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Developments in lattice QCD for matter
at high temperature and density

GERT AARTSa, ∗
aPhysics Department, College of Science, Swansea University, Swansea SA2 8PP, United Kingdom

Abstract. A brief overview of the QCD phase diagram at nonzero temperature and density is
provided. It is explained why standard lattice QCD techniques are not immediately applicable for
its determination, due to the sign problem. We then discuss aselection of recent lattice approaches
that attempt to evade the sign problem and classify them according to the underlying principle: con-
strained simulations (density of states, histograms), holomorphicity (complex Langevin, Lefschetz
thimbles), partial summations (clusters, subsets, bags) and change in integration order (strong cou-
pling, dual formulations).
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1. Introduction

Establishing the QCD phase diagram at nonzero temperature and density remains one
of the outstanding challenges in the theory of the strong interactions. As is well known
[1, 2], its structure is relevant for heavy-ion collisions and the creation of the quark-gluon
plasma at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven, the Large Hadron
Collider (LHC) at CERN, and the forthcoming Facility for Antiproton and Ion Research
(FAIR) at GSI, for neutron stars and compact objects, and forthe early Universe. From
a theoretical perspective, the main obstacle in its determination is that numerical lattice
QCD, the prime nonperturbative tool to study QCD, cannot be used in conjunction with
standard numerical techniques. Lattice QCD relies on importance sampling, assigning
a real and positive number to each configuration of quarks andgluons. At nonzero (and
zero) temperature but vanishing chemical potential, this approach is indeed possible, since
the Boltzmann weight in the QCD partition function is real and positive. The result is a
detailed understanding of the crossover between the hadronic and quark-gluon plasma
phase as the temperature is increased [3–6]. In recent years, the phase structure has also
been studied in the presence of an external magnetic field, relevant for cosmology and
noncentral heavy-ion collisions [7]. Since the Boltzmann weight remains real and posi-
tive, lattice techniques can be applied here as well [8, 9].

However, as soon as the baryon chemical potential is nonzero, the quark contribution
to the Boltzmann weight is complex (in the usual formulation), ruling out conventional
approaches. This issue is usually referred to as the sign problem or complex-action prob-
lem. It is certainly a nontrivial problem, since an incorrect handling of the sign problem
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Figure 1. Impression of the QCD phase diagram [13].

results in manifest failure and physically wrong results. This realisation has been around
since the first lattice simulations at nonzero chemical potential were carried out, in the
1980s [10]. It is therefore also a persistent problem, for which no definite solution has
been found yet. Interestingly, the sign problem is not specific to QCD but appears in many
lattice theories with a mismatch in particle densities, which makes it relevant from a more
broader perspective as well.

In this overview, I will first remind the reader of some general observations regarding
the QCD phase diagram and the sign problem. Subsequently I will discuss various ap-
proaches that have been pursued in recent years and attempt to categorise them according
to the underlying principle. Refs. [11, 12] contain partially complementary reviews of the
sign problem in QCD at finite density.

2. QCD phase diagram and the sign problem

An impression of the QCD phase diagram is given in Fig. 1. Along the vertical tem-
perature (T ) axis, the crossover between the hadronic phase and the quark-gluon plasma
can be seen. Recent lattice studies agree that the crossovertemperature is closer to 155
MeV than 170 MeV, as indicated in the figure [4, 5]. Increasingthe chemical potential,
the thermal crossover may change in a proper first-order phase transition, with a second-
order critical endpoint to mark where this happens [14]. Along the horizontal chemical
potential (µ) axis, transitions to new phases are expected: nuclear matter, various colour
superconducting phases [15] and a possible quarkyonic phase [16] (not indicated). Phase
transition lines can join in a triple point. Heavy-ion collider experiments probe (or will
probe) various regions of the phase diagram, depending on the energy of the collisions.

