two financial variables.

Model 4: a0 + a1(y1 − b1)
2 + a2(y2 − b2)

2 = Q(τ,γ).

In this model we let Q(τ,γ) be the quantile function of the exponential distribution with

rate 0.05. This model describes the nonlinear dependence structure (clustered and with

some extremes) between two financial variables.

We generated four data sets, one from each of the above four models with the parameter
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Table 1: Parameter values of Models 1-4
Models a0 a1 a2 a3 b1 b2
Model 1 1 1.2 −0.5 - - -
Model 2 1 1.2 7.1 −2.9 - -
Model 3 −2 1.5 0.5 - - -
Model 4 −1.5 0.5 0.1 - 1 −1

values given in Table 1. The sample size is 200 for all four models. Note that the sample

size, the parameter values and the Q(τ,γ) were all chosen arbitrarily. Figure 1 shows the

joint probability density plots of two financial variables, Figure 2 shows the contour plots

of the density functions and Figure 3 shows the quantile curves of the joint distribution of

the two variables. Note that the grey points in the figures are the simulated data.

(a) (b)

(c) (d)

Figure 1: The joint probability density plots of y1 and y2 of (a) Model 1, (b) Model 2, (c)
Model 3 and (d) Model 4.

The joint density function plots show various dependence structures between the two

financial variables, and the contour curves suggest that the joint density functions may

have multiple modes. It is clear that the contour curves are very different from the quantile
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Figure 2: The contour plots of the joint probability density functions of y1 and y2 for (a)
Model 1, (b) Model 2, (c) Model 3 and (d) Model 4.
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Figure 3: The quantile curves of the joint distribution of y1 and y2 for (a) Model 1, (b)
Model 2, (c) Model 3 and (d) Model 4.
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curves. For each model, we plotted five quantile curves at levels 0.05, 0.25, 0.5, 0.75 and

0.95. For Models 1, 2, and 3, a quantile curve at a level, say 0.25, tells us that the probability

for the two financial variables to take a value within the region below the curve is 0.25.

For Model 4, the 0.25th quantile curve indicates that the probability that the two financial

variables are in the region enclosed by the quantile curve is 0.25. Note that quantile curves

at any other levels can also be obtained similarly.

These examples further show that the general quantile function models can indeed deal

with different dependence structures between financial variables easily. In the following

section we develop a new uniform Bayesian framework for model (3).

3 The Bayesian MCMC method

3.1 The method

Let yi = (y1i, . . . , ymi) and xi = (x1i, . . . , xpi) (i = 1, . . . , n) be the observed data, and let

u = h(y | η,x). Then model (3) says that the quantile function of U is given by Q(τ,γ).

We assume that Q(τ,γ) has an explicit mathematical expression, but its inverse function

may not be known explicitly. Hence the probability density function of U may not have an

explicit mathematical expression.

Theorem 1 Let u = (u1, . . . , un), where ui = h(yi | η,xi) (i = 1, . . . , n). Furthermore,

we assume that ui are independent samples of U . Then the likelihood of u is given by

L(u | β,x) =
∏n

i=1 {∂Q(τ,γ)/∂τ}−1|τ=τi
, where τi satisfies

ui = h(yi | η,xi) = Q(τi,γ). (8)

See the Appendix for a proof. Theorem 1 shows that as long as Q(τ,γ) is known, the

likelihood function of the parameters is an explicit function of τ , but may not be an explicit
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Table 2: A general MCMC method, where A is the posterior ratio, and B and C are the
ratios of the transition density functions for η and γ respectively.

Sample
η′ ∼ g1(η

′) and γ ′ ∼ g2(γ
′) such that η′ ∈ Ω1 and γ ′ ∈ Ω2

Solve for τ ′i (i = 1, . . . , n) from
h(y1i, . . . , ymi | η,xi) = Q(τ ′i ,γ

′)
Sample v ∼ U(0, 1)
If v ≤ min{ABC, 1}, then β = β′, τi = τ ′i (i = 1, . . . , n)
else β = β, τi = τi (i = 1, . . . , n)

function of the parameters themselves. This is because τi satisfies (8) which usually can

not be solved exactly. Therefore, this poses challenging tasks in estimating such quantile

function models. We now develop a Bayesian method for the parameter estimation and we

will see that a Bayesian approach is able to resolve the problem.

