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ABSTRACT 

Purpose: To characterise changes in deoxyhemoglobin ([HHb]) response dynamics in boys and 

girls during ramp incremental exercise to investigate whether the reduced peak oxygen uptake 

(peakV O2) in girls is associated with a poorer matching of muscle O2 delivery to muscle O2 

utilisation, as evidenced by a more rapid increase in [HHb]. 

Methods: 52 children (31 boys, 9.9 ± 0.6 years, 1.38 ± 0.07 m, 31.70 ± 5.78 kg) completed ramp 

incremental exercise on a cycle ergometer during which pulmonary gas exchange and muscle 

oxygenation parameters were measured.  

Results: When muscle [HHb] was expressed against absolute work rate and V O2, girls had an 

earlier change in [HHb] as evidenced by the lower c/d parameter (Girls: 54 ± 20 W vs Boys: 67 

± 19 W, P=0.023; Girls: 0.82 ± 0.28 L∙min
-1

 vs. Boys: 0.95 ± 0.19 L∙min
-1

, P=0.055) and 

plateau (Girls: 85 ± 12 W vs. Boys: 99 ± 18 W, P=0.031; Girls: 1.02 ± 0.25 L∙min
-1

 vs. Boys: 

1.22 ± 0.28 L∙min
-1

, P=0.014). However, when expressed against relative work-rate or V O2, 

there were no sex differences in [HHb] response dynamics (all P>0.20). Significant correlations 

were observed between absolute and fat-free mass normalised peak V O2 and the HHb c/d and 

plateau parameters when expressed against absolute work-rate or V O2. Furthermore, when 

entered into a multiple regression model, the [HHb] plateau against absolute V O2 contributed 

12% of the variance in peak V O2 after adjusting for fat-free mass, gas exchange threshold, and 

body fatness (model R
2
=0.81, P<0.001).  

Conclusion: The sex-difference in peak V O2 in 9-10 year old children is, in part, related to sex-

specific changes in muscle O2 extraction dynamics during incremental exercise. 
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INTRODUCTION 1 

A perplexing question in paediatric exercise physiology is the sexual dimorphism in peak oxygen 2 

uptake (V O2) in pre-pubertal and pubertal children. Specifically, when normalised for body 3 

mass, boys display a 10-15% greater peak V O2 compared to girls (3). This sex difference has 4 

been attributed to changes in O2 delivery due to an elevated peak stroke volume in the presence 5 

of a comparable peak heart rate resulting in a higher peak cardiac output in boys. However, when 6 

stroke volume and cardiac output are normalised using fat free mass (FFM), the sex difference 7 

for cardiac measures disappears (39). Consequently, scaling for FFM (39) or muscle volume (11, 8 

40) reduces the sex difference in peak V O2 to <5%. This has led to the notion that the higher 9 

peak V O2 in boys is predominantly related to their greater FFM.  10 

 11 

This notion has recently been challenged, however, by Winsley et al. (43) who compared boys 12 

and girls matched for FFM, and demonstrated a ~15% higher peak V O2 in boys, which was not 13 

explained by differences in cardiac output, stroke volume or haemoglobin concentration. Rather, 14 

a wider arterial mixed venous O2 content difference, estimated by rearrangement of the Fick 15 

equation, was found in the boys, suggesting peripheral factors relating to the ability to deliver 16 

and utilise O2 at the contracting muscle were the cause of the boys’ higher peak V O2. This 17 

finding, however, contradicts studies showing no sex-differences in arterial mixed venous O2 18 

content difference at maximal exercise in children (29, 39) and warrants further investigation.   19 

 20 

Knowledge of changes in muscle O2 delivery and utilisation during incremental exercise in 21 

children is largely limited to central measures of cardiac output, stroke volume and V O2 which 22 

may not faithfully reflect peripheral changes in the microcirculation (28). Microcirculatory 23 



changes in muscle O2 delivery and O2 utilisation can be obtained non-invasively using the near 24 

infrared spectroscopy (NIRS) derived signal for muscle [deoxygenated haemoglobin and 25 

myoglobin] ([HHb]) (15, 23). Rapid changes in [HHb] reflect an increase in fractional muscle O2 26 

extraction, which is considered to reflect an inadequate matching of muscle O2 delivery to O2 27 

utilisation in the microcirculation. The increase in [HHb] during ramp exercise has been 28 

characterised using a sigmoidal (8, 15, 26) or bi-linear (37) model, and used to study the effect of 29 

trained status and ageing (8, 18, 26). Interestingly, the rate of change in [HHb] is more rapid in 30 

adults (8, 18) and children (26) with a lower V O2max, indicating a greater rate of muscle O2 31 

extraction is required, presumably due to inadequate muscle O2 delivery. A recent study by 32 

