
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Geoderma

                              

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa21410

_____________________________________________________________

 
Paper:

Mastrolonardo, G., Rumpel, C., Forte, C., Doerr, S. & Certini, G. (2015).  Abundance and composition of free and

aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity.

Geoderma, 245-246, 40-51.

http://dx.doi.org/10.1016/j.geoderma.2015.01.006

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78854348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa21410
http://dx.doi.org/10.1016/j.geoderma.2015.01.006
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 Pre-print	version	of	manuscript	published	as	Mastrolonardo,	G.,	Rumpel,	C.,	Forte,	C.,	Doerr,	S.H.,	Certini,	G.	
(2015)	Abundance	and	composition	of	free	and	aggregate-occluded	carbohydrates	and	lignin	in	two	forest	soils	
as	affected	by	wildfires	of	different	severity.	Geoderma,	245-246,	40-51	(doi:10.1016/j.geoderma.2015.01.006)	

	

 1	

Abundance and composition of carbohydrates and lignin in two forest 2	

soils affected by wildfires of different severity 3	
 4	

Giovanni Mastrolonardo1,2, Cornelia Rumpel2, Claudia Forte3, Stefan H. Doerr4, Giacomo Certini1 5	

 6	

1Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Università 7	

degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy. 8	

2CNRS; nstitute of Ecology and Enviroment Paris (IEES,  UMR Université Paris VI et XII – CNRS 9	

– IRD), Campus AgraParisTech, Thiverval–Grignon, France. 10	

3Istituto di Chimica dei Composti OrganoMetallici (ICCOM), UOS Pisa, CNR, Pisa, Italy 11	

4Geography Department, Swansea University, Singleton Park, Swansea SA28PP, UK. 12	

 13	

Corresponding author G. Mastrolonardo, tel: +39 055 522 6509; fax: +39 055 522 6477  14	

E-mail address: giovanni.mastrolonardo@gmail.com  15	

 16	

Keywords: wildfires; soil organic matter; non-cellulosic neutral sugars; lignin; soil density 17	

fractions; 13C NMR. 18	

 19	

1. Introduction 20	

Fire is a major ecological factor, affecting more land surface that any other natural disturbance 21	

(Lavorel et al., 2007; Scott et al., 2014). Soils are affected by many direct and indirect 22	

consequences of fire, which can alter the physical, mineralogical, chemical and biological 23	

properties of soil, either temporarily or permanently (Bento-Gonçalves et al., 2012; Certini, 2005; 24	

Neary et al., 1999). The organic component of soil is the one most affected by fire, in terms of both 25	

content and composition (González-Pérez et al., 2004; Certini et al., 2011). The assessment of the 26	
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overall effect of fire on soil organic matter (SOM) is a complex task because burnt soils are 27	

generally a patchwork of areas affected to different degrees by burning. For example, besides the 28	

factors correlated with site, soil and vegetation features, fire effects on SOM depend on the degree 29	

and duration of heating, the availability of oxygen and the type of combustion (smouldering or 30	

flaming), which may lead to different SOM transformations (González-Pérez et al., 2004; Rumpel 31	

et al., 2007; Shakesby and Doerr, 2006). Most often fire causes a substantial reduction of the 32	

organic matter stock in the litter layer (Bento-Gonçalves et al., 2012; Certini et al., 2011; Nave et 33	

al., 2011). There are, however, contrasting results in the literature about quantitative changes in the 34	

mineral soil. For instance, meta-analyses by Johnson and Curtis (2001) and Nave et al. (2011), have 35	

contrasting outcomes, concluding that in the short-term the A horizon does experience, respectively, 36	

a significant fire-induced increase and decrease in C content. However, divergent results from 37	

different studies can arise from methodological differences, related to sampling strategy, including 38	

soil depth interval considered and time elapsed since fire, local conditions, as for example 39	

vegetation/climate type.  40	

In terms of SOM quality, the reactions that take place during combustion, e.g. dehydration, 41	

dehydrogenation, volatilisation of nitrogenous compounds, decarboxylation, demethylation, 42	

demethoxylation, cyclisation and polycondensation (Hernàndez et al., 1997; Knicker, 2007), can 43	

substantially change the composition of the parent material. Charcoal formation is the most 44	

common outcome of wildfires and essentially represents the temperature and oxygen-depletion 45	

dependent transformation of the organic compounds into highly recalcitrant aromatic structures 46	

(Alexis et al., 2010). Once incorporated into the soil, charcoal may resist decomposition for 47	

centuries or even millennia, thereby sequestering carbon (Egli et al., 2012; Kuhlbusch and Crutzen, 48	