However, due to the sign problem most features of the phase diagram have not been
obtained using lattice methods, but instead follow from general considerations and pre-
dictions from effective models (such as Polyakov-loop extended Nambu Jona-Lasinio
(PNJL) [17, 18] and Polyakov-quark-meson models [19]), thefunctional renormalization
group [20], Schwinger-Dyson equations [21], or a combination therefore [22]. They have
therefore not been established unequivocally. Of course, at asymptotically high energy
scales, asymptotic freedom supports the validity of weak-coupling computations [23–25].
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The sign problem appears in the standard lattice formulation of QCD, in which the
partition function is written as

Z =

∫
DUDψ̄Dψ e−SYM−SF =

∫
DU e−SYM detM. (1)

Here the gauge linksU represent the gluonic degrees of freedom, with the Yang-Mills
actionSYM, andψ, ψ̄ are the quark fields, with the fermionic actionSF ∼ ψ̄M(U ;µ)ψ.
The chemical potential appears in the fermion matrixM . In the second expression, the
quark fields have been integrated out exactly, resulting in the quark determinant. It follows
from elementary properties of the Dirac operator that the determinant is complex whenµ
is real and nonzero, and satisfies [11]

[detM(µ)]∗ = detM(−µ∗), detM(µ) = | detM(µ)|eiϑ, (2)

i.e. it has a complex phase. It can be seen that the determinant is real when the chemical
potential is purely imaginary, such that standard simulations are possible in this case [26].

Lattice QCD has been effective in the crossover region at nonzero temperature for small
chemical potentials, relying on analyticity in(µ/T )2. In this approach, simulations are
carried out at either vanishing or imaginary chemical potential, where the sign problem is
absent. Applying a Taylor expansion in(µ/T )2 requires the calculation of higher-order
derivatives of the logarithm of the fermion determinant with respect toµ, i.e. of gener-
alised susceptibilities [27]. Even though these quickly become very noisy, the expansion
coefficients have been determined up to the impressive orderof (µ/T )8, and from these
the position of the critical endpoint has been predicted, based on an estimate of the radius
of convergence of the Taylor expansion [28]. This prediction should be contrasted with
the conclusion from studies at imaginary chemical potential [29] and lower-order Taylor
expansions [30], where it is found that the crossover weakens as(µ/T )2 is increased from
zero, making it less likely that the critical point can be found in this way.

The interesting region in the phase diagram with regard to the sign problem is the
region at lower and zero temperature. The reason is that in this region it is very well
understood what to expect and also what will go wrong when thesign problem is not
resolved correctly [31]. The onset to nuclear matter at vanishing temperature takes place
when the baryon chemical potential equals the nucleon mass (minus the binding energy).
For chemical potentials below this onset value, thermodynamic quantities should be in-
dependent of chemical potential (at zero temperature). In particular the baryon density
has to vanish. The reason is simple: there is not enough energy available to create a
baryon. At nonzero temperature, the baryon density is nonzero but Boltzmann suppressed,
∼ exp[−(mB−µ)/T ], wheremB is a generic baryon mass. When the sign problem is not
correctly taken into account in lattice QCD simulations, this expectation is easily upset.
For instance, when the complex phase of the determinant is ignored (phase quenching),
one finds, in the case of two quark flavours with equal mass, that the onset takes place at
a baryon chemical potential of 3/2 times the pion mass, rather than around the nucleon
mass. Since the former is much less than the latter, one observes an early incorrect on-
set. This feature is well understood: ignoring the complex phase results in a theory not
at nonzero baryon chemical potential, but instead at nonzero isospin chemical potential,
which couples to the pion rather than the nucleon [32]. It implies that the inclusion of
the complex phase of the determinant is necessary for the exact cancellation of this early
onset to take place [33, 34]. How this happens in lattice QCD simulations is not imme-
diately obvious. It has therefore been dubbed the Silver Blaze problem [35]. Its correct
resolution provides a stringent test of the validity of the applied approach [12].
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Finally, we mention that the sign problem is regarded as severe when the expectation
value of the phase factor in the phase-quenched (pq) theory goes to zero exponentially
in the thermodynamic limit. This quantity is given by the ratio of the partition functions
with and without the complex phase [11, 12],