Murias et al. (27) examined the [HHb] response dynamics during ramp exercise in men and 33 

women and found the latter to be characterised by a more rapid increase in [HHb] and an earlier 34 

plateau (i.e. attainment of maximal O2 extraction) when expressed relative to peak power and   35 

V O2 max. This finding suggests that women have a poorer matching of muscle O2 delivery to O2 36 

utilisation during ramp exercise. In girls the rate of increase in [HHb] was recently shown to 37 

correlate with peak V O2 and the gas exchange threshold (GET) (26). However, it is currently 38 

unknown whether similar sex-specific impairments in the matching of muscle O2 delivery to 39 

utilisation during ramp exercise are present in children and whether this can explain, in part, the 40 

sexual dimorphism in peak V O2.  41 

 42 

The primary purpose of the present study was to characterise changes in [HHb] response 43 

dynamics in boys and girls during ramp incremental exercise in order to test the hypothesis that 44 

the reduced peak V O2 in girls is associated with a poorer matching of muscle O2 delivery to 45 

muscle O2 utilisation, as evidenced by a more rapid increase in [HHb].  46 



METHODS 47 

Participants and anthropometry 48 

In total, 31 boys (mean ± SD age 9.9 ± 0.3 years) and 21 girls (age 10.0 ± 0.4 years) participated 49 

in this study. All children and their parent(s)/guardian(s) provided informed assent and consent 50 

to partake in the project, which was approved by the institutional ethics committee. The children 51 

were healthy, recreationally active, and showed no contraindications to exercise to exhaustion. 52 

 53 

An anthropometrical evaluation was performed before the first test for all participants. Stature 54 

was measured to 0.01 m using a Holtain stadiometer (Holtain, Crymych, Dyfed, UK) and body 55 

mass was determined using Avery beam balance scales to 0.1 kg (Avery, Birmingham, UK). 56 

Body fat percentage was determined using an air displacement plethysmograph (BodPod 2000A; 57 

Life Measurement Instruments, Concord, California, US) which was initially calibrated 58 

according to the manufacturer’s instructions and has been validated in children (16). Lung 59 

volume was measured and body fat percentage was adjusted according to Lohman’s child 60 

specific equation (24). Participants were asked to arrive at the laboratory in a rested and fully 61 

hydrated state, at least 3 hours postprandial and to refrain from consuming caffeinated drinks in 62 

the 6 hours prior to testing.  63 

 64 

Experimental procedures 65 

All tests took place on an electromagnetically braked cycle ergometer (Lode Excalibur Sport, 66 

Groningen, The Netherlands), with appropriate adjustments made to the ergometer seat, 67 

handlebar and pedal cranks for each participant. Following a 5 minute warm up at 20 W, the 68 

participant completed a ramp incremental test in which the work rate increased by 10 W∙min
-1

 69 



until volitional exhaustion. Participants were asked to maintain a pedal cadence of 70 rev∙min
-1

 70 

throughout the test. A maximal effort was considered to have been given if, in addition to 71 

subjective indications such as sweating, hyperpnea and facial flushing, there was a consistent 72 

reduction in cadence despite strong verbal encouragement. Although a supra-maximal test was 73 

not performed in the current study to validate the determination of V O2max, in our laboratory 74 

this occurs in ~ 95% of participants despite the absence of a plateau in the V O2-work-rate profile 75 

at near exhaustion (6). Nonetheless, the term peak V O2 will be used throughout to ensure 76 

erroneous conclusions with regard to a maximal effort are not made. Peak work rate was defined 77 

as the work rate attained at the point of test termination. 78 

 79 

Experimental measures 80 

Throughout each test, breath-by-breath gas exchange and ventilation (Metalyser 3B Cortex, 81 

