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Abstract—Pressure derived footstep signals are a growing
field in biometrics, offering unobtrusive sample collection in
comparison to established biometrics, with strong classification
accuracy despite the highly variable nature of input instances.
As a weak biometric, footsteps obtain lower predictive accuracy
than stable alternatives and real world implementation will
require reliable, yet flexible, feature sets that enable accurate
class label partitioning. We suggest a method of retaining the
spatial dimensions that are commonly lost during production of
ground reaction force profiles and demonstrate the use of wavelet
analysis on raw pressure signals for feature production. By
analysing pressure signals obtained from common piezoelectric
sensor arrays, we have trained a Random Forest classifier for
individual prediction within a dataset of 10,413 footstep pair
instances from 94 participants. Retaining spatial information for
wavelet analysis returned error rates as low as 16.3%, showing
strong predictive accuracy on a large, natural dataset.

I. INTRODUCTION

Biometric measures have proven to be a popular method for

individual identification, with multiple biometric parameters

drawing the focus of extensive research [1]. Suitability of

parameters for use as classification markers is based on intra-

and inter-individual variability of the metric in question; a

need to accurately distinguish between two individuals, while

flexibly classifying multiple input instances from the same

individual. Biometrics are often divided into two groups; phys-

iological biometrics, based on stable physical characteristics,

and behaviometrics, dependant on more flexible behaviour.

Physiological biometrics such as fingerprint, iris pattern and

DNA sequences are well researched and, with suitable feature

extraction, show high classification accuracy [2]. Behaviomet-

rics such as gait and speech pattern are more variable in their

usage as an identifier, with some parameters showing high

accuracy whilst others are still in the early stages of evaluation.

Works such as pose extraction [3] and interaction modelling

[4] are often necessary for deriving those behaviometrics.

Footsteps as a behaviometric is relatively young topic, with

literature suggesting their use in multi-modal systems as

an auxiliary identifier, due to lower classification accuracy

in comparison to their established counterparts [5], [6]. As

such, footsteps are often classified as a weak biometric due

to high intra-individual variability between multiple footstep

instances and potential for external impact on inter-individual

behaviour. Despite this concern, pressure based footsteps have

shown to provide reasonable classification even with masking

of the foot silhouette by footwear or added weight loading

[7], [8], suggesting pressure collection apparatus can benefit

over image based biometrics, which suffer during occlusion

scenarios, and provide minimal obstruction to the user during

sample collection with sensors providing little physical barrier

to user movement.

The ability of biometrics to seemingly identify individuals

makes them an attractive choice as authentication tools in

security systems or personalised system interaction. Biometric

classifier systems are often designed for verification, deter-

mining if a sample belongs to approved users or should be

rejected; this differs from the identification problem, in which

the sample is classified to one label out of many. To partition a

set of class labels, semi-supervised classifiers utilise a feature

set that represents the individual in question, such that new

inputs can be compared against enrolled users to determine

correct class. Footstep biometric systems often utilise repre-

sentative profiles that condense either the spatial or temporal

domain from raw data, from which features are extracted

and used to train the classifier. The most common profile is

the Ground Reaction Force (GRF), providing a description

of force from the foot imparted on the floor during a step

[8]–[12]. Using GRF features detailed by [11] it has been

possible to achieve classification accuracy rates of 93% when

classifying users with nearest-neighbour based recognition,

[8], and >95% when combining multiple classifiers with a

rejection class on a dataset consisting of 10 participants, [11].

These high classification rates are often obtained using small

datasets, extensive classifier tuning or by sample verification as

opposed to classification; issues which may result in dimin-

ished accuracy when applied to real world implementation.

Therefore we intend to utilise a large and highly variable

dataset to train a classifier to predict the identity label of

an input sample, providing a more realistic interpretation of

implementation.

Extraction of suitable features are key to the production of

accurate classifiers and use of continuous wavelet transform

(CWT) as a signal-processing tool has allowed identification of

signal events in both time and frequency domains. This offers

benefit over the Fourier transform when temporal location

of events is important, most notably during inconsistent or

zero-averaging signals; such as those presented within footstep

pressure channels. Current CWT analysis of footstep signals

focuses on gait analysis of multiple consecutive footsteps [13]

and foot topography estimation [6]. Wavelet transform has
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most commonly been used in the analysis of audio signals