〈eiϑ〉pq =

∫
DU e−SYM | detM |eiϑ∫
DU e−SYM | detM |

=
Z

Zpq
= e−V∆f/T , (3)

where∆f is the difference in free energy densities between the original and the phase-
quenched theories andV is the three-volume. From the extensivity of free energies,this
exponential behaviour is unavoidable. Furthermore, since∆f can be reliably computed
in chiral perturbation theory, the volume and temperature dependence is understood pre-
cisely [36, 37]. It follows that approaches based on ignoring the phase are guaranteed to
fail for large volumes and/or low temperature. This is for instance the case for reweight-
ing methods [38, 39], in which part of the complex weight, such as the phase of the
determinant, is absorbed in the observable,

〈O〉 =

∫
DU e−SYM| detM |eiϑO∫
DU e−SYM| detM |eiϑ

=
〈eiϑO〉pq
〈eiϑ〉pq

. (4)

In the presence of a Silver Blaze problem, the sign problem will certainly be severe, since
excessive cancellations are required [34], see also the review [40].

In the following I discuss various approaches that have beenproposed as complete or
partial solutions to the sign problem in recent years and arecurrently under investigation.
Since the sign problem is not unique for QCD, often these approaches are first tested
in simpler models, for instance lower-dimensional ones. Inparticular, the sign problem
may also appear in bosonic theories with a nonzero chemical potential and hence the
presence of fermionic degrees of freedom is not essential. Iwill only discuss a selection
of approaches, referring again to Refs. [11, 12] for complementary overviews.

3. Density of states, histograms

We start with a set of approaches which stay as close as possible to the original lattice
formulation (1), and which go under the headings of density of states, factorisation or
histogram method [41–43]. The idea is to evaluate the path integral in two stages, namely
by first evaluating a constrained integral where one degree of freedom is fixed and subse-
quently performing the remaining integral over the resulting probability distribution – the
density of states – constructed in the first step. The densityof the states can be obtained
by constructing histograms during the constrained simulation. Explicitly, if we take as de-
gree of freedom a generic observableP , such as the plaquette, action density or Polyakov
loop, the (unnormalised) density of states is given by

w(P ) =

∫
DU δ(P − P ′) e−SYM detM, (5)

whereP ′ is the value ofP taken during the simulation. The expectation value ofP is
then determined by the simple integrals

〈P 〉 =
1

Z

∫
dP w(P )P, Z =

∫
dP w(P ). (6)

Variations of this approach have been discussed several times in the past [41, 42]. A
recent review on the histogram method can be found in Ref. [43]. The difficulty is that it
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is still needed to evaluate the constrained integral (5) with a complex weight at nonzero
chemical potential. On small volumes, this may be handled byreweighting [41]. Another
possibility is to combine the approach with the Taylor expansion of the determinant in
(µ/T )2 [44].

It is also possible to use as observable the angle of the phasefactor of the determinant
itself [44]. We can then write

w(ϑ) =

∫
DU δ(ϑ− ϑ′) e−SYM detM

=

∫
DU δ(ϑ− ϑ′) e−SYM | detM |eiϑ

′

= eiϑwpq(ϑ). (7)

The advantage is now that the density of states for the angle can be determined in the
theory without the complex phase, i.e. in the phase-quenched theory. In Refs. [44, 45]
this approach is pursued using a cumulant expansion, focussing on the assumption that
the phase-quenched densitywpq(ϑ) is a simple Gaussian, so that only the lowest-order
cumulant, the variance〈ϑ2〉c, has to be determined. However, this assumption has been
critically assessed recently: Ref. [46] finds that nongaussian corrections are present in
general. Even though these corrections are suppressed by powers of the volume inw(ϑ),
they contribute at leading order to the final result obtainedby integration overϑ. There-
fore it is mandatory that the density of states is determinedwith great precision over a
wide range [46]. Here improvements to the original Wang-Landau algorithm [47] might
be of use [48] and it has been conjectured that those should beapplied to theories with a
severe sign problem [49].

