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Developmentsin lattice QCD for matter
at high temperature and density

GERT AARTS*
8physics Department, College of Science, Swansea UniyeBsitansea SA2 8PP, United Kingdom

Abstract. A brief overview of the QCD phase diagram at nonzero tempegaand density is
provided. It is explained why standard lattice QCD techagare not immediately applicable for
its determination, due to the sign problem. We then discissdextion of recent lattice approaches
that attempt to evade the sign problem and classify thenrdicopto the underlying principle: con-
strained simulations (density of states, histogramsprotphicity (complex Langevin, Lefschetz
thimbles), partial summations (clusters, subsets, bagsrhange in integration order (strong cou-
pling, dual formulations).

Keywords. Lattice QCD, finite density, sign problem

1. Introduction

Establishing the QCD phase diagram at nonzero temperatgt@lensity remains one
of the outstanding challenges in the theory of the strongrattions. As is well known
[1, 2], its structure is relevant for heavy-ion collisiomgethe creation of the quark-gluon
plasma at the Relativistic Heavy lon Collider (RHIC) at Bkbaven, the Large Hadron
Collider (LHC) at CERN, and the forthcoming Facility for Aptoton and lon Research
(FAIR) at GSI, for neutron stars and compact objects, andhferearly Universe. From
a theoretical perspective, the main obstacle in its detetiun is that numerical lattice
QCD, the prime nonperturbative tool to study QCD, cannotdediin conjunction with
standard numerical techniques. Lattice QCD relies on itapae sampling, assigning
a real and positive number to each configuration of quarksggéinehs. At nonzero (and
zero) temperature but vanishing chemical potential, fas@ach is indeed possible, since
the Boltzmann weight in the QCD partition function is reatigositive. The result is a
detailed understanding of the crossover between the hadaod quark-gluon plasma
phase as the temperature is increased [3-6]. In recent,ykanghase structure has also
been studied in the presence of an external magnetic fidkeljar® for cosmology and
noncentral heavy-ion collisions [7]. Since the Boltzmargight remains real and posi-
tive, lattice techniques can be applied here as well [8, 9].

However, as soon as the baryon chemical potential is nonttexajuark contribution
to the Boltzmann weight is complex (in the usual formula}jonling out conventional
approaches. This issue is usually referred to as the sidrigyoor complex-action prob-
lem. It is certainly a nontrivial problem, since an incotreandling of the sign problem
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Figurel. Impression of the QCD phase diagram [13].

results in manifest failure and physically wrong resulthisTrealisation has been around
since the first lattice simulations at nonzero chemical midéwere carried out, in the
1980s [10]. It is therefore also a persistent problem, foictvimo definite solution has
been found yet. Interestingly, the sign problem is not djgetc QCD but appears in many
lattice theories with a mismatch in particle densities,ahtnakes it relevant from a more
broader perspective as well.

In this overview, | will first remind the reader of some generdaservations regarding
the QCD phase diagram and the sign problem. Subsequently digduss various ap-
proaches that have been pursued in recent years and attecapetjorise them according
to the underlying principle. Refs. [11, 12] contain palli@omplementary reviews of the
sign problem in QCD at finite density.

2. QCD phase diagram and the sign problem

An impression of the QCD phase diagram is given in Fig. 1. Aldme vertical tem-
perature ) axis, the crossover between the hadronic phase and thk-gluam plasma
can be seen. Recent lattice studies agree that the crossaveerature is closer to 155
MeV than 170 MeV, as indicated in the figure [4, 5]. Increadimg chemical potential,
the thermal crossover may change in a proper first-orderepinassition, with a second-
order critical endpoint to mark where this happens [14]. "§dhe horizontal chemical
potential {:) axis, transitions to new phases are expected: nucleaemeadtious colour
superconducting phases [15] and a possible quarkyonieghék(not indicated). Phase
transition lines can join in a triple point. Heavy-ion cdiir experiments probe (or will
probe) various regions of the phase diagram, dependingeartérgy of the collisions.
However, due to the sign problem most features of the phaggatn have not been
obtained using lattice methods, but instead follow fromegahconsiderations and pre-
dictions from effective models (such as Polyakov-loop eatsl Nambu Jona-Lasinio
(PNJL) [17, 18] and Polyakov-quark-meson models [19]) fthestional renormalization
group [20], Schwinger-Dyson equations [21], or a combaratherefore [22]. They have
therefore not been established unequivocally. Of coutsasymptotically high energy
scales, asymptotic freedom supports the validity of wealgting computations [23-25].