obtained from footfall during the step using microphone

[14], [15] or the measurement of ground vibrations using

a geophone [16], [17]. The discrete form of the wavelet

transform is often used to correct signals by smoothing out

background measurement noise [16], [18]. Despite the study

of wavelet uses in the extraction of features from audio and

image signals, little has been done in analysis of GRF profiles

formed from simple footstep pressure collection, and even

less has been studied on the use of wavelets to analyse the

raw pressure signals from a multi-sensor array. In [7], the

authors found that the use of wavelet analysis on single step

GRF profiles improved prediction accuracy over use of more

common heuristic features, which suggests the use of CWT

as a signal analysis tool can be effective for event localisation

within footstep instances. It has also been shown by [19]

that the use of wavelet transforms can be used to classify

individuals with knee replacements in a clinical setting

The lack of wavelet analysis on raw footstep pressure

signals has led this study to apply CWT to the raw data signals

obtained by pressure sensitive mats. We intended to retain spa-

tial information lost during GRF profile production and draw

upon the strength of wavelet based signal analysis in order

to more accurately identify individual participants. The GRF

profile is often used to remove the spatial information from the

footstep to reduce it into a simplified pressure/time sequence

[8]. The spatial information within a footstep can be a defining

parameter; with the morphology and size of the foot being used

as a classification feature in image based approaches. Such

consideration of the spatial domain in the imaging methods

have allowed high accuracy rates to be achieved and this study

aims to show that the same consideration can be applied to the

pressure signal methodologies. By retaining the spatial domain

we hope to show that the spatial nature of the footstep is

important to its use in determining classifiable features, and as

such the overall spatio-temporal footstep should be considered

as a whole.

We also explore the use of a Random Forest classifier

in prediction of individual identity using foot-floor impact

based pressure data. A mixture of statistical geometric features

drawn from raw signals, representative profiles and wavelet

analysis of raw data will be used to construct feature sets

for classifier training. These features are then used to train

the classifier in an attempt to predict individual class labels.

Previous study has made use of the global GRF feature, which

condenses several channels into one profile, resulting in a loss

of spatial domain information; as such we intend to retain

spatio-temporal information within raw channels for analysis

and feature production, while comparing against the use of

geometric profile features and wavelet analysis of the common

GRF profile.

II. PROPOSED METHOD

Below we outline the method taken in collection of pressure

based footstep profiles, extraction of geometric and wavelet

processing feature sets and construction of a Random Forest

Fig. 1: Footstep profiles, from top: raw pressure, Save, GRF

and contours (red: upper contour, blue: lower contour).

classifier to predict class labels. We discuss the use of basic

statistics drawn from footstep raw data and representative

profiles, continuous wavelet transform as a processing tool for

analysis of GRF footstep profiles and our proposed method

of retaining spatial information via wavelet transform of raw

signals. For all analysis we consider the footstep to consist of

both left and right foot placement instances, using both feet

as one sample has been shown to provide higher predictive

accuracy, as opposed to using individual feet [8].

A. Data

The Swansea University Speech and Image Research Group

footstep dataset of over 11,000 pressure based footstep sam-

ples was used to develop a training/testing set [20]. Each

sample was collected, at a sampling rate of 1024Hz, by the

traversal of two 45x35cm piezoelectric sensor mats placed

within a doorway. This produced a left and right combined

footstep profile consisting of 88 channels per foot (top Fig.1).

Erroneous samples, such as incomplete mat traversal and

directional inconsistency, were removed from the dataset. To

conform to the 10-fold cross validation requirements, classes

with <10 samples were removed. Preening of the collection

provided a final dataset of 10,713 samples taken from 94

individual participants, with participants providing a range of

samples, from <20 to in excess of 1,000 footstep instances.

Participant inputs were subject to varying footwear, loads and

walking speeds, providing a natural dataset of highly variable

samples. Feature sets, discussed below and summarised in

TableI, were derived from the dataset to allow classifiers to

be constructed.

B. Geometric features

Using common methodology in footstep analysis, raw am-

plitude/time signals were transformed into a set of representa-

tive profiles, Fig.1, which were used to draw a set of geometric

feature vectors. These profiles are found throughout literature
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TABLE I: Feature sets for classifier construction.

Feature Description

Geometric Statistics drawn from raw data, Save, GRF and contour
profiles

Multi scale GRF step lengths

Wavelet Multi wavelet analysis of GRF profile

Wavelet analysis of raw pressure signals retaining the
spatial domain

Proposed Aggregation of geometric, GRF wavelet analysis and
spatially-retentive wavelet analysis

concerning energy distribution within a footstep sample, with

the GRF being a successful focus of study [7], [8]. These

geometric profiles allow information contained in multiple

channels to be considered as a single entity, by reducing sam-

ple dimensionality through methods such as spatial averaging,

Save (Fig.1 second from top), cumulative effect, GRF (Fig.1

third from top) or raw data contouring, (Fig.1 bottom).

