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Abstract 

Hasaki Coast, located in the east coast of Japan, is a sandy beach exposed to cyclonic wave 

conditions of the South Pacific Ocean. The beach is longshore uniform and characterised by a 

highly dynamic longshore bar-trough system. Seasonal to inter-annual variability of beach 

change of the Hasaki Coast is examined and discussed using a one dimensional beach profile 

model. The beach profile model used here is developed based on the ‘reduced-physics’ 

modelling approach. The model uses a diffusion formulation as the governing equation and 

adopts an inverse modelling technique for solving the equation.  The model is calibrated 

against historic measurements of beach profiles at Hazaki Oceanographical Research Station 

(HORS) of the Port and Airport Research Institute, Japan. It is then used to forecast seasonal 

to inter-annual scale beach change. The results are compared with beach change determined 

from measured beach profiles at Hasaki between 2007 and 2011. The simple modelling 

approach used yields encouraging results of seasonal to inter-annual scale beach change at 

Hasaki Coast.  
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1. Introduction 

Beach change occurs as a result of complex interactions between beach morphology and a 

number of dynamic processes acting at a wide range of time and space scales. At short term 

time scales of a few hours to a few days, beaches change as a result of storms. Seasonal scale 

beach change occurs as a result of intra-annual variability of the incident wave climate 

resulting from local weather patterns. Inter-annual to decadal scale beach change can take 

place as a result of global climate variability or as a result of long term climate change.  

 

As morphodynamic variability of beaches are directly linked to beach instability, coastal 

erosion, flooding and even breaching, it is important to be able to forecast beach change at 

timescales useful for making engineering and management decisions, with some confidence. 

However, as a result of the high levels of uncertainty involved in forecasting future 

hydrodynamic conditions and the limitations of existing modelling practice, forecasting 

beach change at time scales beyond several days with reasonable accuracy is extremely 

challenging and difficult. 

 

Traditionally, empirical equilibrium models have been widely used for predicting beach 

change in the cross-shore direction. Those include Bruun (1954),  Dean (1977, 1991) and 

Vellinga (1982). Even though these empirical formulae have a significant value when 
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forecasting long term beach change, they have only a limited use in predicting beach change 

at short term time scales as they do not provide physical explanations of beach dynamics. 

 

On the other hand, detailed process-based models modules (e.g. Reiners et al., 1995, 

Roelvink et al, 2009; Southgate and Nairn, 1993; Lesser et al., 2004) that combine 

hydrodynamics, sediment transport and morphodynamics provide useful insights into short 

term beach morphodynamics. They can be used to accurately simulate short term beach 

change. As a result, they are commonly used in assessing and predicting storm-driven beach 

change, which takes place at timescales of hours to days. Even though a few recent attempts 

have been made to use these models for making longer term forecasts (e.g. Pender and 

Karunarathna, 2013), uncertainties in hydrodynamic forcing, potential for over-sensitivity to 

initial and boundary conditions and computational intensity limit using them for predicting 

changes longer than a few days. 

 

To make forecasts of seasonal to inter-annual scale beach change which is most useful for 

coastal engineering and management purposes, some alternatives are required. Amongst 

those are ‘reduced-physics’ models which have been proposed in literature (e.g. Stive and de 

Vriend, 1995; Reeve and Fleming 1997; Hanson et al., 2003; Karunarathna et al., 2008, 

2009). In these models, governing equations are derived on physical arguments rather than 

from first principles. Their success depends on describing the key processes which are 

relevant to the timescale in question. As a result, they may not provide detailed process 

information of beach change (for example, storm-driven beach profile shape change) but give 

morphodynamic trends at timescales relevant to the processes retained in the governing 

equation. The application of these models to the problem of predicting beach profile change 
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has shown significant promise (Karunarathna et al., 2012; Avdeev et al., 2010), despite the 

simplicity of this approach. 

 

In this paper, we extend the Karunarathna et al. (2009) beach profile model to forecast 

seasonal to inter-annual scale cross-shore beach change at Hasaki Coast, Japan. The model 

essentially takes a ‘reduced-physics’ approach, where beach change is considered to be 

primarily driven by ‘diffusive’ and ‘non-diffusive’ processes. Non-diffusive processes 

include any effects of waves, tides and other dynamic processes which contribute to beach 

change but we do not resolve these processes in detail. The model makes use of historic 

measurements of beach profile to ‘calibrate’ a few site-specific unknowns, similar to that of 

any process-based model application. 

