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We rigorously derive the leading-order terms in asymptotic expansions for the scattered electric and
magnetic fields in the presence of a small object at distances that are large compared with its size. Our
expansions hold for fixed wavenumber when the scatterer is a (lossy) homogeneous dielectric object with
constant material parameters or a perfect conductor. We also derive the corresponding leading-order terms
in expansions for the fields for a low-frequency problem when the scatterer is a non-lossy homogeneous
dielectric object with constant material parameters or a perfect conductor. In each case, we express our
results in terms of polarization tensors.

Keywords: polarization tensors; low-frequency scattering; asymptotic expansions.

1. Introduction

The scattering of electromagnetic fields at low frequencies that occurs due to the presence of a small
object has previously received considerable attention; see, for example, Kleinman (1965, 1967, 1973),
Kleinman & Senior (1982), Dassios & Kleinman (2000) and references therein. A review of work
prior to 1965 was conducted by Kleinman (1965) and, more recently, Dassios & Kleinman (2000) have
written a monograph. Kleinman (1967, 1973) has shown, by making the Rayleigh approximation, that
the first non-trivial term in the low-frequency far field scattering expansion of the electric and magnetic
fields involves k2/r, where k is the wavenumber and r is the distance from the object to the point
of observation. Furthermore, he shows that this Rayleigh term can be written in terms of electric and
magnetic polarization moments1 that can be identified with the corresponding dipole moments in the
leading-order k2/r term for the far field patterns of radiating dipoles. Later, it was shown how the
polarization moments in these expansions can be expressed in terms of polarization tensors (Kleinman
& Senior, 1982). In particular, in the case of a perfectly conducting scatterer, the electric moment can be
expressed in terms of a polarization tensor that is related to the isolated conductor polarization tensor of
Schiffer & Szegö (1949) and the magnetic moment can be expressed in terms of a polarization tensor,
which is related to their added mass tensor (Keller et al., 1972). Kleinman and Senior claim that, for the
case of lossy and non-lossy dielectrics, the polarization tensor, associated with the electric and magnetic

1 Polarization (moments and tensors) should be understood in the sense of the definitions in, e.g., Dassios & Kleinman (2000),
Ammari & Kang (2007) and is not related to the polarization of electromagnetic waves.

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
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moments, is a generalized form of the isolated conductor and added mass tensors (Kleinman & Senior,
1982), which Dassios & Kleinman (2000) call the general polarization tensor.

Ammari et al. (2001) have revisited the problem of determining the perturbation in the electro-
magnetic fields for a small object. For a bounded domain, where the tangential traces of the electric
and magnetic field are available on the boundary, they obtain the leading-order terms in asymptotic
expansions for the perturbation in the near fields due to the presence of an object as δ→ 0, where δ is
the object’s size. Ammari & Volkov (2005) have also considered the unbounded problem and obtained
the leading-order terms in asymptotic expansions for the perturbation of the far fields as δ→ 0. Their
expansions are expressed in terms of a polarization tensor that is related to the general polarization ten-
sor defined in Dassios & Kleinman (2000). In the related problem of electric impedance tomography,
Ammari & Kang (2007) define a generalized polarization tensor that, in the lowest order case, agrees
with the earlier general polarization tensor. They are able to show that the complete far-field expansion
of a potential field satisfying a scalar Laplace transmission problem can be expressed in terms of this
new tensor (Ammari & Kang, 2007). Similar results have also been obtained for the near-field expan-
sion of a potential field satisfying a Laplace transmission problem on a bounded domain as well as for
the Helmholtz (Ammari & Kang, 2004a,b) and linear elasticity (Ammari & Kang, 2004b) transmission
problems. By considering the low-frequency eddy current problem, Ammari et al. (2014) have recently
shown, when the skin depth is of the same order as the size of the object, that the leading-order term in
an asymptotic expansion of the perturbed magnetic field as δ→ 0 can be expressed in terms of a new
form of polarization tensor for conducting objects.

The ability to describe the perturbation in the electric and magnetic fields, caused by the presence
of a small object, in terms of polarization tensors has recently attracted considerable interest as it offers
possibilities for determining the shape, location and material properties of the inclusion from measure-
ment of the perturbed fields (Ammari & Kang, 2004b, 2007; Ammari et al., 2014). Indeed, a number
of inverse algorithms for determining the entries of the generalized polarization tensors from measured
data, and henceforth determining the shape, location and material properties of an object, have been pro-
posed and are discussed in Ammari & Kang (2004b, 2007) and Ammari et al. (2014). Such approaches
could potentially have important applications in medical imaging including the location of tumours and
the detection of land mines.

Before stating the contributions made in this work, we make the notions of low- and high-frequency
problems and near and far field, which we plan to use, precise. In physics it is common to call the
situation of kδ� 1, where δ is a characteristic length scale of the object, a low-frequency problem
and that of kδ� 1 a high-frequency problem. It is also common to call kr � 1 the near field and the
case of kr � 1 the far field. In this work, we are interested in developing asymptotic expansions and
we will therefore call kδ→ 0 a low-frequency problem and denote by δ/r → 0 distances that are large
compared with the object’s size. We have included the object’s size in these definitions as it is crucial
to the derivation and understanding of asymptotic expansions for the perturbations in the electric and
magnetic fields at distances relative to this length scale. In the earlier work of Kleinman the object size
was not explicitly included and instead it was assumed to be small. In addition, he used the alternative
characterization of k → 0 to denote a low-frequency problem. The k2/r Rayleigh term he obtains cor-
responds to the leading-order term for the perturbation of the fields when k → 0 and r → ∞. However,
there is also interest in understanding how the perturbation of the fields can be interpreted in terms of
polarization tensors at other locations and, in particular, at distances that are large compared with the
object’s size. This, in turn, is important for practical systems attempting to distinguish between different
objects by using their polarization tensors, which might occur at different distances from the measure-
ment system.
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Our novel contributions are twofold: First, we derive the leading-order terms in asymptotic expan-
sions for the perturbation in the electric and magnetic fields due to the presence of a small (lossy) homo-
geneous dielectric object for fixed k as max(δ/r, δ)→ 0: such that it describes the fields at distances that
are large compared with the object’s size for a small object. Secondly, we derive the leading-order terms
in asymptotic expansions for the perturbation in the fields due to the presence of a non-lossy homoge-
neous dielectric object as max(δ/r, kδ)→ 0: such that it describes the fields at distances that are large
compared with the object’s size for a low-frequency problem. Our main results are expressed in terms
of polarization tensors, although we also give an intermediate step where the asymptotic expansions we
obtain are expressed in terms of polarization moments, which enables easy comparison with radiating
dipoles. The resulting expansions for the exact fields contain the same terms obtained previously by
Baum (1971), although our derivation is radically different, includes the object’s size and uses, as its
starting point, the same representation formulae as Kleinman (1967). The methodology employed in our
paper greatly extends that presented in Kleinman (1967, 1973) through the use of multi-index Taylor
series expansions and involves the derivation and application of new sets of integral identities to handle
the new aforementioned cases. The polarization moments that arise are expressed in terms of tensors
that are related to the general polarization tensors defined in Dassios & Kleinman (2000) and to a subset
of the generalized polarization tensors of Ammari & Kang (2007). We make comparisons with (Ammari
et al., 2001; Ammari & Volkov, 2005), which considers the perturbation in the fields when r → ∞ and
δ→ 0.

The presentation of the material proceeds as follows: In Section 2, we present the governing equa-
tions and then, in Section 3, we introduce the scattering problem. In Section 4, we present a summary of
our main results. Then, in Section 5, we present asymptotic expansions for the perturbation in the elec-
tric and magnetic fields in terms of polarization moments and prove our main results. The appendices
define a series of integral identities that are required for the derivations in Section 5 and make explicit
the connection between the different polarization tensors.

2. Governing equations

Under the assumption of linear materials, the time-harmonic Maxwell equations for a source-free
medium are

∇ × E = iωμH,

∇ × H = σE − iωεE ,

∇ · (εE)= 1

iω
∇ · (σE),

∇ · (μH)= 0,

(2.1)

where E and H denote the complex amplitudes of the electric and magnetic field intensity vectors,
respectively, for an assumed e−iωt time variation with angular frequency ω. The parameters ε, μ and σ
denote the permittivity, permeability and conductivity, respectively, and satisfy

0< εmin � ε � εmax <∞, 0<μmin �μ�μmax <∞, 0 � σ � σmax <∞.

Following Monk (2003), the scaled electric and magnetic fields are introduced as E = ε
1/2
0 E and

H =μ
1/2
0 H, where ε0 ≈ 8.854 × 10−12F/m and μ0 = 4π × 10−7H/m are the free space values of the
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4 of 28 P. D. LEDGER AND W. R. B. LIONHEART

permittivity and permeability, respectively, leading to

∇ × E = ikμ̃rH ,

∇ × H = −ikε̃rE,

∇ · (ε̃rE)= 0,

∇ · (μ̃rH)= 0,

(2.2)

where

ε̃r = 1

ε0

(
ε + iσ

ω

)
, μ̃r = μ

μ0
, k =ω

√
ε0μ0,

and ε̃r, μ̃r are, in general, functions of position.