Biophysik, Leipzig, Germany) and heart rate (Polar S610, Polar Electro Oy, Kempele, Finland) 82 

were measured and displayed online. Prior to each test, the gas analyzers were calibrated using 83 

gases of known concentration and the turbine volume transducer was calibrated using a 3 L 84 

syringe (Hans Rudolph, Kansas City, MO).  85 

 86 

The oxygenation status of the right vastus lateralis muscle was monitored using a commercially 87 

available NIRS system (NIRO-300; Hamamatsu Photonics K.K, Japan). This system consists of 88 

an emission probe which emits four wavelengths of light (776, 826, 845 and 905 nm) and a 89 

photon detector. The intensity of incident and transmitted light was recorded continuously at 2 90 

Hz and used to estimate the concentration changes relative to baseline levels for oxygenated, 91 

deoxygenated and total haemoglobin. The [HHb] signal was used as an indicator of fractional O2 92 



extraction within the field of interrogation (10, 15, 17). As the contribution of myoglobin to the 93 

NIRS signal is currently unresolved (36) changes in [HHb] are considered to reflect the 94 

combined concentration of deoxygenated haemoglobin and myoglobin. The skin was initially 95 

cleaned and the probes placed in a rubber holder which was adhered to the skin at the midpoint 96 

of the muscle. To ensure the holder and its probes remained stationary during exercise and to 97 

minimise the interference of extraneous light with the near-infrared signal a bandage was 98 

wrapped around the leg. The NIRS signal was zeroed with the participant at rest in a seated 99 

position with the muscle stationary and relaxed. 100 

 101 

Data Analysis 102 

The gas exchange data were interpolated to 1 s intervals and peak V O2 was taken as the highest 103 

10 s stationary average during the test. The GET was determined by the V-slope method (2) as 104 

the point at which carbon dioxide (V CO2) production began to increase disproportionately to   105 

V O2 as identified using purpose designed software developed using LabVIEW (National 106 

Instruments, Newbury, UK). The location of the GET was confirmed using the ventilatory 107 

equivalents for V O2 and V CO2.  108 

 109 

Prior to analysis, the ramp [HHb] response dynamics were averaged in 5 s bins and expressed 110 

from 0% (mean from the 5 min of baseline pedalling at 20 W) to 100% (the highest 5 s [HHb] 111 

achieved during the test). The [HHb] response dynamics were expressed in relation to work rate 112 

(W) and V O2 in both absolute and relative terms. In line with previous research (27, 28), the    113 

V O2 response profile was back-shifted by 20 s in an attempt to account for the phase I-II, muscle 114 

to lung transit time. To determine the most appropriate approach to characterise the profile of the 115 



%Δ[HHb] response (as a function of % peak work rate or V O2), two models were compared 116 

(GraphPad Prism 5). First, the entire %Δ[HHb] response was modelled from the onset of the 117 

ramp exercise until exercise cessation using a sigmoid function (8, 12, 26): 118 

Y =a/(1+exp
-(-c+dx)

) 119 

where a represents the baseline corrected amplitude and c is a constant dependent upon d (the 120 

slope of the sigmoid) whereby c/d reveals the x value that yields 50% of the total amplitude. The 121 

point at which a plateau occurred in the [HHb] response was determined as the point at which the 122 

[HHb] response reached the lower boundary of the 95% confidence interval for the a parameter.  123 

 124 

Secondly, the increase in %Δ[HHb] observed throughout the middle portion of the exercise 125 

protocol (beginning at the point where the %Δ[HHb] signal began a systematic increase above 126 

baseline as determined visually) and the plateau which followed were characterised by a 127 

piecewise function that included two linear segments (the ‘double-linear model’)(38). The 128 

models were compared by computing the change in corrected Akaike Information Criterion 129 

scores (ΔAICc). Contrary to previous findings in adults (27, 37), the sigmoid model provided a 130 

superior fit in over 95% of cases according to the AICc scores. Thus, the parameters derived 131 

from the sigmoid model were used for all subsequent analyses. 132 

  133 

Analysis of covariance (ANCOVA) on log transformed data was used to determine the 134 

allometric relationship between body size (body mass, FFM) and V O2max. Common allometric 135 

exponents were confirmed for all groups and power function ratios (Y/X
b
) were computed and 136 

their size-independence was checked and confirmed by performing size-residual correlations 137 

against body mass and FFM.  138 



Statistical analyses 139 

Prior to analysis, distribution normality was examined and verified using the Shapiro-Wilk test. 140 