To represent the dependence on y, we write u = u(y). Let π(β) be the prior density

function of β, then the posterior density function of β is given by π(β | x,u(y)) ∝

L(u(y) | β,x)π(β). Furthermore, if π(β | x,u(y)) is well defined for β = (η,γ) ∈

Ω = Ω1 × Ω2, then a MCMC method can be designed and the model parameters can be

estimated. As a Gibbs sampler requires full conditional distributions of η and γ, which is

not available in this case, the Metropolis-Hasting MCMC method is considered below.

Let β and β′ be the current and the proposed parameter values respectively, let τi and τ ′i

(i = 1, . . . , n) be the associated probabilities respectively. Then a general MCMC sampler

for quantile function models is given in Table 2, where A = π(β′ | x,u(y))/π(β | x,u(y)),

B = q(η′ → η)/q(η → η′), C = q(γ ′ → γ)/q(γ → γ ′), where q(a′ → a) is the transi-

tion probability density function of a given a′, and g1 and g2 are the probability density

functions from which β′ is obtained. For illustration purposes we take g1 and g2 as those

specified in Theorem 2 below.

11



Theorem 2 Let η = (η0, . . . , ηp1), γ = (γ1, . . . , γp2) and let

g1(η
′) =

p1∏
j=0

1√
2πσηj

e
−

(η′j−ηj)
2

2σ2
ηj , g2(γ

′) =

p2∏
ℓ=1

1√
2πσγℓ

e
− (γ′ℓ−γℓ)

2

2σ2
γℓ ,

where η′ ∈ Ω1 and γ ′ ∈ Ω2, while σηj , σγℓ ( j = 0, . . . , p1, ℓ = 1, . . . , p2) are given by

user. Then

B =


∫
Ω1

p1∏
j=0

1√
2πσηj

e
−

(η′j−ηj)
2

2σ2
ηj dη′j



∫
Ω1

p1∏
j=0

1√
2πσηj

e
−

(ηj−η′j)
2

2σ2
ηj dηj


−1

, (9)

C =

{∫
Ω2

p2∏
ℓ=1

1√
2πσγℓ

e
− (γℓ

′−γℓ)
2

2σ2
γℓ dγ′

ℓ

}{∫
Ω2

p2∏
ℓ=1

1√
2πσγℓ

e
− (γℓ−γℓ

′)2

2σ2
γℓ dγℓ

}−1

. (10)

See Appendix for a proof. In general cases it can be very difficult to evaluate (9) and

(10) because of the complex structure of Ω1 and Ω2. In this paper, we use a simulation

method to evaluate the integrals involved in (9) and (10) if necessary. For example, to

estimate
∫
Ω1

∏p1
j=0(1/

√
2πσηj) exp{−(η′j − ηj)

2/2σ2
ηj
}dη′j , we simulate ηvj ∼ N(ηj, σ

2
ηj
)

(j = 0, . . . , p1, v = 1, . . . ,M1). Let N1 be the number of the simulated samples such that

(ηv0 , . . . , η
v
k) ∈ Ω1. Then the integral is estimated by N1/M1.

Therefore, for any quantile function models defined by model (3), if we can specify a

proper prior density function for β such that
∫
Ω
π(β | x,u(y))dβ < ∞, then the above

general MCMC method can be used for parameter estimation. Our experience with this

sampler shows that several testing runs will enable us to choose proper values of σηj and

σγℓ for each application, and that the simulated Markov chain converges to the posterior

distribution of the parameters quickly. In the next subsection we illustrate the above general

MCMC method using different quantile function models.
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3.2 Applications to special quantile function models

First, let us consider model (4), where Q(τ,γ) = τ γ1(1−τ)−γ2 , γ1 > 0, γ2 > 0. So Q(τ,γ)

is the quantile function of the power-Pareto distribution. It follows from Theorem 1 that

L(u(y) | β,x) =
∏n

i=1(τ
1−γ1
i (1− τi)

1+γ2)/(γ1(1− τi) + γ2τi),

where τi satisfy

ui =
yi − (a0 + a1xi + · · ·+ ak1x

k1
i )

b0 + b1xi + · · ·+ bk2x
k2
i

= τ γ1i (1− τi)
−γ2 .