3. Scattering formulation

We consider a smooth closed object D with boundary ∂D equipped with unit outward normal n̂ that
is homogeneous with material coefficients ε∗, σ∗ and μ∗ and, therefore, is characterized by the con-
stants ε̃r(r)= εr := 1/ε0(ε∗ − iσ∗/ω) and μ̃r(r)=μr :=μ∗/μ0 for r ∈ D. The object is surrounded by
an unbounded region of free space R

3 \ D and the complete configuration is illustrated in Fig. 1. The
electric and magnetic fields satisfy (2.2) in D and in R

3 \ D, with ε̃r(r)= μ̃r(r)= 1 for r ∈ R
3 \ D. The

fields also obey the standard transmission conditions

n̂ × E|+ − n̂ × E|− = 0,

n̂ × H|+ − n̂ × H|− = 0,

n̂ · E|+ − n̂ · εrE|− = 0,

n̂ · H|+ − n̂ · μrH|− = 0

on ∂D, where + indicates the evaluation just outside D and − just inside D. It is convenient to split
the total electric and magnetic fields into incident and scattered components, E = Ein + Esc and H =
H in + Hsc, where the analytic incident fields are chosen to satisfy (2.2) with ε̃r = μ̃r = 1 for all of

Fig. 1. Illustration of a small object D located in an unbounded region of free space.
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 5 of 28

R
3, which, by linearity, the scattered components also satisfy outside the object. The scattered fields

represent the perturbation in the electric and magnetic field due to the presence of the object and satisfy
the radiation conditions

lim
r→∞(r × (∇ × Esc)+ ikrEsc)= 0,

lim
r→∞(r × (∇ × Hsc)+ ikrHsc)= 0,

where r = |r| and r̂ = r/r.
Rather than the usual Stratton–Chu type formulae we follow Kleinman (1967) and use the alternative

expressions

Esc(r)= i

k
∇r ×

(
∇r ×

∫
∂D

uk(r − r′)n̂′ × Hsc|+ dS′
)

+ ∇r ×
∫
∂D

uk(r − r′)n̂′ × Esc|+ dS′ (3.1)

and

Hsc(r)= − i

k
∇r ×

(
∇r ×

∫
∂D

uk(r − r′)n̂′ × Esc|+ dS′
)

+ ∇r ×
∫
∂D

uk(r − r′)n̂′ × Hsc|+ dS′, (3.2)

which are valid for r ∈ R
3 \ D, for the representation of the scattered fields (see also Jones, 1964, p. 55;

Monk, 2003, p. 230). In the above

uk(r − r′)= eik|r−r′|

4π |r − r′| (3.3)

is the standard free space Green’s function for the scalar Helmholtz equation with wavenumber k and,
to avoid confusion, we make explicit that ∇r denotes differentiation with respect to r.

We restrict consideration to D = δB + z where B denotes a smooth closed object with known (unit)
shape, δ is the object’s size and z represents the translation from the origin. This means that the centre of
the object is now located at a constant distance z = |z| from the origin and the distance from the centre
of the scaled object to its surface becomes |r′

δ| = δ|r′|. The configuration is illustrated in Fig. 2.

Fig. 2. Illustration of an object B scaled by small δ located in an unbounded region of free space.

 at Sw
ansea U

niversity on February 18, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 



6 of 28 P. D. LEDGER AND W. R. B. LIONHEART

The scattered electric and magnetic fields external to the object are now given by

Esc(r + z)= iδ2

k
∇r ×

(
∇r ×

∫
∂B

uk(r − δr′)n̂′ × hsc(r′)|+ dS′
)

+ δ2∇r ×
∫
∂B

uk(r − δr′)n̂′ × esc(r′)|+ dS′, (3.4)

Hsc(r + z)= − iδ2

k
∇r ×

(
∇r ×

∫
∂B

uk(r − δr′)n̂′ × esc(r′)|+ dS′
)

+ δ2∇r ×
∫
∂B

uk(r − δr′)n̂′ × hsc(r′)|+ dS′, (3.5)

where we have used the notation e(r′)= E(δr′ + z) and h(r′)= H(δr′ + z). These scaled total fields
satisfy the system

∇r′ × e = ikδμ̃rh,

∇r′ × h = −ikδε̃re,

∇r′ · (ε̃re)= 0,

∇r′ · (μ̃rh)= 0

(3.6)

in B, with ε̃r = εr, μ̃r =μr, and the incident and scattered components satisfy a similar system in R
3 \ B,

with ε̃r = μ̃r = 1. The fields also satisfy the transmission conditions

n̂ × ein|+ − n̂ × ein|− = n̂ × esc|+ − n̂ × esc|− = 0,

n̂ × hin|+ − n̂ × hin|− = n̂ × hsc|+ − n̂ × hsc|− = 0,

n̂ · esc|+ − n̂ · εresc|− = (εr − 1)n̂ · ein,

n̂ · hsc|+ − n̂ · μrhsc|− = (μr − 1)n̂ · hin

on ∂B.
In Sections 3.1 and 3.2, we introduce two contrasting expansions for the scaled fields that we apply

in the case of a small (lossy) dielectric scatterer and a non-lossy dielectric scatterer at low frequencies.

3.1 Scattering by a small (lossy) dielectric scatterer

In the case of a small (lossy) dielectric scatterer, we assume that the fields e and h for fixed k can be
expanded as

e = e|δ=0 + δ
de
dδ

∣∣∣∣
δ=0

+ O(δ2)= ẽ0 + δẽ1 + O(δ2), (3.7)

h = h|δ=0 + δ
dh
dδ

∣∣∣∣
δ=0

+ O(δ2)= h̃0 + δh̃1 + O(δ2) (3.8)

in B and in R
3 \ B and that they are convergent as δ→ 0. We also assume that similar expansions hold

for the incident and scattered components and that the incident field, being analytic, admits a complete
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 7 of 28

Taylor’s series expansion in R
3. Substituting (3.7) and (3.8) into (3.6), and equating coefficients of δ0,

it follows that

∇r′ × h̃
in
0 = ∇r′ × h̃

sc
0 = 0,

∇r′ × ẽin
0 = ∇r′ × ẽsc

0 = 0,

∇r′ · h̃
in
0 = ∇r′ · h̃

sc
0 = 0,

∇r′ · ẽin
0 = ∇r′ · ẽsc

0 = 0

(3.9)

in R
3 \ B and in B. Equating coefficients of δ1 yields

∇r′ × ẽ1 = ikμ̃rh̃0,

∇r′ × h̃1 = −ikε̃rẽ0,

∇r′ · ẽ1 = ∇r′ · h̃1 = 0

(3.10)

in B, with ε̃r = εr, μ̃r =μr. By equating δ1 coefficients, and considering the incident and scattered com-
ponents, a similar result can be obtained in R

3 \ B, with ε̃r = μ̃r = 1. For m = 0, 1 the δm coefficients
of the fields satisfy the transmission conditions

n̂ × ẽin
m |+ − n̂ × ẽin

m |− = n̂ × ẽsc
m |+ − n̂ × ẽsc

m |− = 0,

n̂ × h̃
in
m |+ − n̂ × h̃

in
m |− = n̂ × h̃

sc
m |+ − n̂ × h̃

sc
m |− = 0,

n̂ · ẽsc
m |+ − n̂ · εrẽ

sc
m |− = (εr − 1)n̂ · ẽin

m ,

n̂ · h̃
sc
m |+ − n̂ · μrh̃

sc
m |− = (μr − 1)n̂ · h̃

in
m

(3.11)

on ∂B.

3.2 Scattering by a non-lossy dielectric scatterer at low frequencies

In the case of scattering by a non-lossy dielectric scatterer, where εr = ε∗/ε0, at low frequencies, we
assume that the fields e and h can be expanded as

e = e|kδ=0 + kδ
de

d(kδ)

∣∣∣∣
kδ=0

+ O((kδ)2)= ˜̃e0 + kδ ˜̃e1 + O((kδ)2), (3.12)

h = h|kδ=0 + kδ
dh

d(kδ)

∣∣∣∣
kδ=0

+ O((kδ)2)= ˜̃h0 + kδ ˜̃h1 + O((kδ)2) (3.13)

in B and in R
3 \ B and that they are convergent as kδ→ 0. We also assume that similar expansions hold

for the incident and scattered components and that the incident field, being analytic, admits a complete
Taylor’s series expansion in R

3. Substituting (3.12) and (3.13) into (3.6) and equating coefficients of

(kδ)0, it follows that the fields ˜̃esc
0 , ˜̃hsc

0 , ˜̃ein
0 , ˜̃hin

0 satisfy a similar system to (3.9) in B and in R
3 \ B.

 at Sw
ansea U

niversity on February 18, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
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Equating coefficients of (kδ)1 yields

∇r′ × ˜̃e1 = iμ̃r
˜̃h0,

∇r′ × ˜̃h1 = −iε̃r
˜̃e0,

∇r′ · ˜̃e1 = ∇r′ · ˜̃h1 = 0

(3.14)

in B, with ε̃r = εr, μ̃r =μr, and the corresponding coefficients of the incident and scattered fields satisfy
a similar system in R

3 \ B with ε̃r = μ̃r = 1. For m = 0, 1 the (kδ)m coefficients of the fields satisfy
similar transmission conditions to those given in (3.11).

4. Main results

In this section, we summarize the main results of the paper that will later be proved in Section 5. We
reiterate that we call the situation of kδ→ 0 a low-frequency problem and that, by δ/r → 0, we denote
distances that are large compared with the object’s size. This is different from the characterization
in Kleinman (1967, 1973), which omits the object’s size in the definition of a low-frequency problem.
The leading-order k2/r term he obtains corresponds to the case where k → 0 and r → ∞. Our results
relate to the perturbation in the fields at locations where the distance from the object to the point of
observation can be characterized in terms of the object’s size.

The case of the scattered fields at distances that are large compared with the object’s size due to the
presence of a small (lossy) dielectric scatterer, for fixed k, is described by the following theorem.