1995; Schmidt and Noack, 2000). Carbohydrates are believed to be among the most fire-affected 49	

components of SOM (Certini, 2005; González-Pérez et al., 2004; Knicker et al., 2006). On this 50	

basis, Martín et al. (2009) proposed the ratio of carbohydrates to total SOM as an index of fire 51	

impact on SOM quality. Such an index allows, in principle, also differentiating between low- and 52	
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high- soil burn severity wildfires. Lignin, which, after carbohydrates, is the second most abundant 53	

component of plant residues in terrestrial ecosystems, is rather resistant to fire and is totally 54	

oxidised only at 400–450 °C (DeBano, 1991; Kuo et al., 2008). Nevertheless, despite the high heat 55	

resistance of its backbone (Knicker, 2011; Sharma et al., 2004), lignin is affected by fire at much 56	

lower temperatures (200–250 °C) in terms of the distribution of phenols (Certini et al., 2011; 57	

Nocentini et al. 2010; Rumpel et al., 2007). Therefore, the composition of SOM regarding lignin 58	

and phenols has potential as an indicator of fire occurrence and severity. Quantifying post-fire 59	

lignin phenols and sugars in soil might be useful to evaluate the wider impact of fire on soil quality.  60	

In the mineral soil, the effects of fire are usually confined to the top few cm because of the low 61	

thermal conductivity of both minerals and pore spaces. Nonetheless, in several studies reporting on 62	

fire impacts, soil has been sampled to rather substantial depths, which is likely to have resulted in 63	

the dilution of the investigated fire effects.  64	

In this study, we investigated the top 2.5 cm of mineral soil of two forests located in Italy and 65	

Australia, which have been affected by recent wildfires of moderate and extreme severity, 66	

respectively. The purpose of using two contrasting sites in terms of forest type and fire severity was 67	

to assess changes to SOM quality resulting directly from the fire and explore their implications. We 68	

focused particularly on the non-cellulosic neutral sugars, those digested by trifluoroacetic acid 69	

(TFA), and lignin-derived phenolic monomers, those released by cupric oxide (CuO) oxidation. We 70	

further analysed the distribution of density fractions in SOM and the composition of such fractions. 71	

The changes SOM experienced at the two sites were compared to relate them to fire severity, 72	

hypothesising common fire-related alterations in SOM, mainly driven by fire severity. 73	

 74	

2. Materials and Methods 75	

 76	

2.1 Study sites 77	
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The study sites are Orentano (hereafter called OR), 30 km east of Pisa, Tuscany, Central Italy, and 78	

Mount Gordon (hereafter called MG), near Marysville, in the Victoria State, south-east Australia 79	

(Fig. 1; Table 1).  80	

Orentano (OR), 20 m a.s.l., has a mean annual precipitation of 893 mm and a mean annual 81	

temperature of 14.3 °C. The vegetation cover is a mixed forest of Downy oak (Quercus pubescentis 82	

Willd) and Maritime pine (Pinus pinaster Aiton) with a rich understory of common fern (Pteridium 83	

aquilinum L.) and Rubus spp. Soils formed on sand and stony lacustrine deposits – where quartz is 84	

largely dominant and chlorite, illite, kaolinite, and goethite are accessory minerals – and are 85	

classified as Haplic Skeletic Acrisols according to the World Reference Base for Soil Resources 86	

(IUSS Working Group WRB, 2014). In July 2011, an area of 3.3 ha underwent a wildfire of  87	

moderate to high severity, based on the visual scale of litter and vegetation consumption proposed 88	

by Chafer et al. (2004). Most of the tree stems were still standing after the fire and were partly or 89	

totally scorched. The soil was covered entirely by charcoal and ash, with no or very little uncharred 90	

litter remaining. Soil sampling was carried out three days after the fire, on both the burnt area 91	

(coordinates WGS84: 43°47'22.82"N, 10°39'52.30"E) and an adjacent (50 meters away) unburnt 92	

area having the same characteristics of the burnt one prior to fire occurrence, thus used as control.   93	

At Mount Gordon (MG) the sampling area is located 530 m a.s.l., where mean annual precipitation 94	

is 670 mm and mean annual temperature is 13 °C. The site was chosen because it represented an 95	

end-member in terms of fire severity. The sadly famous ‘Black Saturday’ fire, which involved also 96	

MG, in early February 2009, burned some 450,000 ha of eucalypt forest causing the loss of 173 97	

lives (Royal Commission, 2009). Average fire-line intensity is estimated to have exceeded 70,000–98	

80,000 kW m-1, which is amongst the highest ever reported in Australia (Royal Commission, 2009). 99	

Such an extreme intensity was promoted by particularly extreme weather conditions, such as wind 100	

speeds up to 100 km h-1 and air temperatures even exceeding 45 °C. Fuel loads were very high, 101	

since the forest had not experienced a major fire since 1939 (fuel load, including the litter, 102	

amounted to 25–40 Mg ha-1), and fuel moisture was very low (3–4%) because of prolonged drought 103	
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conditions (McCaw et al., 2009). The sampling site (37°31'56.30"S, 145°43'17.14"E) is an 104	

Eucalyptus spp. mixed forest 3 km SW of Marysville on the road to Narbethong. The fire removed 105	

all ground fuel, green vegetation and woody stems <10 mm in diameter; accordingly, fire severity 106	

was classified as extreme, based on the classification of Chafer et al. (2004). A long unburnt site – 107	

last burned by wildfire in 1939 – was selected as control, approximately 3 km NW of Narbethong 108	