 

The aim of the paper is two-fold: (i) to evaluate the success of the modelling method when 

applied to a beach subjected to complex combination of environmental variables; (ii) to 

forecast seasonal to inter-annual beach change at Hasaki Beach, which will be useful to 

future coastal management planning. The paper is organised as follows: Section 2 gives a 

description of Hasaki Coast and measurements of beach profiles at Hazaki Observation Pier. 

In Section 3, the model used to forecast inter-annual beach change is briefly described. 

Application of the model to Hasaki Coast and the results are presented and discussed in 

Section 4. Section 5 concludes the paper. 
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2. Hasaki Beach, Japan 

Hasaki Coast is a longshore uniform, sandy coastline located in the Ibaraki Prefecture of 

Japan facing the South Pacific Ocean (Figure 1). The beach consists of sediment with 

median diameter of 0.18mm. Grain size remains almost uniform along the beach profile.  The 

beach is subjected to both sea and swell waves. Tropical cyclones (typhoons) that occur 

during September-October generate high energy wave conditions along the Hasaki Coast. 

Relatively small waves occur from May to June. High wave conditions also occur between 

January and March as a result of extra-tropical cyclones. Based on the datum level at Hasaki 

(Tokyo Peil- 0.69m), the high, mean and low water levels were recorded as 1.25m, 0.65m 

and -0.20m respectively. Kuriyama et al. (2008) demonstrated that due to the micro-tidal 

environment and the high energy incident wave conditions, beach changes are primarily 

driven by incident wave conditions. 

 

Deepwater waves at Hasaki Coast have been measured with an ultrasound wave gauge for 20 

minutes every 2 hours (Figure 1). The water depth at wave measuring location is 24m. 

Weekly beach profile surveys have been carried out at the Hazaki Oceanographical Research 

Station (HORS), initially at daily and subsequently at weekly intervals since 1986. The 

profiles have been surveyed at 5 m intervals along the observation pier, to the same datum 

level as that used for the tidal measurements. The measured beach profiles extend to an 

offshore distance of 497m.  

 

Weekly beach profile surveys between 1993 and 2010 were used in this study. Figure 2 

shows the envelope of beach profiles measured between 1993 and 2010 and the mean profile. 
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Profiles measured between 1993 and 2007 were used for developing and calibrating the 

beach change model and profiles from 2007 to 2010 were used for model verification by 

comparison between predictions and observations.  

 

The morphodynamics of Hasaki Coast is dominated by the nearshore bar-trough system. The 

beach profile variability of Hasaki Coast has been studied extensively. Using eight years of 

weekly measured beach profiles, Kuriyama (2002) studied the behaviour of nearshore bar-

trough system and associated sediment transport using Principal Component Analysis (PCA). 

It was found that the bar is extremely dynamic and it’s development, migration and decay 

was caused by the spatial and temporal variation of cross-shore sediment transport. Kuriyama 

et al. (2008) investigated linkage between environmental factors and medium-term bar 

properties using 15 years of daily beach profile measurements along HORS pier. They used 

Complex Empirical Orthogonal Function (CEOF) analysis to investigate bar migration and 

found that the bar migration frequency was weakly correlated with the bar amplitude and 

offshore wave energy flux. A relationship between the shoreline variability of Hasaki Coast 

and the incident wave climate was studied by Kuriyama et al. (2012), using a simple 

shoreline model. They found that the Hasaki shoreline has a very strong inter-annual 

signature. They were also able recognise numerous correlations between offshore wave 

climate at Hasaki and, the Arctic Oscillation index (AO); the Nino-West SST anomaly and 

the Southern Oscillation Index (SOI). The influence of climate change on the Hasaki Coast 

was examined by Hayashi et al. (2013) using a simple analytical model. They found that the 

temporal variability of beach volumes below and above mean sea level (MSL) were similar in 

magnitude. 
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3. Diffusion model 

Following Stive and De Vriend (1995), Karunarathna et al. (2009, 2011, 2012) developed a 

beach profile evolution model based on a 1-D diffusion formulation. This model is adopted 

here to forecast seasonal changes at Hasaki Coast. In this model, the change of beach profile 

depth relative to a fixed reference level is given by:  
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In Equation (1), h(x,t) is the cross-shore beach profile depth measured relative to a fixed 

reference line and x is the cross-shore position measured relative to a fixed point on dry land. 