Theorem 4.1 For a smooth closed (lossy) object B located at a distance |z| from the origin, lying in
free space and scaled by δ, the scattered electric and magnetic fields admitting expansions of the form
described in Section 3.1 at a distance r = |r| from the centre of the object and |r + z| from the origin for
fixed k take the form

Esc(r + z)= δ3 eikr

4π

(
1

r3
(3(r̂ · ([[MB(εr)]]Ein(z)))r̂ − [[MB(εr)]]Ein(z))

− ik

r2
(3(r̂ · ([[MB(εr)]]Ein(z)))r̂ − [[MB(εr)]]Ein(z)+ r̂ × ([[MB(μr)]]H in(z)))

− k2

r
(r̂ × (r̂ × ([[MB(εr)]]Ein(z)))+ r̂ × ([[MB(μr)]]H in(z)))

)
+ O(Γ 4) (4.1)

and

Hsc(r + z)= δ3 eikr

4π

(
1

r3
(3(r̂ · ([[MB(μr)]]H in(z)))r̂ − [[MB(μr)]]H in(z))

− ik

r2
(3(r̂ · ([[MB(μr)]]H in(z)))r̂ − [[MB(μr)]]H in(z)− r̂ × ([[MB(εr)]]Ein(z)))

− k2

r
(r̂ × (r̂ × ([[MB(μr)]]H in(z)))− r̂ × ([[MB(εr)]]Ein(z)))

)
+ O(Γ 4) (4.2)
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 9 of 28

as Γ = max(δ/r, δ)→ 0 where r is independent of δ. In the above

[[MB(c)]]ij = (c − 1)|B|[[I]]ij + (c − 1)2
∫
∂B

r′
in̂

′ · ∇r′ϑ sc
j (c)|− dS′ (4.3)

is a symmetric polarization tensor associated with the material contrast c where [[I]] denotes the identity
matrix and |B| the size of B, and ϑ sc

i (c) satisfies the scalar transmission problem

∇r′ · c∇r′ϑ sc
i = 0 in B,

∇2
r′ϑ

sc
i = 0 in R

3 \ B,

ϑ sc
i |+ − ϑ sc

i |− = 0 on ∂B,

n̂′ · ∇r′ϑ sc
i |+ − n̂′ · c∇r′ϑ sc

i |− = n̂′ · ∇r′r′
i on ∂B,

ϑ sc
i → 0 as r → ∞.

Corollary 4.1 In the case of a small perfect conductor the corresponding asymptotic expansions for
Esc(r + z) and Hsc(r + z), for fixed k as Γ → 0, are given by replacing [[MB(εr)]] with [[MB(∞)]] and
[[MB(μr)]] with [[MB(0)]] in (4.1) and (4.2) in Theorem 4.1.

Remark 4.1 If we set x = r + z, x = |x| and x̂ = x/x in (4.1) in Theorem 4.1 we can show, for x → ∞,
with fixed z, that

Esc(x)= −δ
3k2 eik(x−x̂·z)

4πx
((x̂ × (x̂ × ([[MB(εr)]]Ein(z)))

+ x̂ × ([[MB(μr)]]H in(z))))+ O(δ4) (4.4)

as δ→ 0, with a similar expression for Hsc(x). By noting that x̂ × (x̂ × A)= −([[I]] − x̂x̂
)A for any

vector field A and applying simple manipulations, we can show that (4.4) is the same as Ammari &
Volkov (2005, Theorem 1.1) for a single scatterer. Note that the polarization tensor that appears in
Ammari & Volkov (2005, Theorem 1.1) is equivalent (apart from a minus sign) to (4.3). This is eas-
ily seen by considering the definition of the potential, the application of the divergence theorem, the
symmetry of the polarization tensor and considering the scaling that appears in their Theorem 1.1.

The corresponding result for the scattered fields due to the presence of a non-lossy dielectric scatterer
at distances that are large compared with the object’s size, for a low-frequency problem, is described by
the following theorem.

Theorem 4.2 For a smooth closed non-lossy object B located at a distance |z| from the origin, lying in
free space and scaled by δ, the scattered electric and magnetic fields admitting expansions of the form
described in Section 3.2 at a distance r = |r| from the centre of the object and |r + z| from the origin

 at Sw
ansea U

niversity on February 18, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 



10 of 28 P. D. LEDGER AND W. R. B. LIONHEART

take the form

Esc(r + z)= δ3 eikr

4π

(
1

r3
(3(r̂ · ([[MB(εr)]]Ein(z)))r̂ − [[MB(εr)]]Ein(z))

− ik

r2
(3(r̂ · ([[MB(εr)]]Ein(z)))r̂ − [[MB(εr)]]Ein(z)+ r̂ × ([[MB(μr)]]H in(z)))

− k2

r
(r̂ × (r̂ × ([[MB(εr)]]Ein(z)))+ r̂ × ([[MB(μr)]]H in(z)))

)
+ O(Ξ 4) (4.5)

and

Hsc(r + z)= δ3 eikr

4π

(
1

r3
(3(r̂ · ([[MB(μr)]]H in(z)))r̂ − [[MB(μr)]]H in(z))

− ik

r2
(3(r̂ · ([[MB(μr)]]H in(z)))r̂ − [[MB(μr)]]H in(z)− r̂ × ([[MB(εr)]]Ein(z)))

− k2

r
(r̂ × (r̂ × ([[MB(μr)]]H in(z)))− r̂ × ([[MB(εr)]]Ein(z)))

)
+ O(Ξ 4) (4.6)

as Ξ = max(δ/r, kδ)→ 0, where k and r are independent of δ. In the above [[MB(c)]] is the symmetric
polarization tensor given in (4.3).

Corollary 4.2 In the case of a small perfect conductor at low frequencies the corresponding asymp-
totic expansions for Esc(r + z) and Hsc(r + z) as Ξ → 0 are given by replacing [[MB(εr)]] with
[[MB(∞)]] and [[MB(μr)]] with [[MB(0)]] in (4.5) and (4.6) in Theorem 4.2.

Remark 4.2 Theorems 4.1 and 4.2 are the same, apart from the remainders, Es(r + z) and Hs(r + z),
and take a similar form to that of a radiating dipole (Jones, 1964), when the products of polarization
tensor and incident fields evaluated at the centre of the object are replaced by appropriate electric or
magnetic dipole moments. Note that Theorem 4.1 is not a consequence of Theorem 4.2 as the former
also holds in the case of a lossy dielectric object. However, by fixing k in Theorem 4.2 the results
agree for a non-lossy object. By fixing δ, letting r → ∞ and setting z = 0 in Theorem 4.2, then the
result of Keller et al. (1972) for Es(r) and Hs(r) as k → 0 can be recovered. However, importantly,
Theorem 4.2, and hence the aforementioned simplification, is not applicable to lossy objects, as is
sometimes advocated e.g. Kleinman & Senior (1982), since εr would be a function of k in this case (see
also Remark 5.1). Furthermore, our results also confirm that the scattering from a small (lossy) object,
or a non-lossy object at low frequencies, behaves like a radiating dipole with appropriate moments,
not only in the far field (as described in, e.g., Keller et al., 1972), but also at distances that are large
compared with the object’s size.

5. Asymptotic expansions of the fields in terms of polarization moments and proofs of the main
results

The leading-order terms in asymptotic expansions of the scattered fields, in terms of polarization
moments, for the exact scaled fields, the scaled fields expanded in terms of δ and in terms of kδ, at
distances that are large compared with the object’s size, are described by the following lemma.
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 11 of 28

Lemma 5.1 For a smooth closed object B located at a distance |z| from the origin, lying in free space
and scaled by δ, the scattered electric and magnetic fields at a distance r = |r| from the centre of the
object and |r + z| from the origin take the form

Esc(r + z)= δ3 eikr

4π

(
1

r3
(3(r̂ · pB)r̂ − pB)− ik

r2
(3(r̂ · pB)r̂ − pB + r̂ × mB)

− k2

r
(r̂ × (r̂ × pB)+ r̂ × mB)

)
+Δ (5.1)

and

Hsc(r + z)= δ3 eikr

4π

(
1

r3
(3(r̂ · mB)r̂ − mB)− ik

r2
(3(r̂ · mB)r̂ − mB − r̂ × pB)

− k2

r
(r̂ × (r̂ × mB)− r̂ × pB)

)
+Δ, (5.2)

where

pB(u
sc)=

∫
∂B

r′n̂′ · usc|+ + 1

2
r′ × (n̂′ × usc)|+ dS′, (5.3)

mB(vsc)=
∫
∂B

r′n̂′ · vsc|+ + 1

2
r′ × (n̂′ × vsc)|+ dS′ (5.4)

are the electric and magnetic polarization moments (or their leading-order term, depending on the argu-
ment) for the object B. Depending on whether the exact scaled fields are used, or if an appropriate
expansion is chosen, we have the following:

(a) Δ= O(Ξ 4)f (kδ), for some f (kδ) that has the property that f (kδ)→ 0 as kδ→ 0, where Ξ =
max(δ/r, kδ) when usc = esc, vsc = hsc and r, k are independent of δ. In this case (5.1) and (5.2)
are not asymptotic expansions as f (kδ) is used to denote the fact that the higher-order terms
involve the exact scaled fields, but nevertheless the result is useful to make comparisons with
those available in the literature.

(b) Δ= O(Γ 4), usc = ẽsc
0 and vsc = h̃

sc
0 assuming that an expansion of the form (3.7) is valid for

e and (3.8) is valid for h. In this case (5.1) and (5.2) are asymptotic expansions for the fields
in the presence of a (lossy) dielectric scatterer for fixed k as Γ = max(δ/r, δ)→ 0, where r is
independent of δ.

(c) Δ= O(Ξ 4), usc = ˜̃esc
0 and vsc = ˜̃hsc

0 assuming that an expansion of the form (3.12) is valid for
e and (3.13) is valid for h. In this case (5.1) and (5.2) are asymptotic expansions for the fields
in the presence of a non-lossy dielectric scatterer as Ξ = max(δ/r, kδ)→ 0, where r and k are
independent of δ.