(37°32'54.10"S, 145°37'37.30"E). This site is 8.5 km away from the burnt site and as much as 109	

possible similar to the latter in terms of all environmental conditions, soil included. Soils of the area 110	

formed on sandy Devonian sediments – where quartz is largely prevailing and the clay fraction 111	

comprises vermiculite, illite, and kaolinite – and are classified as Dystric Humic Cambisols 112	

according to the World Reference Base for Soil Resources (IUSS Working Group WRB, 2014). 113	

Sampling was performed in April 2009, two months after the fire and following some light rainfall, 114	

but before the more intense precipitation of winter had caused significant ash removal via erosion. 115	

 116	

2.2 Soil sampling 117	

At both study sites, OR and MG, the sampling involved four parallel 20 m transects, laid out 5 m 118	

apart, at 5 m intervals. Twenty mineral soil samples were taken at each site down to 2.5 cm, after 119	

carefully removing the ash, charcoal, or any litter layer by a brush. In both burnt areas, ten samples 120	

of charcoal particles were randomly collected in 40 ×40 cm plots.  121	

 122	

2.3 Physico-chemical properties 123	

Soil pH was measured potentiometrically using deionised water to soil ratio of 5:1, while particle 124	

size analysis was performed according to the hydrometer method. Total C and N contents and stable 125	

carbon isotopic composition of the fine earth (the less than 2 mm soil fraction) and charcoal were 126	

measured by a Carlo Erba NA1500 elemental analyser coupled to an isotope ratio mass 127	

spectrometer (Micromass-Optima). δ13 C isotope abundance was reported in per mil (‰) relative to 128	

the Pee Dee Belemnite standard (PDB).  129	
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 130	

2.4 Density fractionation 131	

Density fractionation was carried out on two soil samples per site, both obtained combining equal 132	

aliquots of ten samples of fine earth. The procedure was based on the method of Golchin et al. 133	

(1994), modified according to Sohi et al. (2001) and Cerli et al. (2009). This procedure allows 134	

different fractions, related to the spatial arrangement and interactions of organic compounds with 135	

minerals, to be separated (Cerli et al., 2012). The method requires a sodium polytungstate (NaPT) 136	

solution adjusted at a specific density to isolate a free light fraction (f-LF). By addition of the same 137	

solution to the precipitated material, followed by ultrasonic dispersion to break down the 138	

aggregates, the occluded light fraction (o-LF) is separated from the heavy fraction (HF), the latter 139	

fraction mainly comprising minerals. We performed preliminary trials in order to determine the 140	

most suitable density cut off and sonication energy for the fractionation. We first used the density 141	

and sonication intensities most commonly found in the literature, i.e. 1.6 and 1.8 Mg m-3 and 100 142	

and 300 J cm-3, respectively (Cerli et al., 2009, 2012; Golchin et al., 1997; Kiem and Kögel-143	

Knabner, 2003), wit the ultrasonic energy being calibrated calorimetrically according to Schmidt et 144	

al. (1999). Based on the criterion of the highest SOM concentration of the o-LF, i.e. the higher 145	

release of the o-LF with the smallest mineral “contamination” (data not shown), we selected 1.8 Mg 146	

m-3 and 300 J cm-3 for soils from both study areas.  Hereafter the soil samples were fractionated 147	

according to the following procedure: 125 cm3 of NaPT solution (density 1.8 Mg m-3, soil to 148	

solution ratio 1:5) were added to 25 g of soil, gently shaken and allowed to stand for one hour. After 149	

centrifugation at 6800 g for 20 min, the suspended material (f-LF <1.8 Mg m-3) was separated from 150	

the supernatant and filtered on a glass fibre filter (cut-off 0.7 µm) for washing away any residual 151	

NaPT. The precipitated material was ultrasonically dispersed in NaPT solution with the same 152	

density (1.8 Mg m-3, soil to solution ratio 1:5) by applying 300 J cm-3 and allowed to stand for one 153	

hour. After centrifugation at 6800 g for 20 min, the o-LF <1.8 Mg m-3  was recovered as described 154	

above. All three fractions obtained were repeatedly washed with deionised water until the electrical 155	
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conductivity of the supernatant was <50 µS cm-1. They were then oven dried at 50° C, weighed and 156	

analysed for their C and N content. Apart from obtaining functionally more homogeneous fractions 157	

with a narrower range of properties compared to the bulk soil, this type of density fractionation 158	

allows free SOM, and SOM associated with minerals and physically protected into aggregates to be 159	

distinguished.  160	

 161	

2.5 Lignin phenols determination 162	

There is not yet any method able to reliably quantify the total lignin content in soil. Even the cupric 163	

oxide (CuO) oxidation, which is perhaps the most widely used method for this purpose, does not 164	

succeed in completely depolymerising lignin. It thus cannot be considered as a strictly quantitative 165	

method (Kögel, 1986). Nevertheless, CuO oxidation is able to release phenolic monomers and 166	

dimers from the end groups of the lignin macromolecules and, as such, it is a reliable indicator of 167	

lignin amount and composition in soil (Otto and Simpson, 2006; Spielvogel et al., 2007; Thevenot 168	

et al., 2010). On this basis, we submitted the bulk soil and density fractions to CuO oxidation 169	

according to the modified method proposed by Kögel and Bochter (1985) and Kögel-Knabner 170	