Furthermore, if the prior distribution of the parameters is given by π(β) = π(η1)π(η2)π(γ),

where η1 = (a0, . . . , ak1), η2 = (b0, . . . , bk2), γ = (γ1, γ2) and

π(η1) =

k1∏
j1=0

π(aj1) =

k1∏
j1=0

1√
2πσj1

e
−

a2j1
2σ2

j1 , π(η2) =

k2∏
j2=0

π(bj2) =

k2∏
j2=0

1√
2πσ̃j2

e
−

b2j2
2σ̃2

j2 ,

(11)

and

π(γ) =
2∏

ℓ=1

π(γℓ) =
2∏

ℓ=1

(λℓ/γ
2
ℓ )e

−λℓ/γℓ , (12)

then the posterior distribution of the parameters is given by

π(β | x,y) ∝
∏n

i=1
τ
1−γ1
i (1−τi)

1+γ2

(
∑k2

j=0 bjx
j
i )[γ1(1−τi)+γ2τi]

×
∏k1

j1=0(1/
√
2πσj1) e

−
a2j1
2σ2

j1

∏k2
j2=0(1/

√
2πσ̃j2) e

−
b2j2
2σ̃2

j2

∏2
ℓ=1(λℓ/γ

2
ℓ )e

−λℓ/γℓ

and is well defined on (η1,η2,γ) ∈ Ω1 × Ω2 × Ω3, where

Ω1 = {(a0, . . . , ak1) | a0 + a1xi + · · ·+ ak1x
k1
i < yi, i = 1, . . . , n},

Ω2 = {(b0, . . . , bk2) | b0 + b1xi + · · ·+ bk2x
k2
i > 0, i = 1, . . . , n},

Ω3 = (0,M ]× (0,∞), where M is a fixed positive real number.

Note that the normal priors (11) can be very useful in practice. These priors say that the
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values of the model parameters can be positive or negative. Large values of σs represent

weak prior information about the model parameters.

Now consider model (5), where Q(τ,γ) = − 1
λ
ln(1 − τ), λ > 0. So Q(τ,γ) is the

quantile function of the exponential distribution with rate λ.

Let yp = (y1, . . . , yp−1) and y = (yp+1, . . . , n). Then it follows from Theorem 1 that

L(u(y) | yp,β) =
∏n

t=p+1 γ(1− τt), where τt satisfies

yt − (a0 + a1yt−1 + · · ·+ apyt−p) = −(1/γ)ln(1− τt), (13)

where γ = η/λ. Note that in this special case, τt can be found exactly.

If the priors for ai are given by (11) and π(γ) = αe−αγ , then the posterior distribution

of the model parameters is well defined on Ω = Ω1 × Ω2, where Ω1 = {(a0, . . . , ap) |

a0 + a1yt−1 + · · ·+ apyt−p ≤ yt, t = p, . . . , n}, and Ω2 = (0,∞).

Finally, let us consider model (7), where Q(τ,γ) is also the quantile function of the

power-Pareto distribution, but in this case, we have m = 2 and no covariates. It also

follows from Theorem 1 that

L(u(y) | β) =
n∏

i=1

{τ 1−γ1
i (1− τi)

1+γ2}/{γ1(1− τi) + γ2τi} (14)

where τi satisfy

(y2i − a21y1i − a20)
2 + (y1i − a10)

2 = τ γ1i (1− τi)
−γ2 , i = 1, . . . , n. (15)

Furthermore, if

π(η) =
2∏

k=1

k−1∏
j=0

π(akj) =
2∏

k=1

k−1∏
j=0

1√
2πσkj

e
−

a2kj

2σ2
kj (16)

and π(γ) is given by (12), where η = {akj : k = 1, 2, j = 0, . . . , k− 1}, then the posterior
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distribution of the parameters is given by

π(β | u(y)) ∝
n∏

i=1

τ 1−γ1
i (1− τi)

1+γ2

γ1(1− τi) + γ2τi

2∏
ℓ=1

λℓ

γ2
ℓ

e−λℓ/γℓ

2∏
k=1

k−1∏
j=0

1√
2πσkj

e
−

a2kj

2σ2
kj , (17)

and is well defined on Ω1 × Ω2, where Ω1 = (−∞,∞)3, Ω2 = (0,M ]× (0,∞) and M is

any fixed positive real number.

From these examples, we see that a MCMC method can also be developed for many

other quantile function models similarly. In the following section we apply the quantile

function models to some real financial time series.

4 Applications to real data sets

The first example shows a 1-dimensional case and the second example shows a multivariate

case. Note that in these applications, we do not have any prior knowledge about the model

parameters. Therefore the priors given in (11) and (12) with large standard deviations have

been used.