4. Lefschetz thimbles, complex Langevin

The partition function (1) is a path integral with a complex integrand. Simpler complex
integrals are often evaluated by methods of steepest descent or by stationary-phase ap-
proximations, with saddle points situated in the complex plane rather than on the original
real manifold, using holomorphic properties of the integrand and the ensuing freedom to
change the integration contour. This suggests that it makessense to view the path integral
more generally and allow the degrees of freedom to become complex-valued. For QCD
this implies that the gauge linksU are no longer limited to be in SU(3), but can now take
value in the complex extension SL(3,C). This is easily achieved. WritingU = eiλaAa ,
with λa the Gell-mann matrices,Aa is real-valued for SU(3), but complex-valued for
SL(3, C). One consequence is that the links are no longer unitary, butinstead satisfy
Tr UU †/3 ≥ 1 [50]. In this approach, the partition function therefore keeps its original
form, but the paths of integration are allowed to be more general.

This idea has been pursued in the past few years using two different approaches:
stochastic quantisation (or complex Langevin dynamics) [51, 52] and integration along
Lefschetz thimbles [53]. I will first discuss the second approach, which closely follows
the method of steepest descent and has a long history in complex integrals, such as the
Airy function [54]. The goal is to deform the path of integration, passing through the
classical saddle points, such that the imaginary part of theaction (which includes the log-
arithm of the quark determinant in the case of QCD) is constant. The union of all the
paths passing through a saddle point make up a thimbleJ . Since the imaginary part of
the action is constant along the thimble, it can be taken out of the integral. For one degree
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SU(   )

NSL(   ,C)

N

Figure 2. Gauge cooling in complex Langevin dynamics brings the linkscloser to the
unitary submanifold (left), as demonstrated in an effective SU(2) model (right) [65].

of freedom and one saddle point, this amounts to writing [53,55]

Z =

∫
dx e−S(x) = e−iImSJ

∫
J

dz e−ReS(z)

= e−iImSJ

∫
ds J(s)e−ReS(z(s)), J(s) = x′(s) + iy′(s). (8)

In the second line the thimble is parameterised explicitly in terms ofz(s) = x(s) +
iy(s). Due to the curvature of the thimble, there is a complex jacobian J(s), leading
to a residual sign problem, but this may be milder than the original one [53]. Clearly
more dangerous is the situation where more than one saddle point and associated thimble
contributes: in that case there are relative phase differences between the contributions
from the thimbles, yielding again a possible severe sign problem. Based on universality,
it has been conjectured that a single saddle point (e.g. the perturbative one) suffices [53].
Besides in toy models, so far the method has been tested in four-dimensional scalar field
theory at nonzero chemical potential [56, 57], where agreement with previous results
[58, 59] has been found.

In stochastic quantisation/complex Langevin dynamics [51, 52], the complexified man-
ifold is explored in a different manner, namely by using a stochastic process with com-
plex drift terms, derived from the complex action. During this process, a real and positive
probability distribution is effectively sampled. For one degree of freedom with a complex
action, this means

Z =

∫
dx e−S(x) →

∫
dxdy P (x, y), P (x, y) ≥ 0. (9)

One problem is that this distributionP (x, y) is not known a priori, but is constructed
during the stochastic evolution. However, the most important hurdle is that it is not guar-
anteed that the process will converge to the physically correct result and incorrect conver-
gence has indeed been observed [60, 61]. During the past years, this conundrum has been
clarified: it is now understood that correct results are obtained provided the distribution
is well localised in the extended manifold and drops sufficiently fast at large distances
from the real manifold [62, 63]. This insight has been used ina constructive manner for
gauge theories, where SL(N,C) gauge cooling has been proposed as a tool to control
the distribution sampled during the process [64]. This ideais sketched in Fig. 2 (left)
and demonstrated in Fig. 2 (right) for an effective SU(2) model with a complex coupling,
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-2 -1 0 1 2
x