K(x) is diffusion coefficient that varies across the profile. S(x,t) is a space and time dependent 

external source function. In this formulation, it is assumed that the beach profile changes as a 

result of ‘diffusive’ and ‘non-diffusive’ sediment processes. The first term in the RHS of 

Equation (1) gives the beach change from sediment diffusion. The second term represents the 

accumulation of all non-diffusive contributions to the profile evolution process. Both K(x) 

and S(x,t) in Equation (1) are site-specific variables, which need to be calibrated.   

 

The problem is therefore to define K(x) and S(x,t) in a meaningful way. They can be 

estimated on the basis that Equation (1) is a good representation of the medium term profile 

morphodynamics and numerious observations of beach profiles. Estimating both K(x) and 

S(x,t) simultaneously from beach profile measurements is a difficult mathematical problem. 

Therefore, in Karunarathna et al. (2009), the following two-step inverse modelling approach 
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was used to determine K(x) and S(x,t). In this process, we assume that all variables in 

Equation (1) can be separated into a time-mean and a time-varying component. Based on this 

assumption, h(x) and K(x) can be written as 
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In Equations (2), the over-bar denotes the time averaged components and the prime denotes 

the time varying residuals. Further, the average of the primed quantities are zero. 

 

Using Equation (2), Equation (1) can be re-written as  
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In which both S(x,t) and terms with time-varying residual of the diffusion coefficient is 

included. However, in a beach system like Hasaki where the gradient of sediment size is 

almost uniform across the profile (Kuriyama, 2008), the assumption that the time varying 

residual of the cross-shore diffusion coefficient is small is a reasonable one.  

 

For brevity’s sake we rewrite the Equation (4) in operator notation as 
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Assuming that G(x,t) slowly varies in time the formal solution of Equation (6) can be written 

as (Karunarathna et al., 2009). 
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in which τ is the interval between two consecutive time steps, jj tt −= +1t . 

 

Based on a first order approximation, an expression for G(x,t) can be derived from Equation 

(8) as (Reeve and Spivack, 2000; Karunarathna et al., 2009) 
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To solve Equation (9) to determine G(x,t), the operator D, which is a function of )(xK  should 

be found.  We use the time averaged equation (4) to determine )(xK , through the following 

procedure:  Following Karunarathna et al. (2009), as a first approximation, we take 0),( ≈txG . 

Further, in approximate equilibrium, 0≈∂
∂

t
h . Then, the time average of Equation (4) gives 
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The solution to Equation (10) is 
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Equation (11) gives an explicit expression for the time-mean sediment diffusion coefficient. 

In Equation (11), α is a constant of integration. 







∂

∂
x
xh )(  is the gradient of the mean cross-

shore beach profile, which can be calculated from the historic surveys of beach profiles.  

 

It should be noted that the Equation (11) can be solved if the gradient of the mean profile is 

not zero at any cross-shore location within the model domain. To solve Equation (11) for 

)(xK  a value for α must be specified. Here we adopt an optimisation procedure similar to 

that used by Reeve & Fleming (1997) and Karunarathna et al. (2009). Assuming that the 

beach profile shape will not deviate significantly during one time step (i) the historic profile 

shape was predicted using Equation (4) taking G ~ 0 as a first approximation, for all cases 

where historic measurements are available, for a range of α values; (ii) the error between 

measured and predicted profiles were determined; and (iii) the α which gives the smallest 

error was selected to be used equation (9). Physically, this process corresponds to selecting 

the value of the mean diffusion coefficient that explains as much of the observed change as 

possible. For detailed description of this procedure the reader is referred to Reeve and 

Fleming (1997). 
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Once )(xK has been determined from Equation (11), the operator D in Equation (7) can be 

calculated. Then, Equation (9) can be used to determine G(x,t) for  pairs of cross-shore beach 

profiles at time tj and tj+1. A detailed description of the procedure to determine G(x,t)  is 

described in Karunarathna et al. (2009). 