Proof.
Case (a)

We focus on the expansion for Esc(r + z); the result for Hsc(r + z) can be obtained analogously.
Noting that the differentiation in (3.4) is with respect to r, and that the tangential components of esc and
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12 of 28 P. D. LEDGER AND W. R. B. LIONHEART

hsc in the integrand are functions of r′ only, we can rewrite this expression as

Esc(r + z)= iδ2

k

∫
∂B
(k2uk(r − δr′)a + ∇r(∇ruk(r − δr′)) · a) dS′

+ δ2
∫
∂B
(∇ruk(r − δr′)× b) dS′, (5.5)

where a(r′)= n̂′ × hsc, b(r′)= n̂′ × esc and the results ∇r × (uk(b))= ∇ruk × b and ∇r × (∇r ×
(uka))= k2ua + ∇r(a · ∇ruk)= k2ua + ∇r(∇ruk) · a (Stratton, 1941, page 465) have been applied.
Throughout the proof we assume that the integrands are to be evaluated in the limit as ∂B is approached
from outside the object.

Let α = (α1, . . . ,αd) be a multi-index, such that α! = α1! . . . αd !, rα = rα1
1 . . . rαd

d and ∂αr (u)=
∂α1

r . . . ∂αd
r (u). Then, by assuming that δ/r → 0, the terms that involve the Green’s function evaluated

at r − δr′ in k2uk(r − δr′)a + ∇r(∇ruk(r − δr′)) · a and ∇ruk(r − δr′) can be expanded using a Taylor’s
series expansion about r so that

∇ruk(r − δr′)=
∞∑

α,|α|=0

δ|α| (−r′)α

α!
∂αr (∇ruk(r)), (5.6)

k2uk(r − δr′)a + ∇r(∇ruk(r − δr′)) · a = k2a
∞∑

α,|α|=0

δ|α| (−r′)α

α!
∂αr (uk(r))

+
⎛
⎝ ∞∑
α,|α|=0

δ|α| (−r′)α

α!
∂αr (∇r(∇ruk(r)))

⎞
⎠ · a. (5.7)

Focusing on terms with |α| = 0 or |α| = 1, these can be explicitly computed as

∑
|α|=0

δ|α| (−r′)α

α!
∂αr (∇ruk(r))= eikr

4π

(
ik

r
− 1

r2

)
r̂, (5.8)

∑
|α|=1

δ|α| (−r′)α

α!
∂αr (∇ruk(r))= δ eikr

4π

(
k2

r
(r′ · r̂)r̂ + ik

r2
(3(r′ · r̂)r̂ − r′)+ 1

r3
(r′ − 3(r′ · r̂)r̂)

)
, (5.9)

k2a
∑
|α|=0

δ|α| (−r′)α

α!
∂αr (uk(r))+

⎛
⎝∑

|α|=0

δ|α| (−r′)α

α!
∂αr (∇r(∇ruk(r)))

⎞
⎠ · a

= eikr

4π

(
k2

r
(a − (a · r̂)r̂)+ ik

r2
(a − 3(a · r̂)r̂)+ 1

r3
(3(a · r̂)r̂ − a)

)
, (5.10)

k2a
∑
|α|=1

δ|α| (−r′)α

α!
∂αr (uk(r))+

⎛
⎝∑

|α|=1

δ|α| (−r′)α

α!
∂αr (∇r(∇ruk(r)))

⎞
⎠ · a

= δ eikr

4π

(
− ik3

r
((r′ · r̂)a − (a · r̂)(r′ · r̂)r̂)
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 13 of 28

+ k2

r2
(2(r′ · r̂)a + (a · r′)r̂ + (a · r̂)r′ − 6(a · r̂)(r′ · r̂)r̂)

+ ik

r3
(3(r′ · r̂)a + 3(a · r′)r̂ + 3(a · r̂)r′ − 12(a · r̂)(r′ · r̂)r̂)

)
. (5.11)

To obtain the asymptotic expansion for Esc(r + z), we insert (5.6) and (5.7) into (5.5) and then use
equations (5.8–5.11) and a series of integral identities. To simply the presentation, we gather terms in
powers of r and work towards obtaining an expression of the form

Esc(r + z)= tk2δ3/r + tkδ3/r2 + tδ3/r3 +Δ,

Δ= (Δk3δ4/r +Δk2δ4/r2 +Δkδ4/r3)= O(Ξ 4)f (kδ), (5.12)

where Ξ = max(δ/r, kδ) and f (kδ), which has the property that f (kδ)→ 0 as kδ→ 0, is used to denote
that the higher-order terms involve the exact fields that are functions of kδ. The notation tk2δ3/r is used
to denote the leading-order O(k2δ3/r)f (kδ) term with similar meanings for tkδ3/r2 and tδ3/r3 . Note that
these leading order terms contain (δ/r)β1(kδ)β2 f (kδ)with the multi-index β = (β1,β2) such that |β| � 3.
The remainder Δ is a sum of three terms, each involving f (kδ), Δk3δ4/r, indicating a term of order
O(k3δ4/r)f (kδ) with similar meanings for Δk2δ4/r2 and Δkδ4/r3 . In our derivation the terms involving
different powers of r are considered separately, and, for a fixed power of r, the term involving the
lowest power of k is sought, with k and r independent of δ. Higher-order terms, with |α| � 2, are such
that they will be absorbed into Δ.
Terms making up the tk2δ3/r contribution
Considering (5.8), we obtain

ikδ2 eikr

4πr
r̂ ×

∫
∂B

n̂′ × esc dS′ = ikδ2 eikr

4πr
r̂ ×

∫
∂B

r′(n̂′ · ∇r′ × esc) dS′

= −k2δ3 eikr

4πr
r̂ ×

∫
∂B

r′(n̂′ · hsc) dS′, (5.13)

where the last two equalities follow by using the identity (A.1) and applying (3.6) for the scattered fields
in R

3 \ B since the integrand is evaluated just outside of ∂B. From (5.9), we obtain

k2δ3 eikr

4πr
r̂ ×

∫
∂B

n̂′ × esc(r′ · r̂) dS′

= k2δ3 eikr

4πr
r̂ ×

(
−1

2
r̂ ×

∫
∂B

r′ × (n̂′ × esc) dS′ + 1

2

∫
∂B

r′(n̂′ · ∇r′ × esc)(r′ · r̂) dS′
)

= −k2δ3 eikr

4(2)πr
r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × esc) dS′ − ikδ
∫
∂B

r′(n̂′ · hsc)(r′ · r̂) dS′
)

= −k2δ3 eikr

4(2)πr
r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × esc) dS′
)

+ O

(
δ

r
k3δ3

)
f (kδ), (5.14)
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14 of 28 P. D. LEDGER AND W. R. B. LIONHEART

which follows by using the identity (A.2) and (3.6). Considering (5.10), we obtain

ikδ2 eikr

4πr

(∫
∂B

n̂′ × hsc dS′ −
∫
∂B
(n̂′ × hsc · r̂)r̂ dS′

)
= − ikδ2 eikr

4πr
r̂ ×

(
r̂ ×

∫
∂B

n̂′ × hsc dS′
)

= −k2δ3 eikr

4πr
r̂ ×

(
r̂ ×

∫
∂B

r′(n̂′ · esc) dS′
)

,

(5.15)

by application of identities (A.3) and (A.1) and using (3.6). Finally, considering (5.11), we obtain

k2δ3 eikr

4πr

(∫
∂B

n̂′ × hsc(r′ · r) dS′ −
∫
∂B
(n̂′ × hsc · r̂)(r′ · r̂)r̂ dS′

)

= −1

2

k2δ3 eikr

4πr
r̂ ×

∫
∂B

r′ × (n̂′ × hsc) dS′ + O

(
δ

r
k3δ3

)
f (kδ), (5.16)

which follows from the identities (A.2) and (A.4).
Summing (5.13–5.16), and using the definitions of pB = pB(e

sc) and mB = mB(hsc), we find that the
order tk2δ3/r contribution to (5.5) is

.tk2δ3/r = −k2δ3 eikr

4πr
(r̂ × (r̂ × pB)+ r̂ × mB), Δk3δ4/r = O

(
δ

r
k3δ3

)
f (kδ). (5.17)

Terms making up the tkδ3/r2 contribution
Considering (5.8), we obtain

− δ2 eikr

4πr2
r̂ ×

∫
∂B

n̂′ × esc dS′ = − ikδ3 eikr

4πr2
r̂ ×

∫
∂B

r′(n̂′ · hsc) dS′, (5.18)

which is obtained in a similar manner to (5.13). From (5.9), we obtain

ikδ3 eikr

4πr2

(
3r̂ ×

∫
∂B

n̂′ × esc(r′ · r̂) dS′ −
∫
∂B

r′ × (n̂′ × esc) dS′
)

= − ikδ3 eikr

4πr2

(
3

2
r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × esc) dS′
)

+
∫
∂B

r′ × (n̂′ × esc) dS′
)

+ O

(
δ2

r2
k2δ2

)
f (kδ),

(5.19)

by using identity (A.2). From (5.10), we obtain

− δ2 eikr

4πr2

(∫
∂B

n̂′ × hsc dS′ − 3
∫
∂B
(n̂′ × hsc · r̂)r̂ dS′

)

= δ2 eikr

4πr2

(
2
∫
∂B

n̂′ × hsc dS′ + 3r̂ ×
(

r̂ ×
∫
∂B

n̂′ × hsc dS′
))

= − ikδ3 eikr

4πr2

(
2
∫
∂B

r′(n̂′ · esc) dS′ + 3r̂ ×
(

r̂ ×
∫
∂B

r′(n̂′ · esc) dS′
))