Independent samples t-tests were utilised to assess the influence of sex on the ramp test V O2 and 141 

[HHb] responses. Equality of variances was checked using Levene’s test. If significant, the equal 142 

variances not assumed P-value was reported. All data are presented as means ± SD. Statistical 143 

significance was accepted when P<0.05 and effect size (ES) statistics were used to detail the 144 

magnitude of the observed effect using the mean difference and the pooled SD. An ES <0.2 was 145 

trivial, >0.2 was small, >0.5 was medium and >0.8 was large.     146 

 147 

Pearson correlation coefficients were used to assess the strength of relationships between the 148 

[HHb] dynamics and peakV O2. These correlations informed the multiple regression analyses to 149 

determine the independent contribution of [HHb] kinetic parameters in explaining sex 150 

differences in absolute peak V O2 after accounting for other potentially important predictors (e.g. 151 

sex, age, body fat %). Initially, both sex and FFM were entered into the model given their strong 152 

relationship with absolute peak V O2 (L.min
-1

) in this age group (11). Subsequently, potential 153 

predictor variables were considered in a stepwise manner to determine their independent 154 

contribution to predicting absolute peakV O2. Inclusion into the model was accepted with a 155 

significant increase in explained variance at the 0.05 level. The adequacy of the regression model 156 

was examined and verified using checks for multicollinearity (variance inflation factor, 157 

tolerance) and distribution normality of the residuals.  158 

 159 

RESULTS 160 

Anthropometric characteristics were similar between boys and girls (see Table 1).  161 



Parameters of aerobic function 162 

The physiological responses during the ramp test to exhaustion are presented in table 2. Boys 163 

achieved a higher peak V O2 irrespective of whether expressed in absolute terms (18.0%) or 164 

relative to allometrically scaled body mass (16.2%) or FFM (11.7%). This was despite no sex 165 

differences in maximum heart rate. The boys achieved a higher peak work-rate at exhaustion. No 166 

sex difference was identified for the GET when expressed in absolute terms or relative to peak  167 

V O2.  168 

 169 

Ramp [HHb] response dynamics 170 

A representative profile of the modelled [HHb] response dynamics during ramp exercise for a 171 

boy and girl participant is illustrated in figure 1 when expressed as a function of absolute and 172 

relative work-rate and V O2. The parameter estimates for the sigmoidal model are presented in 173 

table 3. When expressed against absolute work-rate boys had a higher c/d (P=0.023, ES=0.67) 174 

and attained a plateau at a higher work-rate (P=0.031, ES=0.66). However, when expressed 175 

relative to peak work-rate, no sex differences were present for all [HHb] response parameters (all 176 

P>0.26, all ES<0.35). Plotting [HHb] against absolute V O2 showed a strong trend for boys to 177 

have a higher c/d (P=0.055, ES=0.58) and to achieve a plateau in the response profile at a higher 178 

metabolic rate (P=0.014, ES=0.76). When [HHb] was plotted relative to V O2 however, there 179 

were no sex differences for response parameters (all P>0.20, all ES<0.41).   180 

 181 

Correlations between aerobic function and [HHb] response dynamics   182 

A significant correlation was evident between absolute peakV O2 and the [HHb] c/d (r=0.62, 183 

P<0.001; r=0.79, P<0.001) and plateau (r=0.70, P<0.001; r=0.77, P<0.001) when expressed as 184 



a function of absolute work rate and V O2, respectively (see figure 2 for example correlations). 185 

When the [HHb] response parameters were derived using relative work rate, similar, although 186 

weaker, relationships were manifest between absolute V O2max and the c/d parameter (r=0.37, 187 