(1995). Briefly, 50-200 mg of sample (the higher the C concentration, the lower the quantity of 171	

sample), 250 mg CuO, 50 mg of glucose, 50 mg of Fe(NH4)2(SO4)2·6H2O and 15 cm3 of 2 M NaOH 172	

were digested in a Teflon pot at 172 °C under N2 atmosphere for 2 h. Afterwards, ethyl vanillin was 173	

added as an internal standard to assess the recovery of lignin products. The solution was adjusted to 174	

pH 1.8 – 2.2 and left overnight for humic acid precipitation. Thereafter, the lignin-derived phenols 175	

were purified by elution through a C18 column (International Sorbent Technology) and extracted 176	

from the column by adding 5 × 0.5 cm3 (2.5 cm3 in total) ethyl acetate. After evaporating ethyl 177	

acetate under N2 flow, the dried residue was dissolved in pyridine containing phenylacetic acid as 178	

internal quantification standard, and then derivatised by adding BSTFA [N, O-179	

bis(trimethylsilyl)trifluoro-acetamide]. The silylated lignin monomers were separated using a HP 180	

6890 gas chromatograph (GC) equipped with a SGE BPX-5 column (65 m × 0.32 mm internal 181	
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diameter, 0.25 µm film thickness) and a flame ionization detector (FID). The GC oven temperature 182	

program was: 100 °C (2 min) to 172 °C at 8° C min-1, to 184 °C at 4 °C min-1, to 300 °C at 10 °C 183	

min-1 and 310 °C for 5 min. Helium was used as carrier gas and samples were injected in split mode 184	

(1:10). CuO oxidation products are composed of vanillyl (V)-units (vanillin, acetovanillone, vanillic 185	

acid), syringyl (S)-units (syringaldehyde, acetosyringone, syringic acid), and cinnamyl (C)-units 186	

(ferulic and p-coumaric acids). The sum of V-, S- and C-type phenols (VSC) was used to estimate 187	

the total amount of lignin. Ac/AlV and Ac/AlS are the mass ratios of acid-to-aldehyde for vanillyl 188	

and syringyl units, respectively. S/V is the mass ratio of syringyl to vanillyl units and C/V is the 189	

mass ratio of cinnamyl to vanillyl units. These mass ratios are generally used to assess the state of 190	

degradation of lignin, since the Ac/Al ratios increase while S/V and C/V ratios decrease with 191	

increasing decomposition. Fire was shown to immediately produce a degraded lignin signature for 192	

pure organic matter, increasing the acid-to-aldehyde ratio of V- and S-type units (Nocentini et al., 193	

2010; Rumpel et al., 2007), so partly mimicking the effect of microbial degradation. 194	

 195	

2.6 Non-cellulosic neutral sugars determination 196	

Sugar monomers were determined according to the method proposed by Amelung et al. (1996) as 197	

modified by Rumpel and Dignac (2006). The analysis was performed on both bulk soil and density 198	

fractions. Briefly, 200–500 mg of soil, depending on C concentration, were hydrolysed with 4 M 199	

trifluoroacetic acid (TFA) at 105 °C for 4 h. After the samples had cooled down, 0.5 cm3 of 200	

myoinositol (concentration 2 mg l-1) was added as internal standard. Thereafter, the hydrolysed 201	

samples were purified by filtration over glass fibre membrane (cut-off 1.2 µm) and dried using a 202	

rotary evaporator (58 °C). Ethylenediaminetetraacetic acid (EDTA) was added, according to Eder et 203	

al. (2010), to keep iron in solution in a non-reactive form to avoid possible co-precipitation of 204	

dissolved organic carbon. Derivatisation of the samples was carried out in screw top test tubes. 205	

Aldoses were reduced to their corresponding alditols after addition of 1 cm3 NaBH4 dissolved in 206	

dimethyl sulfoxide (DMSO). Acetylation was carried out by adding 2 cm3 acetic anhydride and 2 207	
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cm3 glacial acetic acid, and using methylimidazole (2 cm3) as catalyst. The reaction was stopped 208	

after 10 min by 7 cm3 ice-cold deionized water, which transformed acetic anhydride to acetic acid. 209	

The derivatised sugar monomers were extracted by liquid–liquid extraction with 1 cm3 210	

dichloromethane using a vortex mixer. After the phase separation, the darker organic lower phase 211	

was removed with a Pasteur pipette and transferred into a GC vial. The analyses were performed by 212	

a HP 6890 gas chromatograph (GC) equipped with a SGE BPX-70 column (60 m × 0.32 mm 213	

internal diameter, 0.25 µm film thickness) and a FID. The GC oven temperature program was: 214	