Lattice QCD at high temperature and density

The sign problem appears in the standard lattice formulatioQCD, in which the
partition function is written as

Z = /DUDw)w e~ SYM—SF — /DU e~SYM det M. (1)

Here the gauge link& represent the gluonic degrees of freedom, with the YandsMil
action Sy, andy, +» are the quark fields, with the fermionic acti®p ~ M (U; u1)1).
The chemical potential appears in the fermion maldx In the second expression, the
quark fields have been integrated out exactly, resultingérguiark determinant. It follows
from elementary properties of the Dirac operator that therdginant is complex when

is real and nonzero, and satisfies [11]

[det M (p)]* = det M (—p™), det M () = | det M (p)|e™, (2)

i.e. it has a complex phase. It can be seen that the detertiénaal when the chemical
potential is purely imaginary, such that standard simaietiare possible in this case [26].

Lattice QCD has been effective in the crossover region ateatemperature for small
chemical potentials, relying on analyticity {m/7)2. In this approach, simulations are
carried out at either vanishing or imaginary chemical ptisénwhere the sign problemis
absent. Applying a Taylor expansion n/7')? requires the calculation of higher-order
derivatives of the logarithm of the fermion determinanthwigéspect tqu, i.e. of gener-
alised susceptibilities [27]. Even though these quicklgdyae very noisy, the expansion
coefficients have been determined up to the impressive ofder/7)®, and from these
the position of the critical endpoint has been predictedetan an estimate of the radius
of convergence of the Taylor expansion [28]. This preditsbould be contrasted with
the conclusion from studies at imaginary chemical potéf2@] and lower-order Taylor
expansions [30], where it is found that the crossover wesksfu/7')? is increased from
zero, making it less likely that the critical point can betfdun this way.

The interesting region in the phase diagram with regard éosign problem is the
region at lower and zero temperature. The reason is thatisrrélgion it is very well
understood what to expect and also what will go wrong whenstge problem is not
resolved correctly [31]. The onset to nuclear matter atsking temperature takes place
when the baryon chemical potential equals the nucleon maissi§ the binding energy).
For chemical potentials below this onset value, thermodyoauantities should be in-
dependent of chemical potential (at zero temperature).attiqular the baryon density
has to vanish. The reason is simple: there is not enough e@egrilable to create a
baryon. At nonzero temperature, the baryon density is mortaé Boltzmann suppressed,
~ exp|—(mp—p)/T], wheremp is a generic baryon mass. When the sign problem is not
correctly taken into account in lattice QCD simulationgs txpectation is easily upset.
For instance, when the complex phase of the determinanh@égl (phase quenching),
one finds, in the case of two quark flavours with equal massthieaonset takes place at
a baryon chemical potential of 3/2 times the pion mass, rdtten around the nucleon
mass. Since the former is much less than the latter, one@ssan early incorrect on-
set. This feature is well understood: ignoring the compleage results in a theory not
at nonzero baryon chemical potential, but instead at nanzespin chemical potential,
which couples to the pion rather than the nucleon [32]. Itliegpthat the inclusion of
the complex phase of the determinant is necessary for that eaacellation of this early
onset to take place [33, 34]. How this happens in lattice QDuktions is not imme-
diately obvious. It has therefore been dubbed the SilvezéBf@roblem [35]. Its correct
resolution provides a stringent test of the validity of tippléed approach [12].
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Finally, we mention that the sign problem is regarded asrsewben the expectation
value of the phase factor in the phase-quenched (pq) thexey tp zero exponentially
in the thermodynamic limit. This quantity is given by theioatf the partition functions
with and without the complex phase [11, 12],

—Sym i
<em>pq — fngUe — |d€tM|€ — i — erAf/T7 (3)
e~Svm|det M| Zpq

whereAf is the difference in free energy densities between themalgind the phase-
guenched theories and is the three-volume. From the extensivity of free energlgs,
exponential behaviour is unavoidable. Furthermore, sikh¢ecan be reliably computed
in chiral perturbation theory, the volume and temperat@meshdence is understood pre-
cisely [36, 37]. It follows that approaches based on igrgpthre phase are guaranteed to
fail for large volumes and/or low temperature. This is fatance the case for reweight-
ing methods [38, 39], in which part of the complex weight, Isias the phase of the
determinant, is absorbed in the observable,

[ DUe M|det M[eO  (e0)yq
[ DUe Svmldet Mle®? — (e"),q

(0) 4)
In the presence of a Silver Blaze problem, the sign problelicaitainly be severe, since
excessive cancellations are required [34], see also thewgd0].