P=0.009) and plateau (r=0.30, P=0.035). No correlations were evident between peak V O2 and 188 

the [HHb] parameters derived using relative V O2. 189 

 190 

Muscle [HHb] response dynamics were also correlated with peak V O2 normalised using 191 

allometric models for body mass or FFM, although only the latter results are presented due to the 192 

similar outcomes across body size measures. Relationships were observed between FFM 193 

normalised V O2max and the [HHb] c/d (r=0.34, P=0.017 and r=0.52, P<0.001), and plateau 194 

(r=0.45, P=0.001 and r=0.53, P<0.001) when expressed using absolute work rate and V O2, 195 

respectively. However, these relationships disappeared when [HHb] was expressed using relative 196 

work rate and V O2. 197 

 198 

The FFM scaled peakV O2 was significantly related to the absolute GET (r=0.52, P<0.001) 199 

across the sample. When the GET was correlated against the [HHb] dynamics, a relationship was 200 

found for [HHb] c/d (r=0.52, P<0.001) and the [HHb] plateau (r=0.47, P<0.001) as a function 201 

of absolute V O2. 202 

 203 

Regression analysis of peakV O2 determinants 204 

The output from the multiple linear regression prediction of absolute peak V O2 is provided in 205 

table 4. Model 1 initially started with sex and FFM entered into the model (R
2
=0.41, P<0.001). 206 



Subsequently stepwise regression revealed significant improvements in explained variance due 207 

to the addition of absolute GET (∆R
2
=0.23, P<0.001), the [HHb] plateau expressed against 208 

absolute V O2 (∆R
2
=0.12, P<0.001) and body fat % (∆R

2
=0.03, P=0.034). The final model 209 

predicted ~ 81% of the change in absolute peakV O2 (R
2
=0.81, P<0.001). 210 

 211 

DISCUSSION 212 

The primary purpose of the present study was to examine whether sex-specific differences in the 213 

temporal response of local muscle fractional O2 extraction, as indicated by the NIRS-derived 214 

Δ[HHb] response, are present in children and account for the sexual dimorphism in peak V O2. In 215 

agreement with our hypothesis, when muscle [HHb] was expressed against absolute work rate 216 

and V O2, girls had a greater rate of change in [HHb] as evidenced by the lower c/d parameter 217 

and plateau. However, when expressed against relative work-rate or V O2, the sex difference in 218 

[HHb] response dynamics was no longer significant. Significant correlations were observed 219 

between absolute and FFM normalised peak V O2 and the HHb c/d and plateau parameters when 220 

expressed against absolute work-rate or V O2. Furthermore, when entered into a multiple 221 

regression model, the [HHb] plateau against absolute V O2 contributed to ~ 12% of the variance 222 

in peak V O2 after adjusting for FFM, GET, and body fatness. These data, therefore, support the 223 

hypothesis that the sex-difference in peak V O2 in 9-10 year old children is, in part, related to 224 

sex-specific changes in muscle O2 extraction dynamics during incremental exercise.  225 

 226 

In accord with previous studies (1, 11, 13, 39), the magnitude of the sexual dimorphism in  peak227 

V O2 of the children in the current study varied in relation to the different methods of expressing 228 



peak V O2. Specifically, boys demonstrated a ~ 18% higher peak V O2 compared to girls when 229 

expressed in absolute terms, which was reduced following allometric modelling using body mass 230 

(~16% difference) and FFM (~12% difference). This residual difference following normalization 231 

to FFM is consistent with other studies (11, 34). For example, in a cross-sectional study 232 

consisting of 248 children aged 8-11 years, Dencker and colleagues (11) found, through multiple 233 

regression, girls to have a lower peak V O2 after accounting for differences in body composition, 234 

heart size and habitual physical activity. Furthermore, previous data from our laboratory have 235 

shown that after matching children for FFM, boys’ maintain a ~14% higher peakV O2 despite no 236 

sex-related differences in blood  haemoglobin concentration, cardiac output and heart dimensions 237 