 

To use this method, historic measurements of beach profiles at the chosen site are required 

for a reasonable length of time. Two consecutive beach profile measurements gives a G(x,t) 

corresponding to those two profiles. If a time series of beach profile measurements are 

available, a discrete time series of G(x,t) can be determined.  

 

To solve Equation (4) in predictive form to forecast future beach change, future G(x,t) values 

should be known either from a suitable parameterisation using historic values or by 

extrapolating them into future using a suitable form of extrapolation technique. 

  

4. Model Application and Results 

The diffusion model described in Section 3 was then applied to investigate and predict beach 

change at Hasaki Coast, Japan. Beach profile surveys described in Section 2, measured from 

1993 to 2006 was used to determine the diffusion coefficient and the source function, which 

are the key parameters in the model. The mean beach profile gradient to be used in Equation 

(9) to determine time mean diffusion coefficient was determined by averaging all profile 

surveys measured weekly profile surveys from January 1993 to December 2007. Following 

the optimisation technique mentioned in Section 3 (reader is referred to Karunarathna et al. 

2009 for more details), the best value for α was found as 6.01x10-2.  Using this value for α, 
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Equation (9) was solved to determine space-varying mean diffusion coefficient along the 

profile. It should be noted that the gradient of the mean profile should be non-zero for 

Equation (9) to be valid. Although the time mean beach profile at Hasaki is mostly concave, 

there are a few locations where the gradient was extremely small, leading to excessively high 

and unrealistic values of diffusion coefficient. In these cases, the diffusion coefficient was 

determined by smoothing the profile using the values at 4 neighbouring grid points. The 

results are shown in Figure 3. 

 

Although some scatter is seen in the results, )(xK shows an increasing trend in the offshore 

direction. This could be expected as a result of the diminishing sea bed gradient prevailing in 

the mean profile. 

 

Despite the prominent and highly dynamic bar-trough system present at Hasaki Coast 

(Kuriyama, 2002), the mean profile resembles a typical concave beach. We fitted Dean’s 

equilibrium profile curve (Dean, 1991)  

 

   h(x) = Ax2/3                                                                                                                               (12) 

 

 to the mean beach profile below mean high water, in which x is offshore distance measured 

from still water line and A is a constant related to grain size D by A = 0.21D0.48 with D given 

in millimetres (Moore, 1982). The result is shown in Figure 4a. Grain size D was taken as 

median grain size at Hasaki Coast which is 0.18mm (Kuriyama et al. 2008). It can be seen 
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that the equilibrium profile closely resembles the mean beach profile above -2m but 

underestimates the depth of the profile below -2m. 

 

Dean’s equilibrium profile is directly linked to the sediment characteristics of the beach 

through Moore’s (1982) expression. The sediment diffusion coefficient in the diffusion model 

also characterises beach sediment. Differentiating the profile depth given by Dean’s 

equilibrium model [Equation (10)], and substituting this into Equation (9) yields the 

following relationship between sediment diffusion coefficient and sediment characteristics of 

the beach (Karunarathna et al, 2011): 

 

𝐾𝐾(𝑥𝑥)������� = 3
2𝐴𝐴
𝑥𝑥1/3                                                                                                                           (13) 

 

Equation (13) shows that if the mean beach profile at Hasaki Coast follows Dean’s 

equilibrium profile, )(xK  should have a linear relationship with x1/3, which is evident in 

Figure 4b. Relating the gradient of the )(xK vs. x1/3 curve to Moor (1982) relationship, 

sediment size on the beach was found as 0.2mm, which closely agrees with the measured 

median sediment size at Hasaki Coast of 0.18mm. These results show that despite the 

presence of the bar-trough system, the concave shape of the mean beach profile allows the 

application of Dean’s profile shape to describe the long-term equilibrium profile at Hasaki 

Coast. 
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To use the diffusion model in predictive form that is to forecast beach change in future, the 

source function G(x,t) for the appropriate period should be determined. If the time mean 

diffusion coefficient recovered above is used in Equation (9), a discrete time series of G(x,t) 

can be calculated using measured bathymetry data. It should be noted that G varies with x as 

well as in time. Using beach profile surveys from 1993 to 2007, G(x,t) was calculated at 5 m 

intervals across the profile and the results are compiled in Figure 5 as the space-varying 

envelope of all G(x,t) calculated for this period. Mean beach profile is shown in the same 

figure to show reference to cross-shore location. The largest range of variability of G(x,t) is 

observed between 175m and 350m offshore distances, where the bar movement has been 

identified by Kuriyama (2002). 