The global GRF, frequently found across literature [7], [10],

[11], [13], [21], presents the overall pressure change across the

entire foot during the step and is described by [21] as:

GRFT [T ] =
1

S

S∑
i=1

(
T∑

t=0

(Si[t])),

where S is the number of pressure sensors in the apparatus,

i an individual sensor and Si[t] the output of sensor i at a

given time point t. Less commonly used profiles include the

spatial average (Save), averaging raw sensor data across a mat,

removing the spatial domain, Save[t] = 1
S

∑S
i=1(Si[t]) and

the contour profiles, which provide the max (Sup) and min

(Slo) amplitude values across all sensors respectively, Sup[t] =
maxS

i=1(Si[t]), Slo[t] = minS
i=1(Si[t]). All profiles provide a

representation of the raw pressure data and were included in

our geometric feature set.

The maximum, minimum and mean amplitude values and

standard deviation (SD) amongst amplitude values were ex-

tracted from the raw data and geometric profiles to establish

the statistical features. These statistical features provide rep-

resentation of energy behaviour in force exerted during each

footstep instance. The raw data statistics were drawn for each

sensor in the apparatus and appended, resulting in a 1x352

feature vector for each foot that retained spatial information

from the footstep profile. Statistical features were drawn from

the GRF, Save and contour profiles, giving a 1x4 feature vector

per foot per profile. The finalised statistical portion of the

geometric feature vector was an appending of these values

to give a 1x736 feature vector.

The GRF profile was used to produce a series of step length

features, derived from multiple varying starting thresholds.

Step length was defined as the number of time samples

between start and stop points determined by crossing a

threshold value, with amplitude thresholds selected at 1, 2,

3, 4 and 5×105. The final multi-scale geometric feature set

was constructed using the statistical features and GRF step

lengths taken from all 5 thresholds. By considering all 5 step

length thresholds we aim to interpret the amplitude gradient

of the beginning and end of the GRF profile, with closer step

length values indicating a higher acceleration/deceleration in

amplitude change and steeper gradient.

C. Wavelet features

Pressure signals present within footstep samples are a finite

waveform, with a foot strike creating an increased amplitude

reading until the foot is lifted, upon which the apparatus

returns to a resting level. This temporally significant signal

event lends itself to wavelet analysis methods such as CWT,

allowing events to be studied in the time/scale/magnitude

domain. CWT uses a given wavelet as comparison against the

input signal within a given footstep signal, this comparison

is repeated across temporal shifting and frequency scaling of

the wavelet to return a coefficient matrix which represents our

original input signal, allowing features describing the original

raw data signal to be drawn.

The CWT coefficient matrix C(s, p)is dependant upon the

chosen mother wavelet, scaling and temporal positioning de-

scribed as:

C(s, p; f(t),Ψ(t)) =

∞∫

−∞
f(t)

1√
s
Ψ ∗ ( t− p

s
)dt,

where the wavelet transform coefficient, C, is dependant

on the chosen mother wavelet, Ψ, wavelet scaling, s, and

temporal position along the original input time domain, p. For

footstep analysis, CWT was performed using seven mother

wavelets; Daubechies 2-6, Mexican Hat and Morlet. Wavelets

were selected to cover a representative spread of waveforms,

evaluating each wavelet’s suitability in analysis of footstep

pressure signals; db2-4 showing similarity to raw footstep

signals and Mexican Hat providing representation of more

general impulse signals. Using 8 scales allowed identification

of signal events while maintaining a short feature vector size,

saving classifier training time and lowering risk of over-fitting

the classifier to observed data.

Footstep GRF profiles were subjected to CWT analysis with

each of the above wavelets at 8 scales, returning an SxT
coefficient matrix, where T is the time samples within the

raw footstep channel and S the number of scales. Max, min,

mean and SD were drawn from each scale of the coefficient

matrix, removing the time domain, these values were appended

to give the 1x64 GRF wavelet analysis feature vector.

D. Proposed feature set

Foot placement can impart varying pressure at localised

regions across a surface; notably the first metatarsal head and

heel provide high regions of pressure, while the shape of

the foot is silhouetted on the surface it impacts [6], [7], [9].