(43). The authors attributed the higher peak V O2 in boys to a greater muscle O2 extraction, as 238 

evidenced by a ~ 17% wider arterial mixed venous O2 content difference. This calculation, 239 

however, was based on whole-body measures of maximal V O2 and cardiac output via re-240 

arrangement of the Fick equation, which is unlikely to reflect the dynamics of muscle O2 241 

delivery and O2 utilisation within the microcirculation of the contracting mycocytes over the 242 

range of metabolic rates leading to peak V O2 (28).       243 

 244 

In the present study we used NIRS to non-invasively measure microcirculatory changes in [HHb] 245 

in the vastus lateralis muscle to provide insight into changes in the rate of fractional muscle O2 246 

extraction dynamics during ramp exercise. In agreement with previous studies in children (26, 247 

35) and adults (8, 12), the [HHb] response during ramp exercise was well characterized using a 248 

sigmoidal model, when compared to a bi-linear model (37). It has been suggested that under 249 

conditions in which muscle O2 delivery is compromised (e.g. disease, detraining) a leftward shift 250 

(i.e. more rapid increase) of the muscle [HHb] response is manifest (15). Consistent with this 251 



notion are data showing a more rapid increase in muscle [HHb] in untrained children (26) and 252 

adults (8), the elderly (18) and adult women compared to men (27). In agreement with the latter 253 

study, the girls in the current study were similarly characterised by a greater rate of change in 254 

[HHb] during ramp exercise compared to boys. Specifically, at a given work-rate or metabolic 255 

rate, the change in [HHb], expressed as a percentage of the total [HHb] amplitude, was greater in 256 

girls compared to boys resulting in the earlier attainment of a plateau (i.e. maximal rate of O2 257 

extraction) in the [HHb] response. As the pattern of muscle [HHb] during ramp exercise reflects 258 

the ratio of muscle O2 delivery to consumption, this finding implies that microvascular blood 259 

flow (15) was reduced in girls at sub-maximal work-rates and V O2 compared to boys, such that 260 

the ‘linear’ portion of the muscle O2 delivery to utilisation relationship (plateau) was reached 261 

earlier in the test while V O2 was still increasing.  262 

 263 

Interestingly, the current study’s data cohere with a recent study showing female adolescents and 264 

adults to have a shorter [HHb] time delay at the onset of high-intensity quadriceps exercise, 265 

suggesting impaired muscle O2 delivery (42). However, such findings are in conflict with data 266 

showing women to have an increased femoral blood flow to work-rate relationship during 267 

incremental knee-extensor exercise (31), suggesting women would be characterised by a lower 268 

rate of muscle O2 extraction during ramp cycling exercise in the current study. However, it 269 

should be noted that while adult studies generally show women to have greater muscle perfusion 270 

during exercise at similar exercise intensities compared to their male counterparts, this is 271 

dependent on the type (sustained vs. intermittent) of muscle contraction and recruited muscle 272 

mass (20). Compared to knee-extensor exercise, cycling exercise involves recruitment from 273 

muscles across the lower limbs and is not restricted to the quadriceps (33). Thus, as highlighted 274 



by Murias et al. (27), in contrast to knee-extensor exercise the additional muscle mass recruited 275 

during cycling exercise will elicit a maximal cardiac output response which needs to be 276 

effectively redistributed to the metabolically active fibres. Taken collectively, our data and that 277 

of Murias et al. (27) suggest that under conditions of ramp cycling exercise to exhaustion, 278 

females are characterised by an impaired muscle O2 delivery in both prepubertal children and 279 

young adults.  280 

 281 

While the mechanistic basis for the more rapid rate of change in muscle [HHb] for a given work 282 

rate and V O2 in girls cannot be explained with our data, a reduction in bulk blood flow, poorer 283 

regional matching of blood flow to the metabolically active mycocytes and/or lower muscle 284 

oxidative capacity may be implicated. It has been suggested that the mechanical effects of 285 

muscle contraction and/or localised vasodilators may play a role in altering the [HHb] dynamics 286 

during ramp exercise (8, 15), but these factors are likely to predominate during the early portion 287 

of the ramp test. Alternatively, Murias and colleagues (27) suggested that the haemodynamic 288 

response in women may be compromised due to sex-specific differences in sympathetic 289 

activation limiting the re-distribution of blood flow to the contracting muscles. Unfortunately, 290 

complementary data on muscle blood flow at rest or during exercise in children are not available, 291 

although studies have shown micro- and macro- vascular function to be sex-independent in 292 