 

It should be noted here that the source function G(x,t) reflects all contributions to beach 

profile variability other than diffusion. Tidal influences on Hasaki Coast are small as the 

beach is micro-tidal. The high energy cyclonic wave climate is the dominant hydrodynamic 

process in this area (Kuriyama, 2002). We therefore infer that the source function primarily 

consists of the effects of incoming waves on beach morphodynamics. In order to assess the 

physical significance of the source function and its contribution to beach change, the space 

integrated source function (integrated across the profile) [∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥], which represents 

time-varying sediment erosion/accretion (negative/positive [∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥] represents 

erosion/accretion of the profile respectively) across the profile  was calculated. Kuriyama et 

al. (2012) found that shoreline change at Hasaki Coast shows a strong seasonal signal of four 

monthly periods of March-June (MAMJ), July-October (JASO) and November-February 

(NDJF). Taking this into account, 4-monthly moving average of ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥  was calculated. 

In addition, the moving averages of ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥  at 12-monthly periods were also calculated 
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to investigate potential links between beach change and climate-driven, inter-annual scale 

environmental processes. Both results are shown in Figure 6. 

 

In Figure 6, strong cyclic signatures can be seen in both 4- and 12-monthly moving averaged 

space integrated source function time series. To determine the frequency of these signals, 

power spectral analysis was performed on ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥. Power spectral density of ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 

against spectral frequency is shown in Figure 7.  The results show that there are prominent 

spectral density peaks at 4.9 years and 1 year. Many other spectral peaks can also be seen at 

higher frequencies however, as our focus here is on seasonal to inter-annual scale 

morphodynamics at Hasaki Coast, we will focus on these two peaks. Spectral densities at 

higher frequencies may correspond to complex cyclonic wave climate and individual 

cyclonic events. Annual cycles agree well with the annual cyclic beach change recognised by 

Suzuki and Kuriyama (2014). It should be noted that the 4.9 cycle corresponds to the cyclic 

signal visible in both 4-monthly and 12-monthly moving averaged and space integrated 

source function (red line in Figure 6). In an attempt to relate this signal to climatic variations 

that may contribute to beach change, power spectral density of El Nino/La Nina Sothern 

Oscillation Index (SOI) was determined. The results (not shown) indicate a spectral peak 

between 4-5 years. As a result, it can be stated that the 4.9 year cyclic variability of the 

source function (and hence beach change) may be driven by El Nino/La Nina climate 

variability.  

 

Following the detailed analysis of the source function presented above, we will attempt to 

apply the diffusion model to forecast seasonal to inter-annual beach change at Hasaki Coast. 

In order to use the model governing equation as a predictor of beach change, a suitable 
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parameterisation of the source function is needed. Focusing on prediction of seasonal to inter-

annual beach profile change (beach profile volume change per metre width of the beach in 

the longshore direction), 4-monthly moving averaged ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 was extrapolated using the 

following simple procedure: First, ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 time series was divided into segments of 4.9 

year period by taking into account the 4.9 year cyclic signal contained in it. Then, the mean 

signal was determined by taking the average of all segments. Mean signal was then 

extrapolated to obtain ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 from 2007 to 2011. The results are shown in Figure 8.  

 

The predicted source function and the time-mean diffusion coefficient determined from 

Equation (9) were then used in the predictive form of the diffusion model to forecast inter-

annual scale beach area change and Hasaki Coast. The initial beach profile required to drive 

the model was taken as the 4-monthly averaged beach profile in June 2006. Continuous 

simulations were carried out using time step as 120 days (approximately 4 months). A 

comparison of measured and forecasted 4-monthly averaged beach area change during the 

period between 2007 and 2011 is shown in Figure 9. The positive values of area change 

during this period showed that the beach is in an accretionary state, which in agreement with 

positive trend of shoreline position change observed by Kuriyama (2012) for this period. 