200 °C to 250 °C at 8° C min-1 and 250 °C for 15 min. Helium was used as carrier gas and samples 215	

were injected in split mode (1:10).  216	

The TFA digests the monosaccharides originated from plant-derived hemicelluloses and microbial 217	

products, while it is not able to digest crystalline cellulose (Guggenberger et al., 1994). Hence, 218	

hereafter, we will use the term sugars to indicate the non-cellulosic neutral polysaccharides. In 219	

particular, the sugar monomers detected by this method are: rhamnose, fucose, ribose, arabinose, 220	

xylose, mannose, galactose, glucose. Fructose is transformed into the same alditol as glucose during 221	

the reduction step (Rumpel and Dignac, 2006); however, the fructose content in soil is so low that 222	

its contribution can be neglected (Amelung et al., 1996). The concentration of individual sugar 223	

monomers was calculated based upon the internal standard myoinositol.  224	

According to Oades (1984), the proportion of microorganism-derived sugars in relation to plant-225	

derived sugars  can be roughly estimated by means of the mass ratio of hexoses/pentoses sugars: 226	

(galactose + mannose)/(arabinose + xylose), hereafter called GM/AX. Low (<0.5) and high (>2) 227	

GM/AX ratios are peculiar of carbohydrates predominantly derived from plants and 228	

microorganisms, respectively (Oades, 1984).  229	

  230	

2.7 Solid-state 13C NMR spectroscopy 231	

We analysed by solid-state 13C cross polarisation with magic angle spinning (CP/MAS) nuclear 232	

magnetic resonance (NMR) spectroscopy the bulk soil and the density fractions, with the exception 233	
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of the heavy one (HF), which was too poor in C to provide reliable information (Mastrolonardo et 234	

al., 2013). The specimens subjected to NMR analysis were obtained combining equal aliquots of all 235	

the independent samples collected from each site. Before 13C NMR analysis, all samples were 236	

treated with 2% hydrofluoric acid, as described by Skjemstad et al. (1994), to remove paramagnetic 237	

minerals, which strongly reduce the signal-to-noise ratio of the spectra. NMR spectra were recorded 238	

on a Bruker AMX300-WB spectrometer, working at 300.13 MHz for proton and at 75.47 MHz for 239	

carbon-13, and equipped with a 4 mm CP/MAS probehead. The spectra were recorded with a 240	

contact time of 2 ms under proton decoupling conditions with a spinning rate of 8 kHz. The 1H 90° 241	

pulse length was 3.4 μs, the spin-lock field 72 kHz, and the recycle delay 4 s. From 4,000 to 40,000 242	

scans were acquired depending on the sample. The chemical shifts were referenced to 243	

tetramethylsilane (TMS) using adamantane as external standard. 244	

The contribution of main C forms to total signal was determined by integration of corresponding 245	

chemical shift regions: 0 to 45 ppm (alkyl C), 45 to 110 ppm (O-alkyl C, subdivided in methoxyl/N-246	

alkyl C, 45–60 ppm; O-alkyl C, 60–90 ppm; di-O-alkyl C, 90–110 ppm), 110 to 165 ppm (aryl C, 247	

subdivided in aromatic C–H and C–C, 110–140 ppm; O substituted C, 140–165 ppm), 165 to 185 248	

ppm (carboxyl C); no signals arising from aldehydes or ketones were observed in the 185 to 220 249	

ppm region. 250	

 251	

2.8 Statistics 252	

Data from burnt and unburnt soils were compared by two-tailed paired t-test at 95% confidence 253	

level (SigmaPlot 12.0). Where data did not show a normal distribution (Shapiro-Wilk test), 254	

Spearman rank correlation was used.  255	

 256	

3. Results and Discussion 257	

 258	
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3.1 Carbon and nitrogen in the bulk soil  259	

The measured pH values, all below 6, demonstrated that the two soils were carbonate-free, hence, 260	

that the measured C was entirely in organic forms. At OR, where fire severity was moderate to high, 261	

the concentrations of carbon and nitrogen, and consequently the C/N ratios, did not change 262	

significantly between the unburnt and burnt soil (Table 2). Perhaps, the fire-induced loss in SOM, if 263	

any, was counterbalanced by the input of organic residues, including charcoal, from aboveground 264	

biomass and litter. Doing a meta-analysis Johnson and Curtis (2001) found a significant increase in 265	

soil C in the A horizon of forest soils burnt less than 10 years earlier. They attributed such an 266	

increase, at least partly, to an accumulation on the ground of unburnt and charred residues. The 267	

incorporation of fresh charcoal into the mineral soil at OR is supported by the lower δ13C value of 268	

the burnt soil compared to the unburnt one (Table 2), since charcoal had lower δ13C than unburnt 269	

soil (-28.5 ‰ in charcoal versus -27.4 ‰ in unburnt soil).  270	

At MG, where fire severity was extremely high, the burnt soil exhibited substantially lower C and N 271	

concentrations compared to the unburnt one: 88 and 164 g C kg-1, and 4.3 and 5.8 g N kg-1, 272	

respectively (Table 2). Such fire-induced losses are out of range when compared to data reported by 273	