healthy children (19, 32). Furthermore, although limited to rest and maximal exercise, our 293 

laboratory has previously reported that with boys and girls of similar FFM there is no difference 294 

in cardiac dimensions, stroke volume and cardiac output (43). Muscle oxidative capacity is likely 295 

to be an important determinant of the muscle [HHb] response, but no data are available on sex-296 

differences in muscle oxidative enzyme activates in pediatric groups. In contrast, the recovery of 297 



muscle PCr following exercise can be used as a non-invasive index of the muscles oxidative 298 

capacity and is not sex-dependent in prepubertal children (4). Alternatively, it is plausible that 299 

sex-differences in the progressive recruitment of higher-order muscle fibres during ramp exercise 300 

may account for the more rapid increase in muscle [HHb] in girls. Specifically, it has been 301 

shown that type II fibres with a low oxidative capacity are characterised by more rapid muscle 302 

O2 extraction kinetics at the onset of muscle contractions, presumably due to sluggish muscle O2 303 

delivery dynamics relative to muscle O2 consumption (7, 25). While, muscle fibre recruitment 304 

patterns remain to be elucidated during exercise in children, it is pertinent to note that girls are 305 

characterised by slower V O2 kinetics during cycling exercise (14) and a greater muscle 306 

metabolic perturbation (e.g. PCr breakdown) during high-intensity incremental (5) or 307 

squarewave (42) exercise, which may be indicative of a greater reliance on higher-order muscle 308 

fibres and reduced muscle O2 availability. Although not definitive, this suggests that sex-309 

differences in the progressive recruitment of type II muscle fibres during ramp exercise may 310 

explain, in part, our observation of more rapid [HHb] kinetics in girls. However, it should be 311 

noted, that such sex-differences in muscle phosphate and pH responses are not seen during high-312 

intensity intermittent exercise in children (22) or adolescents (41), suggesting muscle blood flow 313 

may not be compromised in females under such experimental conditions and that the findings of 314 

the current study reflect the incremental exercise protocol employed.    315 

 316 

In order to determine whether the changes in muscle [HHb] dynamics accounted for the sex-317 

differences in peakV O2 in the current study, multiple regression analyses were performed. After 318 

adjusting for FFM, the model predicted ~ 81% of the variance in absolute peak V O2 and 319 

revealed significant contributions from the GET, muscle [HHb] plateau and percentage body fat. 320 



In particular, the muscle [HHb] plateau (derived relative to absolute V O2) accounted for ~ 12% 321 

of the explained variance and rendered the sex term non-significant. This indicates that sex 322 

differences in peak V O2 can be explained, in part, by muscle O2 delivery to muscle O2 utilisation 323 

dynamics. The model derived from the present study explains a greater percentage of the 324 

variance in peak V O2 than previously reported in children by others (11, 30). Interestingly, in the 325 

present study, FFM (and sex) accounted for ~ 41% of the variance in absolute peak V O2 which 326 

is strikingly comparable to previous studies, and presumably accounts for cardiac function and 327 

morphology in our participants, although this was not directly measured. The present study 328 

extends this observation by demonstrating that an additional ~ 40% of the variance for predicting 329 

peak V O2 was attributed to the GET and [HHb] plateau, as percentage body fat only improved 330 

the model by ~ 3%. To our knowledge, the GET and [HHb] dynamics have not been considered 331 

in previous work concerning the determinants of peak V O2 in children and is likely to reflect 332 

differences in the participants’ muscle oxidative capacity and muscle fibre distribution as both 333 

the GET (21) and muscle [HHb] responses (as discussed above) are influenced by these factors.    334 