4.1 The German DAX

The German DAX is the most commonly cited benchmark for measuring the returns posted

by stocks on the Frankfurt Stock Exchange. The data were collected between 1991 and

1999 and the sample size is 1860. See Figure 4(a) for the time series plot of the data.

Let x̃t be the German DAX and xt = 100(log(x̃t+1)−log(x̃t)) be the log returns. Figure

4(b) shows the log return time series plot. We will study the log return series in this section.

It is worth mentioning that there is no much autocorrelation structure in the log return

series, but indeed there are some autocorrelation structures in the squared return series. The

time series plot of the log returns also shows large variations in both directions during this
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Figure 4: (a) Time series plot of the German DAX between 1991-1998. (b) Time series
plot of the log returns.

period of time, which suggests that the distribution of the error term of the model has long

tails on both sides, and the distribution may not be symmetric. Due to the flexibility of the

generalized lambda distribution, we used this distribution for the error term of model (6).

So this model also allows us to investigate the effects of lag values of the returns.

We fitted a set of models with different orders (p, q). To save space, we only reported

the results for the best fitted model in this paper, which corresponds to p = q = 1 and

which was chosen according to the Bayesian factor. The prior density functions for aj1 and

bj2 were given by (11) and (12) with σ0 = σ1 = σ̃0 = σ̃2 = λ1 = λ2 = 2. Furthermore,

we took 0.05 as the variance of all the proposal density functions. The initial value of the

parameters was taken as (x̄, 0, 0, s̄, 0, γ
(0)
1 , γ

(0)
2 ) because it is a point in the support of the

posterior distribution, where a(0)0 = x̄ = 0.0652 is the sample mean, b(0)0 = s̄ = 1.030 is the

sample standard deviation, γ(0)
1 = −0.259 and γ

(0)
2 = −0.333 are two random samples from

a negative exponential distribution of rate 3 and 4 respectively. Our experience with this
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data set also shows that the initial values do not have significant effects on the convergence

of the method. The sampler was ran 200,000 steps. After a burn-in period of the first

10,000 steps, the posterior samples of the model parameters were collected once every 100

steps. Time series plots (not shown to save space) of the simulated parameters show that

the convergence was achieved after the burn-in period. Figure 5 shows the histograms of

the posterior samples where the vertical lines give the locations of the estimated parameter

values. So the fitted model is given by
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Figure 5: Histograms of the posterior parameter samples for German DAX returns.

Qxt(τ | xt−1) = 0.085− 0.035xt−1

+
√

0.188 + 0.025x2
t−1

(
τ−0.127−1
−0.127

− (1−τ)−0.092−1
−0.092

) (18)

This fitted model shows that the conditional distribution of xt is a shifted and scaled

generalized lambda distribution Q̂(τ, γ̂) = τ−0.127−1
−0.127

− (1−τ)−0.092−1
−0.092

, and both the location

0.085 − 0.035xt−1 and the scale
√
0.188 + 0.025x2

t−1 of the distribution of xt depend on

xt−1, suggesting that the first order autocorrelation structure has been taken into account.
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Figure 6(a) shows the plot of the sample quantiles of the standardized residuals

ût = {xt − (0.085− 0.035xt−1)}/
√
0.188 + 0.025x2

t−1

against the quantiles of the generalized lambda distribution Q̂(τ, γ̂).
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Figure 6: (a) The QQ-plot of the standardized residuals of the quantile function model. (b)
The QQ-plot of the standardized residuals of the AR-GARCH model.

We also fitted a set of AR-GARCH models to the return series by using the statistical

software R. According to AIC the best fitted model was the AR(1)-GARCH(1,1) model:

xt = 0.0652− 0.0004xt−1 +
√
ht ϵt, ϵt ∼ N(0, 1)

where ht = 0.0475 + 0.0684v2t−1 + 0.8877ht−1 and vt = xt − 0.0652 + 0.0004xt−1.

Figure 6(a)(b) shows that model (18) has an improved fitting.

Model (18) may be used to obtain predictive quantiles. For illustration purposes Fig-

ure 7 shows one-step ahead predictive quanitles at seven different levels, from the top to the

bottom, for τ = 0.995, 0.95, 0.75, 0.5, 0.25, 0.05 and 0.005 respectively. A quantile curve

at a level, say τ = 0.005, tells us that the conditional probability of the next day’s return

being lower than this curve is 0.005, thus it provides a measure of value at risk at this level.
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Figure 7: 1-step ahead predictive quantiles for DAX returns. The grey curve corresponds
to the actual observed returns.