In the following | discuss various approaches that have Ipeeposed as complete or
partial solutions to the sign problem in recent years andanently under investigation.
Since the sign problem is not unique for QCD, often these @ggres are first tested
in simpler models, for instance lower-dimensional onespadrticular, the sign problem
may also appear in bosonic theories with a nonzero chemaahpal and hence the
presence of fermionic degrees of freedom is not essentwll dbnly discuss a selection
of approaches, referring again to Refs. [11, 12] for comgletary overviews.

3. Density of states, histograms

We start with a set of approaches which stay as close as po$sithe original lattice
formulation (1), and which go under the headings of denditgtates, factorisation or
histogram method [41-43]. The idea is to evaluate the patigial in two stages, namely
by first evaluating a constrained integral where one dedgr&feedom is fixed and subse-
guently performing the remaining integral over the resgltprobability distribution — the
density of states — constructed in the first step. The depéitye states can be obtained
by constructing histograms during the constrained sirmadagxplicitly, if we take as de-
gree of freedom a generic observablesuch as the plaquette, action density or Polyakov
loop, the (unnormalised) density of states is given by

w(P) = / DU§(P — P') e~ det M, (5)

where P’ is the value ofP taken during the simulation. The expectation valug”ois
then determined by the simple integrals

(P) = %/de(P)P, 7z - /de(P). (6)

Variations of this approach have been discussed severastimthe past [41, 42]. A
recent review on the histogram method can be found in Ref. @& difficulty is that it
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is still needed to evaluate the constrained integral (Sh @itomplex weight at nonzero
chemical potential. On small volumes, this may be handlecbaeighting [41]. Another
possibility is to combine the approach with the Taylor expan of the determinant in
(1/T)? [44].

It is also possible to use as observable the angle of the ffhetee of the determinant
itself [44]. We can then write

w(®) = / DU S —9') e 5™ det M
= / DU §(8 — ') e~ M| det Me™ = e wpq (). (7)

The advantage is now that the density of states for the ammgldoe determined in the
theory without the complex phase, i.e. in the phase-quehtiteory. In Refs. [44, 45]
this approach is pursued using a cumulant expansion, fimcues the assumption that
the phase-quenched density, () is a simple Gaussian, so that only the lowest-order
cumulant, the varianc&y?)., has to be determined. However, this assumption has been
critically assessed recently: Ref. [46] finds that nongamssorrections are present in
general. Even though these corrections are suppressedigyof the volume inv(¢),
they contribute at leading order to the final result obtaibgdihtegration oveg). There-
fore it is mandatory that the density of states is determinitd great precision over a
wide range [46]. Here improvements to the original Wangdanalgorithm [47] might

be of use [48] and it has been conjectured that those showdgleed to theories with a
severe sign problem [49].

4. Lefschetz thimbles, complex Langevin

The partition function (1) is a path integral with a complateigrand. Simpler complex
integrals are often evaluated by methods of steepest descéy stationary-phase ap-
proximations, with saddle points situated in the complenplrather than on the original
real manifold, using holomorphic properties of the integrand the ensuing freedom to
change the integration contour. This suggests that it msdese to view the path integral
more generally and allow the degrees of freedom to becomelesrvalued. For QCD
this implies that the gauge linK$ are no longer limited to be in SU(3), but can now take
value in the complex extension SL(B). This is easily achieved. Writingf = e a4a,
with )\, the Gell-mann matrices4, is real-valued for SU(3), but complex-valued for
SL(3, C). One consequence is that the links are no longer unitaryinstead satisfy
TrUU'/3 > 1[50]. In this approach, the partition function thereforeps its original
form, but the paths of integration are allowed to be more ggne

This idea has been pursued in the past few years using twerdiff approaches:
stochastic quantisation (or complex Langevin dynamic) B2] and integration along
Lefschetz thimbles [53]. | will first discuss the second agmh, which closely follows
the method of steepest descent and has a long history in egrimgégrals, such as the
Airy function [54]. The goal is to deform the path of integoat, passing through the
classical saddle points, such that the imaginary part odttien (which includes the log-
arithm of the quark determinant in the case of QCD) is const@he union of all the
paths passing through a saddle point make up a thigibl&ince the imaginary part of
the action is constant along the thimble, it can be taken filsointegral. For one degree
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Figure2. Gauge cooling in complex Langevin dynamics brings the licikser to the
unitary submanifold (left), as demonstrated in an effec8J(2) model (right) [65].

of freedom and one saddle point, this amounts to writing &3,

7 — /dl‘ 675(1) _ e*iImSg/ dz efReS(z)
J

= ¢ M8y /ds J(s)e ReSG), J(s) = 2'(s) +iy'(s). 8

In the second line the thimble is parameterised explicitlteérms ofz(s) = x(s) +
iy(s). Due to the curvature of the thimble, there is a complex jamol(s), leading
to a residual sign problem, but this may be milder than thgial one [53]. Clearly
more dangerous is the situation where more than one sadidiegmal associated thimble
contributes: in that case there are relative phase difte®ibetween the contributions
from the thimbles, yielding again a possible severe sigilprn. Based on universality,
it has been conjectured that a single saddle point (e.g.aftanbative one) suffices [53].
Besides in toy models, so far the method has been testediafimensional scalar field
theory at nonzero chemical potential [56, 57], where agerdgrwith previous results
[58, 59] has been found.