The use of spatially reduced profiles is common within the

literature, [7], [8], [10]–[12], while analysis of the spatial in-

formation contained within the raw pressure arrays is lacking.

As such, we propose retention of spatial domain information

by performing wavelet analysis on raw data as opposed to
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representative profiles such as the GRF. The intent is to provide

training vectors that conserve spatio-temporal information that

reflects the dispersal of pressure across the mat, which may be

lost during the production of the GRF profile. To achieve this,

CWT was carried out on raw signals of each sensor, using

the above mother wavelets, returning an SxTx88 coefficient

matrix. For each sensor the max, min, mean and SD were

drawn from each scale, removing T , leaving an 1xS vector per

stat, per sensor, per foot. These were appended to produce the

final 1x5632 wavelet feature vector for the footstep, retaining

the spatial domain information of the footstep signal.

E. Classifier construction and testing
A Random Forest classifier was built to predict individual

owners of a footstep due to the strength of the algorithm in

handling large feature vectors during class partitioning and

in training strong classifiers with minimal tuning [22], [23].

The dataset was split for training and testing using 10-fold

cross validation partitioning, where the training set consisted

of 9 folds and the 10th fold was the testing set. Forests

were grown at densities of 10, 25, 50, 100, 200, 500 and

1000 trees per forest, providing insight into the trade-off

between time and accuracy when increasing forest density.

The number of samples used to split each node in the tree

was set to the default value of the floored square root of

M , the length of the feature vector used in an NxM feature

set, a pre-tuning start point for exploratory analysis of feature

sets. During RF construction the internally determined out-of-

bag error estimate (OOB) method [22], despite negating the

need for a dedicated training set, was applied to each fold in

cross validation, allowing the classifier to be trained using a

bootstrap sample of each training fold.
Passing test inputs through constructed forests returns a

prediction of respective class label, taken via a vote from all

trees within the forest. Once the entire testing set is classified,

predictions are compared against ground truths and predictive

error rate (PER) is returned as probability of incorrect predic-

tion. Each replicate consisted of 10 PER values, one for each

fold in the cross validation; with experiments carried out in

triplicate. PERs were then averaged to determine partitioning

error.

III. RESULT AND DISCUSSION

Findings of the study are given below, detailing PERs

returned by each classifier during 10-fold cross validation

testing. The geometric, GRF wavelet analysis and proposed

feature set predictive errors are summarised in Fig.2 and

Tab.II.

A. Forest density
In all cases, increase in forest density led to increased

predictive accuracy as expected, plateauing once tree density

exceeded 500 trees in the majority of cases. Increase in

forest density also increased computational time and resource

required for model construction, with marginal performance

benefit post-plateau. For consistency, from this point on we

will only discuss PERs obtained using 1000 trees.

TABLE II: Summary of PERs (% error). 10 tree forest results

are omitted due to lack of space.

Density of Forest (number of trees)