, (5.20)
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where the last two equalities follow by using the identities (A.1) and (A.3) and (3.6). Finally, consider-
ing (5.11), we obtain

ikδ3 eikr

4πr2

(
2
∫
∂B

n̂′ × hsc(r′ · r̂) dS′ +
∫
∂B
(n̂′ × hsc · r′)r̂ dS′ +

∫
∂B
(n̂′ × hsc · r̂)r′ dS′

−6
∫
∂B
(n̂′ × hsc · r̂)(r′ · r̂)r̂ dS′

)
= −1

2

ikδ3 eikr

4πr2
r̂ ×

∫
∂B

r′ × (n̂′ × hsc) dS′ + O

(
δ2

r2
k2δ2

)
f (kδ),

(5.21)

which follows from the identities (A.2), (A.5), (A.9) and (A.4).
Summing (5.18–5.21), and using the definitions of pB and mB, we find that the tkδ3/r2 contribution

to (5.5) is

tkδ3/r2 = − ikδ3 eikr

4πr2
(3r̂ × (r̂ × pB)+ 2pB + r̂ × mB)

= − ikδ3 eikr

4πr2
(3(r̂ · pB)r̂ − pB + r̂ × mB), Δk2δ4/r2 = O

(
δ2

r2
k2δ2

)
f (kδ). (5.22)

Terms making up the tδ3/r3 contribution
There is no contribution from (5.8) to tδ3/r3 . From (5.9), we obtain

δ3 eikr

4πr3

(
−3r̂ ×

∫
∂B

n̂′ × esc(r′ · r̂) dS′ +
∫
∂B

r′ × (n̂′ × esc) dS′
)

= δ3 eikr

4πr3

(
3

2
r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × esc) dS′
)

+
∫
∂B

r′ × (n̂′ × esc) dS′
)

+ O

(
δ3

r3
kδ

)
f (kδ),

(5.23)

by using identity (A.2). From (5.10), we obtain

δ2i eikr

4kπr3

(
3
∫
∂B
(n̂′ × hsc · r̂)r̂ dS′ −

∫
∂B

n̂′ × hsc dS′
)

= iδ2 eikr

4kπr3

(
3r̂ ×

(
r̂ ×

∫
∂B

n̂′ × hsc dS′
)

+ 2
∫
∂B

n̂′ × hsc dS′
)

= δ3 eikr

4πr3

(
3r̂ ×

(
r̂ ×

∫
∂B

r′(n̂′ · esc) dS′
)

+ 2
∫

r′(n̂′ · esc) dS′
)

, (5.24)
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where the last two equalities follow by using the identity (A.3) and (3.6). Finally, considering (5.11),
we obtain

− δ3 eikr

4πr3

(
3
∫
∂B

n̂′ × hsc(r′ · r) dS′+ 3
∫
∂B
(n̂′ × hsc · r′)r̂ dS′ + 3

∫
∂B
(n̂′ × hsc · r̂)r′ dS′

− 12
∫
∂B
(n̂′ × hsc · r̂)(r′ · r̂)r̂ dS′

)

= −δ
3 eikr

4πr3

(
−3

2
r̂ ×

∫
∂B

r′ × (n̂′ × hsc) dS′ + 3

2
r̂ ×

∫
∂B

r′ × (n̂′ × hsc) dS′ + O(kδ)f (kδ)

)

= O

(
δ3

r3
kδ

)
f (kδ), (5.25)

which follows from the identities (A.2), (A.5), (A.9) and (A.4).
Summing (5.23–5.25), and using the definition of pB, we find that the tδ3/r3 contribution to (5.5) is

tδ3/r3 = δ3 eikr

4πr3
(3r̂ × (r̂ × pB)+ 2pB)=

δ3 eikr

4πr3
(3(r̂ · pB)r̂ − pB), Δkδ4/r3 = O

(
δ3

r3
kδ

)
f (kδ). (5.26)

Summing (5.17), (5.22) and (5.26), we realize that the each of the higher-order terms will involve the
exact fields, as denoted by the presence of f (kδ) in Δ. We also realize that Δk3δ4/r +Δk2δ4/r2 +Δkδ4/r3

can be written as O(Ξ 4)f (kδ), since the sum of the contributions can be bounded asΔk3δ4/r +Δk2δ4/r2 +
Δkδ4/r3 � CΞ 4f (kδ), where Ξ = max(δ/r, kδ). This follows since (δ/r)β1(kδ)β2 �Ξ |β| for δ/r< 1 and
kδ < 1 with the multi-index β = (β1,β2) and |β| = 4. This then completes the proof for part a).
Case (b)

We focus on the expansion for Esc(r + z); the result for Hsc(r + z) can be obtained analogously.
We proceed in a similar manner to case (a), again assuming that δ/r → 0 and expanding the terms that
involve the Green’s function evaluated at r − δr′ in k2uk(r − δr′)a + ∇r(∇ruk(r − δr′)) · a and ∇ruk(r −
δr′) about r for small δr′. In this case, we look for an expansion of the form

Esc(r + z)= t̃k2δ3/r + t̃kδ3/r2 + t̃δ3/r3 +Δ=
1∑

m=0

(t̃m,k2δ3/r + t̃m,kδ3/r2 + t̃m,δ3/r3)+Δ,

Δ= Δ̃k3δ4/r + Δ̃k2δ4/r2 + Δ̃kδ4/r3 = O(Γ 4),

where Γ = max(δ/r, δ). The notation t̃k2δ3/r = t̃0,k2δ3/r + t̃1,k2δ3/r will be used to denote the leading-order
O(k2δ3/r)= O(δ3/r) term, which simplifies since k is a constant in this case, with similar meanings for
t̃kδ3/r2 and t̃δ3/r3 . We will show that these leading-order terms contain (δ/r)β1(δ)β2 with the multi-index
β = (β1,β2) such that |β| � 3. The remainder Δ is a sum of three terms, Δ̃k3δ4/r indicating a term of
order O(k3δ4/r)= O(δ4/r) with similar meanings for Δ̃k2δ4/r2 and Δ̃kδ4/r3 . In a similar manner to case
(a) we consider only those terms with |α|< 2 since we will see that terms with |α| � 2 will be absorbed
in to Δ.
Terms making up the t̃k2δ3/r contribution

By replacing esc by ẽsc
0 + O(δ) and hsc by h̃

sc
0 + O(δ), and adding contributions from (5.14)

and (5.16) under the assumption that the expansions also hold for esc = limr′→∂B+ esc(r′) and hsc =
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 17 of 28

limr′→∂B+ hsc(r′), we find that

t̃0,k2δ3/r = −k2δ3 eikr

4(2)πr
r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × ẽsc
0 ) dS′ +

∫
∂B

r′ × (n̂′ × h̃
sc
0 ) dS′

)
, (5.27)

plus higher-order terms that contribute to Δ̃k3δ4/r = O((δ/r)δ3). By replacing esc by ẽsc
0 + δẽsc

1 + O(δ2)

and hsc by h̃
sc
0 + δh̃

sc
1 + O(δ2), adding contributions from (5.13) and (5.15), and noting that the scattered

fields outside B satisfy a similar system to (3.10), we obtain

t̃1,k2δ3/r = −k2δ3 eikr

4πr
r̂ ×

(∫
∂B

r′(n̂′ · h̃
sc
0 ) dS′ + r̂ ×

∫
∂B

r′(n̂′ · ẽsc
0 ) dS′

)
, (5.28)

plus higher-order terms that contribute to Δ̃k3δ4/r. Thus, we have that

t̃k2δ3/r =
1∑

m=0

t̃m,k2δ3/r = −k2δ3 eikr

4πr
(r̂ × (r̂ × pB)+ r̂ × mB), Δ̃k3δ4/r = O

(
δ

r
δ3

)
, (5.29)

where pB = pB(ẽ
sc
0 ) and mB = mB(h̃

sc
0 ) are leading-order terms of the polarization moments in this case.

Terms making up the t̃kδ3/r2 contribution
Again, following similar steps to part (a) and above

t̃0,kδ3/r2 = − ikδ3 eikr

4(2)πr2

(
3r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × ẽsc
0 ) dS′

)
+ 2

∫
∂B

r′ × (n̂′ × ẽsc
0 ) dS′

+ r̂ ×
∫
∂B

r′ × (n̂′ × h̃
sc
0 ) dS′

)
,

t̃1,kδ3/r2 = − ikδ3 eikr

4πr2

(
r̂ ×

∫
∂B

r′(n̂′ · hsc
m ) dS′ + 2

∫
∂B

r′(n̂′ · esc) dS′ + 3r̂ ×
(

r̂ ×
∫

r′(n̂′ · esc) dS′
))

,

so that

t̃kδ3/r2 =
1∑

m=0

t̃m,kδ3/r2 = − ikδ3 eikr

4πr2
(3(r̂ · pB)r̂ − pB + r̂ × mB), Δ̃k2δ4/r2 = O

(
δ2

r2
δ2

)
. (5.30)

Terms making up the t̃δ3/r3 contribution
Again similar steps yield

t̃0,δ3/r3 = δ3 eikr

4πr3

(
3

2
r̂ ×

(
r̂ ×

∫
∂B

r′ × (n̂′ × ẽsc
0 ) dS′

)
+
∫
∂B

r′ × (n̂′ × ẽsc
0 ) dS′

)
,

t̃1,δ3/r3 = δ3 eikr

4πr3

(
3r̂ ×

(
r̂ ×

∫
∂B

r′(n̂′ · ẽsc
0 ) dS′

)
+ 2

∫
r′(n̂′ · ẽsc

0 ) dS′
)

,
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18 of 28 P. D. LEDGER AND W. R. B. LIONHEART

so that

t̃δ3/r3 =
1∑

m=0

t̃m,δ3/r3 = δ3 eikr

4πr3
(3(r̂ · pB)r̂ − pB), Δ̃kδ4/r3 = O

(
δ3

r3
δ

)
. (5.31)