-0.3

-0.15

0

0.15

0.3

y

> 0.98 local saddle of P(x,y) 
thimble

σ = 1+i, λ = 1

Figure 3. DistributionP (x, y) effectively sampled during a complex Langevin pro-
cess for the model (10) [70] (left) and a comparison between the local saddle of this
distribution and the thimble passing through the saddle point at the origin (right) [69].

where it is shown that gauge cooling, possibly adaptive [65], controls the distance from
the unitary submanifold, for which TrUU †/2 = 1 in this case. More details on complex
Langevin dynamics can be found in the reviews [12, 65].

Complex Langevin dynamics with gauge cooling has been applied successfully to QCD
in the presence of static quarks at nonzero density [64]. Recently, first results for QCD
with two and four flavours of light quarks have appeared as well [66]. This is a major step
forward, since it is the first simulation with light quarks atfinite gauge coupling directly
at nonzero density. The method successfully describes the transition from zero density
all the way to saturation (the maximal density on the lattice). Very recently, preliminary
results for SU(3) Yang-Mills theory in the presence of aθ term have also appeared [67]
and agreement with expected results from imaginaryθ, where the sign problem is absent,
has been found. These results strongly suggest that complexLangevin dynamics with
gauge cooling deserves to be studied more intensely.

There are a number of open questions. Gauge cooling appears to be effective only
when the gauge coupling is not too small, i.e. on fine lattices[64]. This is not a problem
in principle, but large lattice volumes are then required toavoid finite-size effects. It
would also be useful to understand the origin of this finding.Furthermore, the presence
of the logarithm of the determinant spoils the holomorphicity of the action. It has been
argued that this results in an ambiguity for small quark masses, when the branch cut of
the logarithm is crossed frequently [68]. This certainly needs to be understood better.

Complex Langevin dynamics and the Lefschetz thimble approach both explore a larger
complexified manifold to evade the sign problem. It is therefore interesting to compare
the two approaches. Recently this has been done for a simple complex integral, where
most results can be obtained analytically [69]. The partition function is

Z =

∫ ∞

−∞

dx e−S(x), S(x) =
σ

2
x2 +

λ

4
x4, (10)

with a complex mass parameterσ. In Fig. 3 (left) the distributionP (x, y) sampled during
the Langevin process is shown [70]. It is strictly zero wheny is larger than 0.3029 (for this
choice of parameters), and based on the mathematical justification [62, 63], the method
is then reliable. The thimble passing through the saddle point at the origin is shown in
Fig. 3 (right). Also indicated is the region whereP (x, y) is largest. It is clear that the
distribution and the thimble follow each other closely [69]. One may therefore wonder
how generic this is and whether this observation can be used constructively.
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5. Clusters, subsets, fermion bags

Let us go back again to the partition function (1). The reasonimportance sampling is
not applicable is that configurations come with a complex weight. However, it might be
possible that for certain carefully selected sets of configurations, the combined weight is
real and positive. The challenge then is to identify those sets (or clusters, subsets, bags,
. . .) and perform the path integral in two stages: first analytically construct the sets, and
then numerically integrate over those using importance sampling, which is now possible
since the combined weights are real and positive. This is thebasic idea, successfully
applied in the meron-cluster algorithm some time ago [71].

In recent years, this notion has been pursued in various forms. Here I will discuss two
implementations. In the gauge theory without quarks, an important role is played by the
Z3 centre symmetry, a global symmetry which is spontaneously broken at high tempera-
ture. Both the gauge action and the Haar measure in the path integral are invariant under
centre transformations,U → e2πik/3U , k = 0, 1, 2. One can therefore trivially form a
subset identifying the configurations related by centre symmetry. This gets more inter-
esting in the presence of quarks, since the quark contribution is not invariant under the
symmetry and hence the configurations obtained by centre transformations differ. Nev-
ertheless, they are admissible configurations and can be chosen to form a subset. This
idea has been tested various times, e.g. in the three-state Potts model [72, 73] and in QCD
with static quarks [74]. Recently a detailed analysis was given for QCD in one dimension
and it was shown that the sign problem can be eliminated completely for five flavours or
less [75]. A slightly different subset construction eliminates the sign problem in random
matrix theory, an effective theory for QCD at low temperature and in the Silver Blaze
region before onset [76, 77].