Table 3: Empirical probability coverage of the predictive quantile curves for DAX returns
τ 0.005 0.05 0.25 0.5 0.75 0.95 0.995

No. returns 5 96 455 952 1380 1762 1849
Proportion 0.003 0.052 0.245 0.512 0.743 0.948 0.995

Table 3 further shows the empirical coverage of these estimated predictive quantile

curves, where the second and the third rows give the number of the returns and the pro-

portion of the returns that are below the respective quantile curves. Clearly, all estimated

predictive quantile curves provide a good probability coverage, which also implies that the

fitted quantile function model is reasonably good for this data set.

Further statistical inferences may also be made by using model (18). For example, one-

step ahead out-of-sample forecast can be obtained straightaway. Note that the last observed

log return is 2.192% which was obtained on day 1860. So the conditional quantile function

of the log return on the next day is
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Qx1861(τ | x1860) = 0.085− 0.035(2.192)

+
√

0.188 + 0.025(2.192)2
(

τ−0.127−1
−0.127

− (1−τ)−0.092−1
−0.092

)
= 0.0083 + 0.5551

(
τ−0.127−1
−0.127

− (1−τ)−0.092−1
−0.092

)
.

This predictive quantile function in fact defines the whole conditional distribution of

x1861 and its density function plot is shown in Figure 8. It is seen that the predictive condi-
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Figure 8: The one-step ahead predictive conditional density function of the DAX return at
time 1861. The middle vertical line indicates the location of the predictive median, and the
dashed vertical lines give a 95% credible interval for the DAX returns at time 1861.

tional distribution is slightly skewed to the left. The middle vertical line in Figure 8 gives

the location of the predictive conditional median, which is about 0.005%; the two dashed

lines are at x = −2.581 and x = 2.426, which show that 95% of the returns will fall be-

tween −2.581% and 2.426%. Note that because we have estimated the whole conditional

quantile function of the returns, we can also make inferences on any other quantities of

interest, such as predictive mean, variance, value at risk at any given levels and expected

shortfalls etc.
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4.2 The currency exchange rates

Consider the currency exchange rates USD/GBP and CAD/GBP from 2 January 1997 to

21 November 2000. Each time series is of length 975 and the plots of the exchange rates

are given in Figure 9 (a) and (b), which suggest that the time series are not stationary.

In this study we focus on their returns. Let x1t and x2t be the returns on USD/GBP and
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Figure 9: Plots of the exchange rates USD/GBP and CAD/GBP.

CAD/GBP respectively. Figure 9 (c) and (d) show the plots of these return series. Clearly

they have similar features that many economic and financial time series have. The auto-

and partial correlation function plots of x1t and x2t suggest that there is no significant

autocorrelation structure in each of the return series. So we ignore the autocorrelation

structure but concentrate on the dependence structure of the two return series.

The scatter plot of the returns in Figure 9(e) shows an obvious positive correlation

between the two series. Note that it is not appropriate to use a usual linear regression

model in this case as the data are clustered. So we fitted model (7) to the data, where

Q(τ,γ) is the quantile function of the power-Pareto distribution.

The prior distributions of the parameters are given by (16) and (12) with σkj = 13,
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k = 1, 2, j = 0, . . . , k− 1, and λj = 1, j = 1, 2. The chain was run for 50,000 steps. After

a burn-in period of the first 3,000 steps, the posterior samples were collected once every 30

steps. The fitted model is

(x2 − 0.6580x1 + 0.0218)2 + (x1 + 0.0227)2 = τ 1.8450/(1− τ)0.2316.

The QQ-plot in Figure 10 (a) confirms that no major concerns about the fitted model.

The fitted τ th-quantile curves for τ = 0.995, 0.95, 0.90, 0.75, 0.5, 0.25 and 0.05 together

with the observed data (grey points) are shown in Figure 10(b).