Summing (5.29–5.31) gives the desired result. Note that, in a similar manner to case (a), we have
Δ̃k3δ4/r + Δ̃k2δ4/r2 + Δ̃kδ4/r3 = O(Γ 4), since the contributions can be bounded as Δ̃k3δ4/r + Δ̃k2δ4/r2 +
Δ̃kδ4/r3 � CΓ 4, where Γ = max(δ/r, δ). This follows since (δ/r)β1δβ2 � Γ |β| for δ/r< 1 and δ < 1 with

the multi-index β = (β1,β2) and |β| = 4. In this case, pB = pB(ẽ
sc
0 ) and mB = mB(h̃

sc
0 ) are the leading-

order terms for the polarization moments, which are not functions of δ, so we obtain asymptotic expan-
sions for the fields in the presence of a (lossy) dielectric scatterer as Γ → 0. This completes the proof
of case (b).
Case (c)

We focus on the expansion for Esc(r + z), the result for Hsc(r + z) can be obtained analogously. We
look for an expansion of the form

Esc(r + z)= ˜̃tk2δ3/r + ˜̃tkδ3/r2 + ˜̃tδ3/r3 +Δ=
1∑

m=0

(˜̃tm,k2δ3/r + ˜̃tm,kδ3/r2 + ˜̃tm,δ3/r3)+Δ,

Δ= ˜̃
Δk3δ4/r + ˜̃

Δk2δ4/r2 + ˜̃
Δkδ4/r3 = O(Ξ 4),

where Ξ = max(δ/r, kδ), which we obtain by replacing esc by ˜̃esc
0 + kδ ˜̃esc

1 + O((kδ)2) and hsc by ˜̃hsc
0 +

kδ ˜̃hsc
1 + O((kδ)2) in a similar way to case (b). Following the two previous cases, the notation ˜̃tk2δ3/r =

˜̃t0,k2δ3/r + ˜̃t1,k2δ3/r is used to denote the leading order O(k2δ3/r) term with similar meanings for ˜̃tkδ3/r2 and
˜̃tδ3/r3 . Note that these leading-order terms contain (δ/r)β1(kδ)β2 with the multi-index β = (β1,β2) such
that |β| � 3. The remainder Δ is a sum of three terms, Δ̃k3δ4/r indicating a term of order O(k3δ4/r) with

similar meanings for Δ̃k2δ4/r2 and Δ̃kδ4/r3 . The resulting pB = pB(
˜̃esc

0 ) and mB = mB(
˜̃hsc

0 ) are the leading-
order terms for the polarization moments, which are not functions of kδ in this case. The higher-order

terms ˜̃
Δk3δ4/r + ˜̃

Δk2δ4/r2 + ˜̃
Δkδ4/r3 can be written as O(Ξ 4), using similar arguments to case (a) and (b),

and the final results are asymptotic expansions of the fields in the presence of a non-lossy dielectric
scatterer as Ξ → 0. This completes the proof of part (c). �

Remark 5.1 To make comparisons with available results in the literature, we first consider case (a) in
Lemma 5.1. By setting z = 0 and identifying δ3pB(e

sc)= p and δ3mB(hsc)= m as the electric and mag-
netic dipole moments, respectively, then the scattered fields are exactly those of radiating electric and
magnetic dipoles placed at the origin (Jones, 1964, pp. 152–154). If we also fix r, the expansion agrees
with those obtained by Baum (1971) by different means. Baum obtained his result for the unscaled fields
E and H. To transform to the result of Baum, we additionally set E = ε

1/2
0 E , H =μ

1/2
0 H, p = ε

−1/2
0 p̃

and m =μ
1/2
0 m̃ and take the complex conjugate. Note that the scaling for p is different from E since

Baum scales his electric moment p̃ with ε0, but does not scale the corresponding magnetic moment m̃.
The complex conjugate must be applied since Baum assumes the time variation eiωt. Compared with
the result of Baum, ours benefits from the explicit inclusion of the object size, δ, and higher-order terms
which make the dependence on k, δ and r explicit.
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THE PERTURBATION OF ELECTROMAGNETIC FIELDS 19 of 28

If we consider case (c), and set δ = 1 and z = 0, the form of the order k2/r term agrees with the
Rayleigh term obtained by Kleinman (1973) and Dassios & Kleinman (2000) for the limiting case of
k → 0, r → ∞. However, as δ is not taken into account in their work, it cannot be rigorously applied
to problems described by kδ→ 0, and may encounter problems if the scatterer is lossy so that εr

is a function of k. Our result for case (c) benefits from the inclusion of the object size, is valid as
max(δ/r, kδ)→ 0, such that it holds for distances that are large compared with the object size and for
low frequencies, and applies if the scatterer is a non-lossy dielectric or a perfect conductor. By fixing k
in case (c) we recover case (b) for non-lossy dielectric and perfect conductors. However, it is important
to remark that case (b) is not just a consequence of case (c) since the former also holds if the scatterer is
a lossy dielectric object. It is also important to note that case (b) does not describe the perturbed fields
for a lossy scatterer at low frequencies as the expansion is valid for fixed k when max(δ/r, δ)→ 0.

By considering a scatterer, which is a (lossy) dielectric or a non-lossy dielectric scatterer at low
frequencies, as described by cases (b) and (c) in Lemma 5.1, we are able to express the leading-order
terms in asymptotic expansions of the scattered fields at distances that are large compared with the
object’s size in terms of polarization tensors and, hence, prove the main results of the paper. We also
consider the polarization tensors that result when the scatterer is a perfect conductor as a limiting case
of a dielectric object.

The zeroth-order coefficients of the scaled fields satisfy transmission conditions of the form (3.11)
on ∂B, which allows the leading-order terms for the polarization moments appearing in cases (b) and
(c) of Lemma 5.1 to be expressed as

pB =
∫
∂B

r′n̂′ · (εr − 1)uin + r′n̂′ · εrusc|− + 1

2
r′ × (n̂′ × usc)|− dS′, (5.32)

mB =
∫
∂B

r′n̂′ · (μr − 1)vin + r′n̂′ · εrvsc|− + 1

2
r′ × (n̂′ × vsc)|− dS′, (5.33)

where usc = ẽsc
0 , uin = ẽin

0 , vsc = h̃
sc
0 and vin = h̃

in
0 for case (b) and usc = ˜̃esc

0 , uin = ˜̃ein
0 , vsc = ˜̃hsc

0 and vin =
˜̃hin

0 for case (c).

Proof of Theorem 4.1. We recall the expansions of the scattered and incident scaled fields in terms of

the coefficients ẽsc
m , h̃

sc
m , ẽin

m and h̃
in
m , m = 0, 1, as described by (3.7) and (3.8), and note that the scaled

incident fields can also be expressed in terms of the multi-index Taylor series expansions

ein(r′)= Ein(δr′ + z)=
∞∑

α,|α|=0

δ|α|

α!
(r′)α∂α(Ein)(z), (5.34)

hin(r′)= H in(δr′ + z)=
∞∑

α,|α|=0

δ|α|

α!
(r′)α∂α(H in)(z), (5.35)

for r′ ∈ ∂B as δ→ 0, so that on comparison of these expansions we arrive at the conclusion that ẽin
0 (r

′)=
Ein(z) and h̃

in
0 (r

′)= H in(z).
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We also recall that ẽsc
0 and h̃

sc
0 are curl- and divergence-free in B and in R

3 \ B, and thus, since
B is closed, we can write ẽsc

0 = ∇r′ φ̃sc and h̃
sc
0 = ∇r′ψ̃ sc. By expressing φ̃ =∑3

i=1(εr − 1)(Ein(z) ·
∇r′r′

i)ϑ
sc
i (εr) and ψ̃ =∑3

i=1(μr − 1)(H in
0 (z) · ∇r′r′

i)ϑ
sc
i (μr) we see that ϑ sc

i (c) satisfies

∇r′ · c∇r′ϑ sc
i = 0 in B,

∇2
r′ϑ

sc
i = 0 in R

3 \ B,

ϑ sc
i |+ − ϑ sc

i |− = 0 on ∂B,

n̂′ · ∇r′ϑ sc
i |+ − n̂′ · c∇r′ϑ sc

i |− = n̂′ · ∇′r′
i on ∂B,

ϑ sc
i → 0 as r → ∞.

(5.36)

Inserting usc = ẽsc
0 = ∇r′ φ̃sc, uin = ẽin

0 = Ein(z), vsc = h̃
sc
0 = ∇r′ψ̃ sc and vin = h̃

in
0 = H in(z) into (5.32)

and (5.33), using the fact that 1
2

∫
∂B r′ × (n̂′ × ∇r′ f )|− dS′ = − ∫

∂B n̂′f |− dS′ for a continuous scalar func-
tion f (Kleinman & Senior, 1982) and that

∫
∂B n̂′f |− dS′ = ∫

∂B r′(n̂′ · ∇r′ f |−) dS′, if ∇2
r′ f = 0 in B, we can

finally obtain

pB = [[MB(εr)]]Ein(z), mB = [[MB(μr)]]H in(z), (5.37)

where

[[MB(c)]]ij = (c − 1)[[I]]ij|B| + (c − 1)2
∫
∂B

r′
in̂

′ · ∇r′ϑ sc
j (c)|− dS′ (5.38)

is a symmetric polarization tensor. Inserting (5.37) into case (b) of Lemma 5.1 completes the proof. �

The above expression for [[MB(c)]] is identical to the first-order generalized polarization tensor of
Ammari & Kang (2007, p. 79). By expressing the solution of the transmission problem for ϑ sc

j in terms
of single- and double-layer potentials Ammari and Kang show that this tensor can be computed by
solving an integral equation on the surface of ∂B. In Appendix B, we discuss this further and show
that the above polarization tensor is also identical (apart from a minus sign) to the general polarization
presented by Kleinman & Senior (1982) and Dassios & Kleinman (2000).

Proof of Corollary 4.1. In the case of a perfectly conducting object the boundary conditions on ∂B are

n̂′ × esc|+ = −n̂′ × ein|−, n̂′ · hsc|+ = −n̂′ · hin|−.