Nave et al. (2011) in their meta-analysis. At MG, also the C/N ratio experienced a significant 274	

decrease, which might be explained by an accumulation of recalcitrant organic N-forms in the 275	

charred material (Almendros et al., 2003; González-Pérez et al., 2004; Mastrolonardo et al., 2014; 276	

Santin et al., 2008). The addition of any charred materials from the aboveground biomass at MG 277	

was evidently not sufficient to counterbalance the large loss of SOM. Nevertheless, it should be 278	

noted that the surface ash layer removed during sampling to expose the mineral soil was 279	

considerable (1.7 cm thick on average). It contained substantial amounts of C (62 g kg-1), mainly in 280	

the form of charcoal (Santin et al., 2012). Although the ash layer  does usually not remain on 281	

hillslopes for a long time because of wind and water erosion (Bodì et al., 2014; Rumpel et al., 282	

2009), it is conceivable that over time, at least some of the C retained in the ash layer would 283	

become incorporated into the mineral soil and hence increase the C content in the mineral soil. 284	
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 285	

3.2 Carbon and nitrogen in density fractions 286	

The C and N concentrations of soil density fractions are given in Table 2. Light fractions, f- and o-287	

LF, are generally assumed to comprise mainly plant debris and ancillary animal residues, charcoal 288	

and microorganisms colonising organic residues (Golchin et al., 1994; Wagai et al., 2009). Their 289	

main differences generally are in the particle size and location within the soil matrix: the f-LF is 290	

assumed to feature larger almost undecomposed organic materials, while the o-LF should comprise 291	

finer and more altered organic particles than the f-LF (Cerli et al., 2012; Golchin et al., 1994). 292	

The C/N ratio of density fractions of the unburnt soil at both OR and MG supports the expectation 293	

that SOM ranges between the less degraded light fractions, having a higher C/N, to the comparably 294	

more decomposed heavy fraction showing a lower C/N. These considerations are consistent with 295	

the higher 13δ C values for HF compared to light fractions, which support the hypothesis of a higher 296	

decomposition of the former fraction (Roscoe et al., 2001). In spite of low C and N concentrations, 297	

but due to its large relative mass (Table 2), HF stores one third of total SOC and almost half of total 298	

soil N (Fig. 2). Comparing density fractions from burnt and unburnt soils, it could be inferred if and 299	

how the aggregates were able to protect SOM from heating and if they collapsed because of fire. As 300	

quite recently reviewed by Mataix-Solera et al. (2011), the response of soil aggregates to heating by 301	

fire can be highly variable. Fire can oxidise organic binding agents in aggregates thereby causing 302	

their breakdown. Alternatively, a fast vaporisation of the water included in aggregates can lead to 303	

their destruction in a similar way as slacking does (Albalasmeh et al., 2013). However, under 304	

certain conditions, i.e. for wettable soils with SOM as main binding agent subject to low severity 305	

fires, aggregate stability may improve as a consequence of enhanced soil water repellency (Mataix-306	

Solera and Doerr, 2004). 307	

At OR, fire apparently caused an increase of C and N stock and concentration of f-LF (Table 2; Fig. 308	

2). This increase is probably due to the incorporation of some charred residues into the top 309	

centimetres of soil and the charring of part of SOM there present. The C stock in the o-LF was 310	
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slightly lower in the burnt soil compared to the unburnt one, although the C and N concentrations 311	

were actually higher (Fig 2; Table 2). This leads us to hypothesise that fire could have actually 312	

caused a partial disruption of aggregates; these latter released some high density mineral particles 313	

with no or little interaction with OM and some OM free particles, which may might have become 314	

part of the HF and the f-LF, respectively (Fig. 3). The so released SOM might also be more exposed 315	

to decomposition because more easily accessible by microorganisms and their enzymes. The same 316	

phenomenon, some fire-induced aggregate disruption, also occurred at MG, here resulting overall in 317	

an increase of the HF (Table 2). However, at MG the most affected fraction was the f-LF, that 318	

experienced a depletion in the C and N content and contribution (Table 2; Fig. 2). 319	