Note that one of the common approaches to bivariate data is to fit a bivariate normal

distribution to the data. Figure 10(c) shows the contour curves obtained from the fitted

bivariate normal distribution by using the statistical software R. The fitted model has mean

(−0.005,−0.018)⊤ and variance-covariance matrix

 0.3522 0.2350

0.2350 0.2332

. Although the

plots of the contour curves of the bivariate normal density function look similar to those

of the quantile curves, they have completely different interpretations. With a τ th-quantile

curve we mean that the probability for the two returns fall inside the region defined by the

τ th-quantile curve is τ , while with a level c contour curve we mean that the value of the

joint probability density function at any points in the region defined by the level c contour

curve is c. Figure 10(d) further shows a 95% credible interval (dashed curves) for each

fitted quantile curve (solid curves).

In studying value at risk, we are interested in extreme quantiles. Figure 10(b) suggests

that the joint probability of the two returns on the currency exchange rates being outside

the 0.995th quantile curve is 0.005. Indeed, we have checked and found that only 5 points

are outside the 0.995th quantile curve (see Figure 10(b)). The empirical probability for this

to happen is 5/974 = 0.00513, which is in a good agreement with the true probability.

As our approach is different from the quantile regression approach, we also empirically

compared our method with that of Wei (2008). Again, statistical software R was used for

obtaining fitted reference quantile contours (Wei, 2008) for this data set. Figure 11 shows
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Figure 10: QQ-plot, fitted quantile curves and the corresponding 95% credible intervals
obtained from our model and contour curves of a fitted bivariate normal model.

the fitted τ th quantile curves by using different methods, where τ = 0.995, 0.95, 0.5, 0.05.

It is seen that there is no restriction on the shape of the fitted reference quantile contours if

Wei’s method is used. This is due to the non-parametric nature of the method. For this data

set, when τ > 0.05, both methods provide similar results, while when τ = 0.05 the fitted

quantile curves are quite different. We suggest to use both methods if possible in practice

for the best results.
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Figure 11: Fitted quantile curves by using our method (dashed curves) and fitted reference
quantile contours by using Wei’s (2008) method (continuous curves).
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5 Comments and conclusions

In this paper we proposed a general quantile function model which covers both one dimen-

sional and multiple dimensional models and which takes the models studied by Cai (2009,

2010a, 2010b) and Cai et al. (2013) as its special cases. We also developed a new uniform

Bayesian approach to model parameter estimation.

It is noticed that many distributions have not been used in economic and financial mod-

elling. One such example is the class of distributions that can only be defined by using their

quantile functions. The developed methodology makes it possible to use such distributions

in economic and financial modelling. Our results show that the developed method can be

very useful in practice.

It is worth mentioning that for tail probabilities, a parametric model would always give

finer results, but only under the condition that it is a proper model. Our results show that

it is possible to build up a proper model for a data set by using the properties of quantile

functions. We have found that the robustness of the quantile function models can be signifi-

cantly improved by using a properly constructed Q(τ,γ). A good example is the use of the

generalized lambda distribution. This distribution can provide very good approximations

to many standard distributions include normal, lognormal, weibull, t- and F-distributions

and many others. We have shown that how this distribution was constructed by using sim-

ple quantile functions. Many other distributions can also be constructed similarly. We will

investigate this important issue further in the future.

For multivariate quantile surface estimation, we believe thorough and systematic com-

parisons between our approach, Wei’s (2008) approach and Li and Racine’s (2008) ap-

proach are certainly required in the future.
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Appendix

Proof of Theorem 1

The likelihood of u can be written as L(u | β) = f(u1,γ)f(u2,γ) · · · f(un,γ), where

ui depends on η and γ. Now, it follows from (8) that for each ui there exists τi such

that τi is the actual probability for having the observed value ui. Hence it follows from

f(u, γ) = 1/(∂Q(τ,γ)/∂τ) that the result holds.

Proof of Theorem 2

First note that the proposals η′j (j = 0, . . . , p1) are obtained from N
(
ηj, σ

2
ηj

)
indepen-

dently such that η′ ∈ Ω1, and the proposals γ′
ℓ (ℓ = 1, . . . , p2) are obtained from N

(
γℓ, σ

2
γℓ

)
independently such that γ ′ ∈ Ω2. Therefore, it follows from

q(η′ → η) =

∏p1
j=0(1/

√
2πσηj)exp{−(ηj − η′j)

2/2σ2
ηj
}∫

Ω1

∏p1
j=0(1/

√
2πσηj)exp{−(ηj − η′j)

2/2σ2
ηj
}dηj

that (9) holds. Similarly, we can show that (10) also holds.
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