Following similar steps to the proof of Theorem 4.1 and using the representations ẽsc
0 = ∇r′ φ̃sc =∑3

i=1(E
in(z) · ∇r′r′

i)∇r′ φ̃s
i , and h̃

sc
0 = ∇r′ψ̃ sc =∑3

i=1(H
in(z) · ∇r′r′

i)∇r′ψ̃ s
i , it is seen that the electric

potential φ̃sc
i satisfies

∇2
r′ φ̃

sc
i = 0 in R

3 \ B,

φ̃sc
i |+ = −r′

i on ∂B,

φ̃sc
i → 0 as r → ∞,
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and the magnetostatic potential ψ̃ sc
i satisfies

∇2
r′ψ̃

sc
i = 0 in R

3 \ B,

n̂′ · ∇r′ψ̃ sc
i |+ = −n̂′ · ∇r′r′

i on ∂B,

ψ̃ sc
i → 0 as r → ∞.

By substituting the representations usc = ẽsc
0 = ∇r′ φ̃sc and vsc = h̃

sc
0 = ∇r′ψ̃ sc into (5.3) and (5.4), we

immediately obtain
pB = [[MB(∞)]]Ein(z), mB = [[MB(0)]]H in(z), (5.39)

where

[[MB(∞)]]ij = [[I]]ij|B| +
∫
∂B

r′
in̂

′ · ∇r′ φ̃sc
j |+ dS′ (5.40)

is the electric polarizability tensor and

[[MB(0)]]ij = −[[I]]ij|B| −
∫
∂B

n̂′
iψ̃

sc
j |+ dS′ (5.41)

is the magnetic polarizability tensor (Keller et al., 1972). �

Alternatively, a perfect electrical conductor can be understood as the limiting cases of εr → +∞
and μr → 0. In this case, the integral equation approach for the computation of [[MB(c)]], proposed
by Ammari and Kang and discussed in Appendix B, still holds for c = +∞ and c = 0 although, in the
former, it requires the solution of a singular system (Ammari & Kang, 2007, pp. 88-89) and cannot be
computed independently from Ein(z) (see also Ammari & Kang, 2007, p. 37).

Proof of Theorem 4.2. We recall the expansion of the scattered and incident fields in terms of the coef-

ficients ˜̃esc
m , ˜̃hsc

m , ˜̃ein
m and ˜̃hin

m , m = 0, 1, as described by (3.12) and (3.13). The incident fields H in(δr′ + z)
and Ein(δr′ + z) are functions not only of δr′ + z, but also of k(δr′ + z) and so they can be expanded
about kz in terms of the multi–index expansions

ein(r′)= Ein(δr′ + z)=
∞∑

α,|α|=0

(kδ)|α|

α!
(r′)α∂α(Ein)(z),

hin(r′)= H in(δr′ + z)=
∞∑

α,|α|=0

(kδ)|α|

α!
(r′)α∂α(H in)(z),

for r′ ∈ ∂B as kδ→ 0. Thus, we can identify that ˜̃ein
0 (r

′)= Ein(z) and ˜̃hin
0 (r

′)= H in(z).

We also recall that ˜̃esc
0 and ˜̃hsc

0 are curl and divergence free in B and in R
3 \ B, and thus, since B

is closed, we can write ˜̃esc
0 = ∇r′ ˜̃φsc

and ˜̃hsc
0 = ∇r′ ˜̃

ψ
sc

. Choosing ˜̃
φ

sc =∑3
i=1(εr − 1)(Ein(z) · ∇r′r′

i)ϑ(εr)

and ˜̃
ψ

sc =∑3
i=1(μr − 1)(H in(z) · ∇r′r′

i)ϑ(μr), with ϑ(c) satisfying the transmission problem (5.36), we
can show that

pB = [[MB(εr)]]Ein(z), mB = [[MB(μ)]]H in(z). (5.42)

Inserting (5.42) into case (c) of Lemma 5.1 completes the proof. �
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Proof of Corollary 4.2. Following similar steps to the proof of Theorem 4.2 and Corollary 4.2, we
arrive at

pB = [[MB(∞)]]Ein(z), mB = [[MB(0)]]H in(z), (5.43)

for a perfectly conducting scatterer at low frequencies. �

6. Discussion

Asymptotic expansions for the perturbation in the electric and magnetic (near) fields, due to the presence
of an object, as δ→ 0, have been obtained by Ammari et al. (2001). Their formulae are based on a
bounded, rather than an unbounded, domain where the tangential traces of the electric and magnetic
fields are known on a boundary placed at some finite distance from the object. The leading-order terms
they obtain show a similar explicit dependence on the object size to that obtained in (4.1) and (4.2)
and (4.5) and (4.6). However, unlike the results in Ammari et al. (2001) and Ammari & Volkov (2005)
(discussed in the Remark 4.1), our asymptotic expansions in Theorem 4.1 contain additional terms
since they hold as max(δ/r, δ)→ 0 rather than for r → ∞, as δ→ 0. Additionally, in the case of a
non-lossy dielectric, Theorem 4.2 describes the perturbation in the fields as max(δ/r, kδ)→ 0, which
are relevant for low-frequency problems at distances that are large compared with the object’s size.
The k2/r term is a component in the leading-order terms we have obtained, and we expect our new
expansions will be useful for understanding for low-frequency inverse problems where the interplay
between the wavenumber and the distance from the object to the point of measurement becomes a
critical factor.

As stated in Remark 5.1, by identifying the polarization moments δ3pB(e
sc) and δ3mB(hsc) with

the electric and magnetic dipole moments p and m, respectively, the fields for case (a) of Lemma 5.1
are exactly those of radiating dipoles. In the case of low-frequency scattering by a non-lossy dielectric
sphere, centred at z, with radius δ and described by kδ→ 0, the scattered fields, at sufficiently large
distances, are the same as radiating dipoles centred at z with moments (e.g. Jackson, 1975, p. 413)

p = 4πδ3

(
εr − 1

εr + 2

)
Ein(z), m = 4πδ3

(
μr − 1

μr + 2

)
H in(z).

If the sphere is centred at the origin, then Ein(z)= Ein(0) and H in(z)= H in(0) are the amplitudes of the
incident plane waves. Theorem 4.2 describes the scattered fields as max(δ/r, kδ)→ 0, for an object B of
unit size scaled by δ. If the object B is a sphere of unit radius, the polarization tensor has the known form
[[MB(c)]] = 4π((c − 1)/(c + 2))[[I]] (Ammari & Kang, 2007). On consideration of the scaling δ, and
the known form of the polarization tensor, we see that Theorem 4.2 is exact in the case of low-frequency
scattering by a dielectric sphere. In the case of scattering by a perfectly conducting sphere the dipole
moments are known as (e.g. Jackson, 1975, p. 415)

p = 4πδ3Ein(z), m = −2πδ3H in(z).

By noting that a perfectly conductor sphere of unit radius has polarization tensors [[MB(∞)]] = 4π [[I]]
and [[MB(0)]] = −2π [[I]], we see that Theorem 4.2 is also exact in the case of low frequency scattering
by a perfectly conducting sphere.

Finally, to make comparisons with the results sometimes quoted in the engineering literature
(e.g. Das & McFee, 1991; Braunisch et al., 2001; Norton & Won, 2001; Marsh et al., 2013), we take
the component of Hs in the direction of r̂ for a purely magnetic object and, using the expansion (4.2),
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we find that

Hsc(r + z) · r̂ = δ3 eikr

4π

(
2

r3
r̂ · ([[MB(μr)]]H in(z))− 2ik

r2
r̂ · ([[MB(μr)]]H in(z))

)
+ O(δ4)

= −2
δ3

r
∇ruk · [[MB(μr)]]H in(z)+ O(δ4), (6.1)

where the leading-order term is of the form of a H1 · [[NB(μr)]]H2 sensitivity, with [[NB(μr)]] =
−(2δ3/r)[[MB(μr)]]. As mentioned in the introduction, the perturbed magnetic field for a conducting
object at low frequencies is described in terms of a different kind of polarization tensor (Ammari et al.,
2014).
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Appendix A. Integral identities

Kleinman (1967) shows that

∫
∂B

n̂′ × F dS′ =
∫
∂B

r′(n̂′ · ∇r′ × F) dS′, (A.1)

holds for a vector field F that is differentiable everywhere in the neighbourhood of ∂B for closed B. By
choosing F = G(r′ · r̂), we can use the above result to obtain

∫
∂B

n̂′ × G(r′ · r̂) dS′ =
∫
∂B

r′(n̂′ · ∇r′ × (G(r′ · r̂))) dS′

=
∫
∂B

r′(n̂′ · ∇r′(r′ · r̂)× G) dS′ +
∫
∂B

r′(n̂′ · ∇r′ × G)(r′ · r̂) dS′

= −
∫
∂B

r′(r̂ · n̂′ × G) dS′ +
∫
∂B

r′(n̂′ · ∇r′ × G)(r′ · r̂) dS′.