 320	

3.3 Soil polysaccharides content 321	

At OR, neutral sugars in the burnt and unburnt soils amounted to 7.4 and 8.2 g kg-1, respectively, 322	

which correspond to 76 and 97 g kg-1 of SOC (Table 3), in the range of data reported by other 323	

authors for forest soils (e.g., Guggenberger et al., 1994; Rumpel and Dignac, 2006). The apparent 324	

fire-induced decrease in neutral sugars was statistically significant if referred to total SOC, but not 325	

in absolute terms. The GM/AX ratio before fire occurrence was >2, indicating that sugars were 326	

synthetized mainly by microbial population (Guggenberger and Zech, 1994; Oades, 1984). Fire did 327	

not change this ratio indicating that, in principle, neither plant- nor microbial-derived sugars were 328	

preferentially affected by fire.  329	

The SOC normalised sugar content slightly decreased due to fire in the f-LF, while in the other 330	

fractions, o-LF and HF, it increased (Table 3). A possible explanation for this result could be that 331	

sugars associated to minerals were relatively preserved compared to the other OM compounds. In 332	

fact, it is commonly reported that sugars of microbial origins contribute to the formation and 333	

stabilisation of soil aggregates, hence benefiting from physical protection. Moreover, they seem to 334	

be chemically stabilised by interaction with the mineral phase (Kiem and Kögel-Knabner, 2003; 335	

Martín et al., 2009; Rumpel et al., 2010).  336	
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At MG, the absolute concentration of non-cellulosic neutral polysaccharides in the bulk soil was 337	

substantially lower in the burnt area than in the unburnt one: 9 and 21 g kg-1, respectively. This 338	

apparent decrease, however, was not significant if sugar content was normalised to SOC (Table 3). 339	

This suggests that the polysaccharides present in the mineral soil were not preferentially affected by 340	

fire, despite being part of the most thermally labile SOM pool (De la Rosa et al., 2008). However, it 341	

must be pointed out that the method we used is not able to also detect cellulose C, which may have 342	

a different behaviour towards fire compared to non-cellulosic sugars. Like at OR, the GM/AX ratio 343	

at MG indicates approximately that carbohydrates were mainly originated from microorganisms and 344	

the ratio did not change after fire occurrence. Most of the sugars were stored in the f-LF and were 345	

apparently greatly lost because of the fire, in the former fraction as well as in the  HF and o-LF, 346	

both in absolute terms (normalised to mass proportion of density fractions) and relative to SOC 347	

(Table 3).  348	

 349	

3.4 Soil lignin content 350	

At OR, the yield of phenolic CuO oxidation products in the burnt soil was significantly lower than 351	

in the unburnt one, both in absolute terms and relative to SOC (Table 4). This suggests that lignin 352	

was somehow preferentially affected by fire, despite its assumed moderate recalcitrance to heating 353	

(Knicker et al., 2005). Fire apparently left the VSC content of SOC associated to HF almost 354	

unaltered, while it affected the VSC content of the light fractions, particularly o-LF, both in 355	

absolute value and relative to SOC. Therefore, occlusion into aggregates does not seem to guarantee 356	

lignin protection. Even, pyrolytic degradation of lignin polymers in aggregates could be favoured 357	

by inorganic catalysts, such as acidic clay minerals (Ohta and Venkatesan, 1992).     358	

At MG, the absolute yield of phenolic CuO oxidation monomers was half in the burnt bulk soil 359	

compared to the unburnt one (Table 4), but such a difference was inconsistent if values were 360	

referred to SOC. As in the case of sugars, lignin monomers did not appear to be preferentially 361	

affected by fire compared to other SOM constituents. In the unburnt soil, lignin absolute content 362	
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was almost equally distributed among density fractions. Fire mainly affected the f-LF, causing large 363	

decrease in its VSC content. The o-LF showed the highest lignin contribution to SOC and the 364	

highest apparent lignin loss due to fire, while HF even shows a relative accumulation of lignin 365	

compounds. 366	

At both study sites, none of the indicators describing the composition and degradation of lignin, i.e. 367	

acid-to-aldehyde ratios of V and S-type units, S-to-V and C-to-V ratios, changed significantly in 368	

response to fire (Table 4). Hence, it seems that fire affected unselectively all lignin units, which is 369	

in contrast to what has been reported by other authors, i.e. a higher thermal susceptibility of 370	

aldehydes in V and S phenols (Certini et al., 2011; Kuo et al., 2008; Nocentini et al., 2010; Ohta 371	

and Venkatesan, 1992; Rumpel et al., 2007). 372	

Plotting the sugar vs. lignin contents from burnt soils at OR and MG, we found a fairly good linear 373	

correlation that did not occur in the unburnt soils (Fig. 4). This correlation probably depends on fire 374	

that, whatever its severity, would affect lignin and sugars leading to an overall decrease of both of 375	

them. Although based on a relatively small sample size here, this intriguing correlation deserves 376	

further investigation in future studies to ascertain its wider validity.  377	

 378	

3.5 NMR analysis 379	

The 13C CPMAS NMR spectra of bulk soil from burnt and unburnt areas at OR and MG are 380	

displayed in Fig. 5, while Table 5 shows the percent distribution of the total signal among seven 381	

chemical shift regions.  The most evident difference between the burnt and unburnt soil specimens 382	

was the more intense signal of the former in the aromatic C region (110–160 ppm). This was clearly 383	

due to some input of charred material, whose signal is centred at ~130 ppm (Skjemstad et al., 1996). 384	