In stochastic quantisation/complex Langevin dynamics$2], the complexified man-
ifold is explored in a different manner, namely by using ak#stic process with com-
plex drift terms, derived from the complex action. Duringstprocess, a real and positive
probability distribution is effectively sampled. For onegilee of freedom with a complex
action, this means

Z = /dz e 5@ /d:cdy P(z,y), P(z,y) > 0. (9

One problem is that this distributioR(x,y) is not known a priori, but is constructed
during the stochastic evolution. However, the most impurtaurdle is that it is not guar-
anteed that the process will converge to the physicallyembnesult and incorrect conver-
gence has indeed been observed [60, 61]. During the pas, yeirconundrum has been
clarified: it is now understood that correct results are ioleth provided the distribution

is well localised in the extended manifold and drops suffitjefast at large distances
from the real manifold [62, 63]. This insight has been used @onstructive manner for
gauge theories, where SN(C) gauge cooling has been proposed as a tool to control
the distribution sampled during the process [64]. This iidesketched in Fig. 2 (left)
and demonstrated in Fig. 2 (right) for an effective SU(2) eladth a complex coupling,
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Figure 3. Distribution P(z,y) effectively sampled during a complex Langevin pro-
cess for the model (10) [70] (left) and a comparison betwéendcal saddle of this
distribution and the thimble passing through the saddlatgithe origin (right) [69].

where it is shown that gauge cooling, possibly adaptive,[66htrols the distance from
the unitary submanifold, for which WU /2 = 1 in this case. More details on complex
Langevin dynamics can be found in the reviews [12, 65].

Complex Langevin dynamics with gauge cooling has beeneagpliccessfully to QCD
in the presence of static quarks at nonzero density [64].eRé¢ first results for QCD
with two and four flavours of light quarks have appeared a$[@8]. This is a major step
forward, since it is the first simulation with light quarksfatite gauge coupling directly
at nonzero density. The method successfully describegdhsition from zero density
all the way to saturation (the maximal density on the lajtidéery recently, preliminary
results for SU(3) Yang-Mills theory in the presence daf eerm have also appeared [67]
and agreement with expected results from imagifiaryhere the sign problem is absent,
has been found. These results strongly suggest that corhplegevin dynamics with
gauge cooling deserves to be studied more intensely.

There are a number of open questions. Gauge cooling appeéass ¢ffective only
when the gauge coupling is not too small, i.e. on fine lattjéd} This is not a problem
in principle, but large lattice volumes are then requirectoid finite-size effects. It
would also be useful to understand the origin of this findiRgrthermore, the presence
of the logarithm of the determinant spoils the holomorgkioif the action. It has been
argued that this results in an ambiguity for small quark reaswhen the branch cut of
the logarithm is crossed frequently [68]. This certainlgdgto be understood better.

Complex Langevin dynamics and the Lefschetz thimble apprbath explore a larger
complexified manifold to evade the sign problem. It is therefinteresting to compare
the two approaches. Recently this has been done for a siropiplex integral, where
most results can be obtained analytically [69]. The pariifunction is

g 2

Z :/ dxe 3@, S(x) = 5% + %x{ (10)

with a complex mass parameterin Fig. 3 (left) the distributionP(x, y) sampled during
the Langevin process is shown [70]. Itis strictly zero whyéslarger than 0.3029 (for this
choice of parameters), and based on the mathematical gasiifn [62, 63], the method
is then reliable. The thimble passing through the saddlatggithe origin is shown in
Fig. 3 (right). Also indicated is the region whef{x, y) is largest. It is clear that the
distribution and the thimble follow each other closely [6@ne may therefore wonder
how generic this is and whether this observation can be usestrictively.
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5. Clusters, subsets, fermion bags

Let us go back again to the partition function (1). The reasgportance sampling is
not applicable is that configurations come with a complexgivei However, it might be
possible that for certain carefully selected sets of comditjons, the combined weight is
real and positive. The challenge then is to identify those && clusters, subsets, bags,
...) and perform the path integral in two stages: first analifficnstruct the sets, and
then numerically integrate over those using importancepsiagy which is now possible
since the combined weights are real and positive. This ishtsic idea, successfully
applied in the meron-cluster algorithm some time ago [71].