Feature Set 25 50 100 200 500 1000

Geometric Features

Geometric statis-
tics only

32.2
±1.2

29.4
±0.9

27.9
±1.1

27.0
±1.0

26.5
±0.9

26.4
±1.0

Geometric + Step
length 1×105

32.5
±1.5

29.2
±1.4

27.6
±1.1

27.0
±1.3

26.5
±1.4

25.8
±1.5

Geometric + Step
length 2×105

32.4
±1.5

29.2
±1.6

27.5
±1.8

27.4
±1.8

26.7
±1.1

26.6
±1.7

Geometric + Step
length 3×105

31.8
±1.4

29.2
±1.2

27.6
±1.1

26.8
±1.2

26.5
±1.3

26.3
±1.2

Geometric + Step
length 4×105

32.3
±1.3

29.1
±1.2

27.5
±1.1

26.7
±1.0

26.4
±0.9

26.1
±1.0

Geometric + Step
length 5×105

32.0
±1.4

29.0
±1.2

27.5
±1.0

26.7
±0.9

26.2
±0.8

26.1
±0.7

Finalised
Geometric

32.0
±1.0

28.6
±1.2

27.2
±1.0

26.4
±0.9

25.8
±1.0

25.5
±1.2

GRF CWT Features

GRF CWT 66.8
±1.0

64.5
±1.2

63.3
±1.2

62.5
±1.0

61.7
±1.1

61.3
±1.3

Geometric +
GRF CWT

31.7
±1.2

28.9
±1.3

26.6
±1.2

26.3
±1.3

25.6
±1.3

25.4
±1.4

Proposed: Spatially Retentive CWT Features

Spatial CWT 21.9
±1.1

19.2
±1.2

18.3
±1.4

17.5
±1.4

17.0
±1.5

17.0
±1.2

Geometric + Spa-
tial CWT

22.2
±1.7

19.6
±1.1

18.4
±1.5

17.6
±1.1

17.1
±1.1

16.7
±1.2

Spatial CWT +
GRF Wavelet

31.3
±1.5

28.5
±1.2

26.2
±1.2

26.1
±1.4

25.3
±1.3

25.0
±1.3

Geometric +
GRF CWT +
Spatial CWT

21.7
±0.9

19.2
±1.3

18.1
±1.1

17.6
±1.2

16.8
±0.7

16.3
±0.7

B. Geometric features

Using only statistical features derived from raw data and

representative profiles it was possible to achieve average PERs

as low as 26.4%±1.0%. There was high variability between the

importance of each sensor within the apparatus; this can be

expected when a foot only strikes a given number of sensors

on the mat, suggesting that orientation or normalisation is

required to directly compare the same sensor in two samples.

GRF step length as a solitary feature was omitted due to it’s

weak ability as a classifier, providing PERs of >80%, most

likely due to inherent problems in using a singular, highly

variable feature to describe partitions between classes. Using

individual scale GRF step lengths combined with geometric

statistic features there was a marginal average decrease in

PER of 0.5% when using thresholds set at 1, 3, 4 and 5×105,

with marginal increase in PER when the threshold was set to

2×105.

The finalised geometric feature set, containing the statistical

features and the step lengths determined at all 5 thresholds,

provided PERs of 25.5%±1.2%, Fig.2- solid line, showing

that a Random Forest classifier is able to partition weak

pressure based footstep data with even the crudest of feature
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Fig. 2: Impact of key feature sets on Predictive Error Rate.

sets. This classification accuracy, from a dataset of 94 class

labels, allows us to have confidence in predictive capabilities

of the classifier, suggesting use of geometrical features can

provide strong partitioning for individual classification and,

with further feature set optimisation, can lead to adoption of

footsteps as an identifier.

C. Wavelet analysis of the GRF profile

Wavelet analysis of the spatially reduced GRF profile pro-

vided weak classification; with the best performing wavelet be-

ing the Mexican Hat wavelet, producing PERs of 61.3%±1.3%,

Fig.2- dotted line. When these features were appended with

the geometrical feature set there was an improved accuracy to

25.4%±1.4%, a marginal improvement over solitary use of the

geometric feature set. The wavelet analysis of the GRF profile

provided poor partitioning of our dataset, with PERs falling

well below those of the geometric feature set.

It is believed that over-simplification of footstep information

resulted in poor fitting of the classifier to the training data

and thus the classifier struggles when introduced to new

input samples. It may be worthwhile selecting more distinct

features from the wavelet analysis of GRF profiles, with

more descriptive features perhaps providing higher partitioning

accuracy, however with our statistical features we found that

the loss of the spatial domain produces weak label partitions.

D. Proposed feature set

Wavelet analysis of raw input signals provided footstep

event localisation in the scale/time domain at 8 scales and

these wavelet features greatly improved prediction accuracy.

Observed PERs fell to PER of 17.0%±1.2% when using the

Mexican Hat mother wavelet, the strongest class partition-

ing of all wavelets evaluated. Combining spatially retentive

wavelet analysis with geometric feature set provided PERs

of 16.7%±1.2%, a further increase to accuracy. These results

show that the inclusion of the spatial domain information pro-

vides a benefit in identifying the individual participants within

the dataset. There is an increase in accuracy of nearly 9% when

compared to the geometric features and over 44% increase in

accuracy compared to the wavelet features extracted from the

GRF profile, clearly showing the importance of the spatial

domain.

E. Feature set aggregation

By appending all three suggested feature sets; geometric,

GRF and spatially retentive wavelet features, we were able to

obtain PERs of 16.3%±0.7% using the Mexican Hat wavelet

for both sets of wavelet analysis, Fig.2- dashed line. This

further increase in accuracy despite the increase in partitioning

variables is due to the ability of the Random Forest algorithm

to identify the most important variables in the partitioning of

the class labels; separating them out from the weaker features

[22], [23]. The trade-off between the extraction of this larger

feature set and the small increase in accuracy may suggest

omitting the GRF wavelet features in favour of utilising the

geometric and spatially retentive feature set combination.