At OR, this enrichment was counterbalanced by a decrease in alkyl-C (0–45 ppm region) and a less 385	

substantial decrease in O-alkyl C (60–90 ppm). The two sharp peaks at around 72 and 104 ppm in 386	

the burnt soil revealed the persistence of substantial amounts of polysaccharides, possibly cellulose. 387	

Therefore, contrary to what is commonly found (e.g., Certini et al., 2011; Knicker et al., 2005, 388	
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2006), here O-alkyl C does not seem to be the most fire-affected C form. At MG, in spite of the 389	

extremely high fire severity, spectra did not show major differences, apart from the evident 390	

enrichment in aromatic C in the burnt soil. Both burnt and unburnt soils were characterised by 391	

dominant signals in the alkyl C region, generally assigned to lipids and other aliphatic compounds, 392	

and in the O-alkyl C region, indicative for polysaccharides and amide C of proteins (Knicker and 393	

Lüdemann, 1995). The decrease in intensities of these signals, plausibly attributable to fire, is 394	

modest.  395	

The NMR spectra of the light density fractions from OR and MG are shown in Fig. 6 and 7, while 396	

the signal distribution among the chemical shift regions of the spectra is in Table 5. The light 397	

fractions from the unburnt soils had similar patterns in the two sites, although the o-LF revealed 398	

more advanced stage of alteration than f-LF, as chiefly indicated by a lower O-alkyl C to alkyl C 399	

ratio (Baldock et al., 1992) and a much higher signal in the aryl C region (Golchin et al., 1994). In 400	

particular, the higher relative intensity observed in the aromatic region at ~150, 130 and 115 ppm 401	

for o-LF with respect to f-LF suggests higher lignin content (Golchin et al., 1994; Hatcher, 1987). 402	

The NMR analysis unravelled that in both soils the light fractions were to some extent affected by 403	

fire at both sites (Figs. 6 and 7). At OR, the f-LF from the burnt soil showed higher intensity of the 404	

peak at 130 ppm, and smaller signals in the alkyl (0–45 ppm), O-alkyl (60–90 ppm) and carboxyl C 405	

(160–185) regions compared to the counterpart from the unburnt soil, overall indicating charring 406	

processes. In the o-LF, the peak at 56 ppm (ascribable to lignin methoxyl carbon) and the signal at 407	

around 150 ppm (O-substituted phenolic carbon) decreased much in the burnt soil compared to the 408	

unburnt one, which suggests lignin decomposition. At MG, the most evident fire-induced change to 409	

light fractions of SOC was the increase of the peak at 130 ppm, while ancillary differences are the 410	

decrease of the peaks at about 150 and 53 (lignin), and the intensification of the peak at 174 ppm 411	

(carboxylic C). This latter was unexpected, because organic matter exposed to severe heating 412	

generally loses carboxyl C (Knicker et al., 2005).  413	

 414	
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4. Conclusions 415	

Our parallel investigation at Orentano and Mt. Gordon, two areas recently affected by wildfires of 416	

markedly different severity, showed that in both cases fire had a marked impact on composition of 417	

SOM from the uppermost mineral soil. This impact was partly independent of fire severity. At 418	

Orentano, Italy, where fire severity in the mixed oak-pine forest was moderate, soil did not 419	

experience any significant, loss of carbon. On the contrary, some charred material from the organic 420	

layer and the standing vegetation had joined the mineral soil. At Mt. Gordon, Australia, where the 421	

eucalypt forest had been burnt by an extremely severe fire, SOM experienced substantial loss not 422	

counterbalanced by the incorporation of charred materials, although it is likely that over time some 423	

of the OM still retained in the ash layer will be partly incorporated into the mineral soil.  424	

Density fractionation enabled to examine three SOM pools with different characteristics and 425	

turnover time in soil, and to assess the fire impact on each of them. In spite of contrasting fire 426	

severity, at the two study sites we found similar fire impacts on the SOM assumed occluded in 427	

aggregates. Apparently, fire partly disrupted aggregates, causing release of SOM from this fraction. 428	

Such a SOM redistribution could imply substantial changes to C cycle. It is reasonable, for 429	

example, to assume higher availability of the released SOM to microorganisms. This outcome of 430	

fire should be taken into account, together with the significant immediate loss of SOM due to 431	

combustion and the increase in mean residence time of charred residues, when accounting for the 432	

fire impact on C balances.  433	

In terms of SOM composition, at OR lignin was preferentially affected by fire compared to sugars, 434	

particularly in the light fraction occluded into aggregates, where presumably minerals offered 435	

different protection to different compounds. At MG, where lignin and sugars decreased a lot in 436	

response to fire occurrence, apparently none of the main C forms were preferentially affected by 437	

fire, either in the bulk SOM or the density fractions. Variables formerly proposed as reliable 438	

indicators of fire severity in soil, i.e. the sugar–to–total organic C ratio and phenols ratio in lignin, 439	

did not provide encouraging results in this study. Further studies are needed to elucidate the 440	
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complex impact of fire on SOM composition and to ultimately identify the chemical legacies that 441	

are most useful to reconstruct fire history. 442	

 443	
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