 

The model forecasted the seasonally averaged beach area change very encouragingly. 

Deviations between the measured and forecasted values at some occasions can be attributed 

to a number of factors: (i) simplicity of the modelling approach which does not allow detailed 

processes to be modelled (ii) impact of any significant extreme cyclonic events that may have 

phased out due to the averaging process and (ii) simple approach used for forecasting the 

source function. 
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5. Conclusions 

Modelling and forecasting of Hasaki Coast beach volume change is presented and discussed 

in this paper. Seasonal to inter-annual scale beach change, which is important to coastal 

engineers and managers, is the focus of the model application. The model applied to the 

Hasaki Coast was developed based on ‘reduced physics’ modelling principles where only key 

processes necessary to describe morphodynamics at a selected time scale are retained. The 

governing equation contains two unknown parameters to be calibrated by site measurements. 

Measured beach profiles at Hasaki Coast were used in this regard.  

 

 Model parameters showed that the mean diffusion coefficient, which represents ‘diffusion-

driven’ beach change in the model governing equation was related to sediment characteristics 

of the site and that the Dean’s equilibrium profile (Dean, 1977) was a suitable 

parameterisation to the long term average beach profile at Hasaki Coast. The space integrated 

source function (integrated across the beach profile) which relates to time-varying beach 

profile volume change per unit length of the beach, shows cyclic signatures at a range of time 

scales in which 1 and 4.9 year cycles being the most prominent. One year cycle may 

correspond to annual variability of the cyclonic wave climate while 4.9 year cycle 

corresponds to climate-driven El Nino/La Nina Southern Oscillation.  

 

The forecasts of seasonal to inter-annual scale beach change obtained using the diffusion 

model show good agreement with measured data. Considering the simplicity of the modelling 

approach used, the results are promising. Even though forecasts presented in this paper are 
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limited to change in beach area, using a suitable approach to forecast space varying source 

function, it may be possible to predict beach profile change including the bar movement. 
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Figure 6 – 4-monthly and 12-monthly moving averaged space integrated source function. 

Space integration was done across the entire profile. 

 

Figure 7 – Power spectra of depth integrated source function. 
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Figure 8 – Extrapolation of seasonal (4-monthly) moving averaged space integrated source 

function. Dark line – calculated from data, broken line – forecast from the mean 

signal. 

 

Figure 9 -  A comparison of modelled and measured average annual cross-shore  beach area 

change at Hasaki Coast. 

 



 

                                                

 

 

 

 

 

 

 

 

 

 

Figure 1 –Field Site at Hasaki, Japan. (a) Location of Hasaki Coast (b) Location of Hazaki 

Oceanographical Research Station and wave gauge (c) view of Hasaki Beach. 
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Figure 2 – Beach profile envelope and mean beach profile at Hasaki Coast. Envelope and 

mean profile were determined from profiles measured between 1993 and 2010. 

Dotted line – profile envelope, dark line – average beach profile. 
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Figure 3 – Mean diffusion coefficient at Hasaki Coast vs. profile distance. Mean beach 

profile is shown by the dotted line. 
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Figure 4 – (a) A comparison of mean beach profile at Hasaki Coast and Dean’s equilibrium 

profile (Dean 1991), black line – mean profile, red line – Dean’s equilibrium 

profile, black broken line –Mean Low Water level (MLW) (b) relationship 

between mean diffusion coefficient and Dean (1991) model. Broken line shows 

the linear fit to data.  
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Figure 5 – Spatial variation of the envelope of the source functions calculated for the period 

1993-2007. Mean profile shape is shown in dark black line. 
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Figure 6 – 4-monthly and 12-monthly moving averaged, space integrated source function. 

Space integration was done across the entire profile. Black line – 4-monthly 

moving averaged signal. Red line – 12-monthly moving averaged signal. 
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Figure 7 – Power spectra of depth integrated source function. 
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Figure 8 – Extrapolation of 4-monthly moving averaged ∫𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥. Dark line – calculated 

from historic beach profile data, broken line – extrapolation from the mean signal. 
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Figure 9 -  A comparison of modelled and measured seasonally averaged cross-shore  beach 

area change at Hasaki Coast.  Measured - hollow triangles, modelled- solid 

triangles. 
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