We conclude that use of CWT for analysis of footstep

pressure profiles is most effective when considering the spatial

domain of the problem, most notably the raw data shown with

the raw pressure signals. The dataset contained no limitations

on the footwear used and variable participant shoe size and

morphology, this suggests that there should spatial information

with the data that can be used as a partitioning parameter for

classification. The compression of the spatial domain from the

signals in the production of the GRF profile is believed to have

lost partitioning information from the realistic dataset and as

such we recommend the use of wavelet analysis on raw signals

to provide improved accuracy.

IV. CLOSING REMARKS

This study has focused on using a distinctly weak biometric

in a classification problem in contrast to verification, in which

the system is predicting sample class from multiple labels,

instead of attempting to accept or reject a given sample as an

enrolled user. This highly variable biometric will rarely reach

the accuracy rates of established biometrics; despite this, we

have been able to use simple geometric features to produce a

classifier able to predict footstep owners from a large, diverse

and realistic dataset. The least impact to class partitioning

comes from mean values for each raw data channel, which

could be expected from a finite input signal with a rest state

of zero, in which averaging would lose key temporal events.

We believe that the classification results show the impor-

tance of considering the spatial information of a footstep, a

critical parameter that should not be overlooked when using

footsteps to identify individuals. Use of wavelet analysis on

raw pressure signals improved prediction accuracy over that of

spatially reduced profile features, while removing the spatial

domain via production of the GRF profile led to wavelet

analysis with weakened predictive capabilities. Therefore, as
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expected, the biometric information within a footstep is a

combination of temporally and spatially important events; this

suggests use of feature sets that represent the spatio-temporal

domain as a whole is of benefit to classifier construction and

dataset partitioning.

Feature impact on node splits have shown that not every

sensor is providing equal benefit to dataset partitioning, how-

ever all sensors were included due to lack of footstep orienta-

tion pre-processing. Orientation may allow more informative

comparison between footsteps. Further work will explore the

extraction of detailed features from wavelet coefficients and

the production of dedicated footstep signal wavelets.
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Vector Quantization in Footstep Identification,” in Int. Conf.
Artificial Intelligence and Applications, 2003, pp. 413-417.

[13] P. M. Forsman, E. M. Topplia and E. O. Hæggström, “Wavelet
analysis to detect gait events,” in IEEE EMBS, 2009.

[14] A. Itai and H. Yasukawa, ”Personal Identification using Foot-
step Based on Wavelets,” in Int. Symp. Intelligent Signal
Processing and Communication Systems, 2006, pp. 383-386.

[15] A. Itai and H. Yasukawa, ”Footstep Classification using
Wavelet Decomposition,” in Int. Symp. Communications and
Information Technologies, 2007, pp. 551-556.

[16] H. Xing, F. Li and Y.Liu, ”Wavelet Denoising and Feature
Extraction of Seismic Signal fot Footstep Detection,” in Int.
Conf. Wavelet Analysis and Pattern Re-cognition, 2007, pp.
218-223.

[17] V. V. Reddy, V. Divya, A. W. H. Khong and B. P. Ng, ”Footstep
Detection and Denoising using a Single Triaxial Geophone,”
in Asia Pacific Conf. on Circuits and Systems, 2010, pp. 1171-
1174.

[18] A. Mostayed, S. Kim, M. M. G. Mazumder and S.J. Park, ”Foot
Step Based Person Identification using Histogram Similarity
and Wavelet Decomposition,” in Int. Conf. Information Security
and Assurance, 2008, pp. 307-311.

[19] F. Verdini, T. Leo, S. Fioretti, M. G. Benedetti, F. Catani and
S. Giannini, ”Analysis of Ground Reaction Forces by means
of Wavelet Transform,”Clinical Biomechanics”, pp. 607-610,
2000.

[20] R. Vera-Rodriguez, R. P. Lewis, J. S. D. Mason, N. W. D.
Evans, “A large scale footstep database for biometric studies
created using cross-biometrics for labelling,” in Int. Conf.
Control, Automation, Robotics and Vision, 2008, pp. 1361-
1366.

[21] R. Vera-Rodriguez, J. S. D. Mason, J. Fierrez and J. Ortega-
Garcia, “Analysis of time domain information for footstep
recognition,” Advances in Visual Computing, pp. 489-498,
2010.

[22] L. Breiman, ”Random Forests,” Machine Learning, pp. 5-32,
2001.

[23] G. Biau, ”Analysis of a Random Forest Model,” Machine
Learning Research, pp. 1063-1095, 2012.