 335 

Although hypothesised in initial modelling simulations (15), Boone et al. (8) were the first to 336 

demonstrate a relationship between muscle [HHb] dynamics during ramp exercise and peak V O2 337 

in adult cyclists and physically active students. Subsequently, McNarry et al. (26) demonstrated a 338 

relationship between muscle [HHb] c/d and parameters of aerobic function (peak V O2 and GET) 339 

in girls during cycling exercise. Similar to previous findings in adults and children, in the present 340 

study we observed a positive relationship between the [HHb] response dynamics (c/d, plateau) 341 

and peak V O2 (expressed in absolute terms or scaled for FFM) and submaximal (GET) 342 

parameters of aerobic function. This supports the putative role of aerobic conditioning on 343 



causing a ‘rightward’ shift in the [HHb] response, and is likely to reflect enhanced muscle 344 

oxidative capacity and muscle fibre type distribution (8, 26). However, an interesting finding in 345 

the current study is that the sex differences in muscle [HHb] dynamics (c/d and plateau) 346 

disappeared when expressed relative to peak work rate and V O2. Both absolute peak V O2 and 347 

peak work-rate were lower in girls in the current study, meaning that expressing [HHb] at any 348 

given V O2 or work-rate would represent a greater proportion of their peak response. Similar 349 

findings have been reported when comparing younger and older adults (18) and males and 350 

females (27), although the differences persisted when expressed relative to peakV O2 in the latter 351 

study.  352 

 353 

It is prudent to note certain limitations with the present study design. Specifically, although 354 

chronological age of the participants in the current study is comparable with previous studies 355 

(11, 39, 43) and suggests our group were pre-pubertal, this was not determined. Unfortunately, 356 

the ethical considerations that surround the utilization of Tanner stages or skeletal age and the 357 

inaccuracy associated with age to peak height velocity make the accurate determination of 358 

maturity stage challenging. Furthermore, no central measures of bulk O2 delivery or 359 

haemoglobin were collected in the present study, although normalization by FFM has previously 360 

been shown to account for differences in these parameters between the sexes (39). Habitual 361 

physical activity or participation in structured sports was not measured in the current study. 362 

However, after accounting for body size and cardiac dimensions,  physical activity (specifically 363 

vigorous physical activity) only accounts for ~ 1% of the explained variance in peak V O2 in pre-364 

pubertal boys and girls (11). Furthermore, a recent review highlighted that there is no meaningful 365 

evidence of a relationship between children’s habitual physical activity and aerobic fitness as 366 



expressed by peak V O2 (2), suggesting sex-differences in habitual physical activity are unlikely 367 

to be a confounding factor in the current study’s findings. Finally, the interpretation of the [HHb] 368 

kinetics obtained by NIRS requires particular methodological considerations, including i) 369 

variations in adiposity beneath the probe between boys and girls; ii) the generalizability of the 370 

response dynamics from a localised area to a heterogeneous muscle and iii) the [HHb] response 371 

has been shown to be influenced by muscle activation patterns (9). The absence of EMG 372 

measures from the present study precludes the possibility that sex differences in muscle activity 373 

may explain the altered [HHb] response from being excluded. However, it is important to 374 

recognize that there were no differences in FFM between sexes in the current study and changes 375 

in [HHb] were normalized to the peak value at exhaustion. Furthermore, the NIRS probe was 376 

placed in the same location for all participants, minimizing regional differences.  377 

 378 

CONCLUSION 379 

In conclusion, this is the first study to utilise NIRS derived changes in the muscle [HHb] 380 

response dynamics to assess the sexual dimorphism in the peak V O2 of boys and girls. In accord 381 

with our hypothesis, girls were shown to require a greater fractional O2 extraction to increase 382 

work rate and V O2 and thus reached an earlier plateau in O2 extraction compared to boys during 383 

ramp exercise. Parameters of the muscle [HHb] dynamics were related to aerobic function and 384 

the plateau in muscle [HHb] was found to account for ~ 12% of the variance in peak V O2 after 385 

adjusting for FFM, GET and body fatness, and eliminated the sex difference in peak V O2. These 386 

results may reflect an inferior bulk O2 delivery and/or regional matching of O2 delivery in girls.  387 

 388 
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FIGURE CAPTION 

Figure 1. Deoxygenated haemoglobin plus myoglobin concentration ([HHb]) response as a 

function of a) absolute work rate (WR), b) relative work rate, c) absolute V O2, and d) relative 

2OV  for a representative boy (○) and girl (●).  

 



Figure 2. The relationship between absolute peak V O2 and muscle [HHb] c/d (A) and plateau 

(B) as a function of absolute V O2 in boys (○) and girls (●). Results for the Pearson’s correlation 

are presented. See text for further details.   

 

 

 

 

 

 

 

 

 

 