A second manifestation of this idea has been developed for theories with fermions,
interacting either via a four-fermion interaction or via the exchange of a bosonic field
[78–80]. Here the idea is to avoid integrating out the fermions in one sweep, yielding the
determinant, but instead take a more measured approach and integrate out the fermions in
such a way that obvious fermion bags, with a positive weight,can be identified. In absence
of a unique way to identify those fermion bags, guidance can come from strong and
weak coupling expansions. One model to which this idea has been applied successfully,
is the massless Thirring model in three dimensions [79]. While ordinary Monte Carlo
algorithms have great difficulty in approaching the chiral limit, the fermion bag approach
works particularly well in this case. What is lacking so far is the inclusion of nonabelian
interactions. More details can be found in the recent review[81].

6. Change in integration order/representation

The lesson from the previous section, especially the fermion bags, is that the appearance
of the sign problem depends on the way in which the path integral is evaluated, i.e. the
order of integration. This is in fact more generally true: the sign problem can be severe in
one representation of the path integral but manifestly absent in another. Again this idea is
not new, it was already seen in the strong-coupling limit of QCD, where the gauge links
are integrated out first and the remaining fermionic theory is written as a sum over gauge-
invariant monomers, dimers and closed baryon loops [82]. The fermion determinant never
appears and the sign problem is absent, or at least much milder than before. This obser-
vation has been successfully combined with worm-type algorithms [83], allowing for a
more efficient sampling [84].
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For bosonic theories, this idea has been developed further,by performing strong-coup-
ling expansions to all orders, under the name of dual formulations [85]. Here the original
field variables are interchanged for worldline and flux variables, with manifestly real and
positive weights. This has been carried out for a number of models, including abelian
gauge theories [86]. The main obstacle is again the inclusion of nonabelian interactions,
see Ref. [87] for a recent review.

Finally, this notion is also relevant for effective three-dimensional models, constructed
using combined strong coupling and hopping parameter (heavy quark) expansions, which
can subsequently be studied using flux representations [85,88, 89], complex Langevin
dynamics [90–92], or even ordinary Monte Carlo simulationscombined with reweighting,
since the sign problem is milder than in the original formulation [88].

7. Outlook

So far the QCD phase diagram has not been determined nonperturbatively using lattice
QCD, due to the sign problem at finite density. In an attempt tosolve this longstand-
ing problem, a variety of ideas is being pursued, following logically independent starting
points. Here I discussed a selection of those, based on the ideas of constrained simu-
lations, holomorphicity, partial summations and changes in representation. Many of the
techniques are still in development for QCD and hence are being tested in theories that
are simpler than QCD, but nevertheless suffer from a sign problem. Establishing vari-
ous (competing) approaches in parallel is very stimulating, since trust in new methods is
greater when existing results can be reproduced. Due to the sign problem, there is often no
outstanding benchmark result: a consistency between results obtained with new methods
is then the best one can hope for.

Returning to QCD, we note that heavy quarks can be included via a hopping param-
eter or1/m expansion. Here first results for the phase diagram are starting to appear,
employing e.g. the histogram method [43] and the strong-coupling expansion [92]. A
comparison between results obtained with such different approaches would help in gain-
ing confidence in those. QCD with light quarks is considerably harder: here first results
have been obtained with complex Langevin dynamics [66].

Acknowledgments

It is a pleasure to thank my collaborators, especially Erhard Seiler, Dénes Sexty, Nucu
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