In recent years, this notion has been pursued in varioussfoHare | will discuss two
implementations. In the gauge theory without quarks, aromgmt role is played by the
73 centre symmetry, a global symmetry which is spontaneouslidn at high tempera-
ture. Both the gauge action and the Haar measure in the gatiréhare invariant under
centre transformationg] — e*™**/3U, k = 0,1,2. One can therefore trivially form a
subset identifying the configurations related by centreragtny. This gets more inter-
esting in the presence of quarks, since the quark contoibusi not invariant under the
symmetry and hence the configurations obtained by cenimsftramations differ. Nev-
ertheless, they are admissible configurations and can ksenho form a subset. This
idea has been tested various times, e.g. in the three-stgeRodel [72, 73] and in QCD
with static quarks [74]. Recently a detailed analysis wasmgfor QCD in one dimension
and it was shown that the sign problem can be eliminated cetelglfor five flavours or
less [75]. A slightly different subset construction eliraias the sign problem in random
matrix theory, an effective theory for QCD at low temperatand in the Silver Blaze
region before onset [76, 77].

A second manifestation of this idea has been developed &arids with fermions,
interacting either via a four-fermion interaction or vieetBxchange of a bosonic field
[78-80]. Here the idea is to avoid integrating out the femsim one sweep, yielding the
determinant, but instead take a more measured approachtagdite out the fermions in
such a way that obvious fermion bags, with a positive weicdn,be identified. In absence
of a unique way to identify those fermion bags, guidance aamecfrom strong and
weak coupling expansions. One model to which this idea hes bpplied successfully,
is the massless Thirring model in three dimensions [79]. [Vbidinary Monte Carlo
algorithms have great difficulty in approaching the chiirait, the fermion bag approach
works particularly well in this case. What is lacking so fathe inclusion of nonabelian
interactions. More details can be found in the recent reyésj

6. Changein integration order/representation

The lesson from the previous section, especially the famrhags, is that the appearance
of the sign problem depends on the way in which the path iatégrevaluated, i.e. the
order of integration. This is in fact more generally truee #ign problem can be severe in
one representation of the path integral but manifestlymfiseanother. Again this idea is
not new, it was already seen in the strong-coupling limit @) where the gauge links
are integrated out first and the remaining fermionic thesmyiitten as a sum over gauge-
invariant monomers, dimers and closed baryon loops [82%.f€mion determinant never
appears and the sign problem is absent, or at least muchrrttile before. This obser-
vation has been successfully combined with worm-type délgos [83], allowing for a
more efficient sampling [84].
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For bosonic theories, this idea has been developed futth@erforming strong-coup-
ling expansions to all orders, under the name of dual fortraria [85]. Here the original
field variables are interchanged for worldline and flux valea, with manifestly real and
positive weights. This has been carried out for a number adefs) including abelian
gauge theories [86]. The main obstacle is again the inausiamonabelian interactions,
see Ref. [87] for a recent review.

Finally, this notion is also relevant for effective threieénsional models, constructed
using combined strong coupling and hopping parameter ghgaark) expansions, which
can subsequently be studied using flux representations8B39], complex Langevin
dynamics [90-92], or even ordinary Monte Carlo simulatioombined with reweighting,
since the sign problem is milder than in the original forntiola[88].

7. Outlook

So far the QCD phase diagram has not been determined norigitely using lattice
QCD, due to the sign problem at finite density. In an attempdive this longstand-
ing problem, a variety of ideas is being pursued, followiogitally independent starting
points. Here | discussed a selection of those, based on #as idf constrained simu-
lations, holomorphicity, partial summations and change®presentation. Many of the
techniques are still in development for QCD and hence aneghieisted in theories that
are simpler than QCD, but nevertheless suffer from a sighlpro. Establishing vari-
ous (competing) approaches in parallel is very stimulatsigce trust in new methods is
greater when existing results can be reproduced. Due tagh@moblem, there is often no
outstanding benchmark result: a consistency betweertseashtiined with new methods
is then the best one can hope for.

Returning to QCD, we note that heavy quarks can be includa@ Viopping param-
eter orl/m expansion. Here first results for the phase diagram arengiéd appear,
employing e.g. the histogram method [43] and the strongliog expansion [92]. A
comparison between results obtained with such differeptagrhes would help in gain-
ing confidence in those. QCD with light quarks is considerdialrder: here first results
have been obtained with complex Langevin dynamics [66].
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