Next, applying A × (B × C)= (A · C)B − (A · B)C with A = r̂, B = n̂ × G and C = r′ gives

∫
∂B

r′(r̂ · n̂′ × G) dS′ = r̂ ×
∫
∂B

r′ × (n̂′ × G) dS′ +
∫
∂B

n̂′ × G(r′ · r̂) dS′,

and thus

∫
∂B

n̂′ × G(r′ · r̂) dS′ = −1

2
r̂ ×

∫
∂B

r′ × (n̂′ × G) dS′ + 1

2

∫
∂B

r′(n̂′ · ∇r′ × G)(r′ · r̂) dS′. (A.2)

The result

∫
∂B
(r̂ · n̂′ × F)r̂ dS′ = r̂ ×

(
r̂ ×

∫
∂B

n̂′ × F dS′
)

+
∫
∂B

n̂′ × F dS′, (A.3)

follows from the application of the vector triple product identity with A = B = r̂ and C = n̂′ × F.
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Next, consider∫
∂B
(r̂ · n̂′ × F)(r′ · r̂)r̂ dS′ =

∫
(r̂ · n̂′ × (F(r′ · r̂)))r̂ dS′

= r̂ ×
(

r̂ ×
∫
∂B

n̂′ × F(r′ · r̂) dS′
)

+
∫
∂B

n̂′ × F(r′ · r̂) dS′,

where the second equality follows from identity (A.3). Applying the vector triple product identity with
A = B = r̂ and C = n̂′ × F(r′ · r̂) to the first term on the right-hand side of the equality followed by
applying identity (A.2) and using properties of the scalar triple product gives∫

∂B
(r̂ · n̂′ × F)(r′ · r̂)r̂ dS′ =

(
r̂ ·
{

−1

2
r̂ ×

∫
∂B

n̂′ × F dS′ +
∫
∂B

r′(n̂′ · ∇r′ × F)(r′ · r̂) dS′
})

r̂

=
∫
∂B
(n̂′ · ∇r′ × F)(r′ · r̂)2r̂ dS′. (A.4)

The result∫
∂B
(r̂ · n̂′ × F)r′ dS′ = r̂ ×

∫
∂B

r′ × n̂′ × F dS′ +
∫
∂B
(r′ · r̂)n̂′ × F dS′

= 1

2
r̂ ×

∫
∂B

r′ × n̂′ × F dS′ +
∫
∂B

r′(n̂′ · ∇r′ × F)(r′ · r̂) dS′, (A.5)

follows from application of the vector triple product identity with A = r̂, B = r′ and C = n̂′ × F
and (A.2).

Unlike the previous identifies, which follow from (A.1) and/or the use of vector identities, the
derivation of the final identity (A.9), which follows below, does not. We first prove the following lemma.

Lemma A.1 If F is a differentiable vector function defined everywhere in the neighbourhood of a closed
surface ∂B, then ∫

∂B
r′ · n̂′ × F dS′ = 1

2

∫
∂B
(n̂′ · ∇r′ × F)r′ · r′ dS′. (A.6)

Proof. The vector field r′ can be expressed as r′ = r′
1 î1 + r′

2 î2 + r′
3 î3. Noting that î1 = ∇rr1 = ∇r′r′

1
and that r′

1∇r′r′
1 = 1

2∇r′(r′
1)

2, then, by using similar results for other components, we see that r′ =
1
2 (∇r′(r′

1)
2 + ∇r′(r′

2)
2 + ∇r′(r′

3)
2). Thus,

∫
∂B

r′ · n̂′ × F dS′ = 1

2

(
3∑

i=1

∫
∂B
(∇r′(r′

i)
2 · n̂′ × F) dS′

)
. (A.7)

Application of the properties of the scalar triple product and cross product enable us to write∫
∂B
(∇r′(r′

i)
2 · n̂′ × F dS′ = −

∫
∂B
(n̂′ · ∇r′(r′

i)
2 × F) dS′

= −
∫
∂B
(n̂′ · ∇r′ × (F(r′

i)
2)) dS′ +

∫
∂B
(n̂′ · ∇r′ × F)(r′

i)
2 dS′, (A.8)
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where the first term on the right-hand side of (A.8) is zero for each i since
∫
∂B n̂′ · ∇r′ × G) dS′ = 0,

for a differentiable vector field G, when B is closed. The lemma then immediately follows from (A.7)
and (A.8). �

This lemma then enables us to write the final integral identity as

∫
∂B
(r′ · n̂′ × F)r̂ dS′ = 1

2

∫
∂B
(n̂′ · ∇r′ × F)(r′ · r′)r̂ dS′, (A.9)

which follows since r̂ can be taken outside the integral sign.

Appendix B. General and generalized polarization tensors

We recall that the fundamental solution to the Laplace equation in R
3 corresponds to u0 (i.e. setting

k = 0 in (3.3)) and that, for a bounded Lipschitz domain B with boundary ∂B, the associated single-
layer potential applied to a function f ∈ L2(B) is defined as

SBf (r)=
∫
∂B

u0(r − r′)f (r′) dS′, (B.1)

with r ∈ R
3. The single-layer potential also satisfies

SBf |+(r)= SBf |−(r), (B.2)

∂

∂n̂
SBf |±(r)=

(
±1

2
I + K∗

B

)
f (r) (B.3)

for r ∈ ∂B almost everywhere (Ammari & Kang, 2007). In the above I is the identity operator,

KBf (r)= p.v.
∫
∂B

n̂′ · (r′ − r)
4π |r′ − r|3 f (r′) dS′, (B.4)

and K∗
B is the L2 adjoint of KB.

To simplify the notation in the remainder of this appendix, we drop the prime where no confu-
sion arises. In Ammari & Kang (2007, Definition 4.1), the authors define their symmetric generalized
polarization tensor in terms of multi-indices α,β as

(MB(c))αβ =
∫
∂B

rβϑ̂α(c, r) dS, (B.5)

where ϑ̂α(c, r)= (λI − K∗
B)

−1(n̂′ · ∇r′(r′α))(r), c is the material contrast and λ(c)= (1 + c)/(2(c − 1)).
In Lemma 4.3, they show that an alternative expression for (MB(c))αβ is

(MB(c))αβ = (c − 1)
∫
∂B

rβ
∂rα

∂n̂
dS + (c − 1)2

∫
∂B

rβ
∂ϑα(c)

∂n̂

∣∣∣∣− dS, (B.6)
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where ϑα(c) satisfies the transmission problem

∇ · c∇ϑα = 0 in B,

∇2ϑα = 0 in R
3 \ B,

ϑα|+ − ϑα|− = 0 on ∂B,

∂ϑα

∂n̂

∣∣∣∣+ − c
∂ϑα

∂n̂

∣∣∣∣− = n̂ · ∇(rα) on ∂B,

ϑα → 0 as |r| → ∞.

(B.7)

By restricting consideration to |α| = |β| = 1, the generalized polarization tensor of Ammari and Kang
becomes a symmetric matrix [[MB(c)]]ij, i, j = 1, 2, 3, which is identical to (4.3).

Kleinman & Senior (1982) and Dassios & Kleinman (2000, p. 168) considers the following scalar
transmission problem for θj(c), j = 1, 2, 3:

∇ · c∇θj = 0 in B,

∇2θj = 0 in R
3 \ B,

θj|+ − θj|− = 0 on ∂B,

∂θj

∂n̂

∣∣∣∣+ − c
∂θj

∂n̂

∣∣∣∣− = 0 on ∂B,

θj − rj → 0 as |r| → ∞,

(B.8)

and present a number of alternative expressions for their general polarization tensor [[MB(c)]] including

[[MB(c)]]ij =
∫
∂B

n̂iθj(c)|+ − ri
∂θj(c)

∂n̂

∣∣∣∣+ dS, (B.9)

= (1 − c)
∫
∂B

n̂iθj(c)|+ dS, (B.10)

= (1 − c)
∫
∂B

ri
∂θj(c)

∂n̂

∣∣∣∣− dS, (B.11)

where the equivalence between the different expressions follows from the manipulation of the transmis-
sion conditions and application of the divergence theorem (Kleinman & Senior, 1982).

Lemma B.1 In the case of |α| = |β| = 1 the generalized polarization tensor of Ammari and Kang
is identical (apart from a minus sign) to the general polarization tensor as presented by Kleinman
& Senior (1982), which, in turn, is a symmetric matrix [[MB(c)]]ij, i, j = 1, 2, 3 that also satisfies
[[MB(c)]] = −[[MB(c)]].
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Proof. Transforming the transmission problem (B.8), using χj(c)= θj(c)− rj, we see that χj satisfies

∇ · c∇χj = 0 in B,

∇2χj = 0 in R
3 \ B,

χj|+ − χj|− = 0 on ∂B,

∂χj

∂n̂

∣∣∣∣+ − c
∂χj

∂n̂

∣∣∣∣− = (c − 1)
∂rj

∂n̂
on ∂B,

χj → 0 as |r| → ∞.

(B.12)

The solution to (B.12), for each j, can be expressed in terms of a single-layer potential as χj(r)=
SBχ̂j(r), r ∈ R

3. This representation automatically satisfies the first transmission condition on ∂B and
the second condition becomes

∂SBχ̂j

∂n̂

∣∣∣∣+ − c
∂SBχ̂j

∂n̂

∣∣∣∣− = (c − 1)
∂rj

∂n̂
on ∂B.

Then, by using (B.3), we can deduce, in a similar way to Ammari & Kang (2007, p. 77), that

χ̂j(r)= (λI − K∗
B)

−1(n̂′ · ∇r′r′
j)(r

′), r ∈ ∂B. (B.13)

Clearly, ϑ̂α(r) has similarities to χ̂j(r). In fact, by limiting consideration to |α| = |β| = 1, the generalized
polarization tensor of Ammari and Kang can instead be written in terms of χ̂ as the symmetric matrix

[[MB(c)]]ij =
∫
∂B

rjχ̂i(r) dS =
∫
∂B

riχ̂j(r) dS. (B.14)

Finally, we can relate [[MB(c)]] to [[MB(c)]] by using a similar approach to Lemma 4.3 in Ammari &
Kang (2007): Recalling that θj = rj + χj = rj + SBχ̂j, then

∂θj

∂n̂

∣∣∣∣− = n̂ · ∇rj +
(

−1

2
+ K∗

B

)
χ̂j(r), r ∈ ∂B, (B.15)

and noting that − 1
2 I + K∗

B = −(λI − K∗
B)+ (λ− 1

2 )I, it can be shown that∫
∂B

ri
∂θj

∂n̂

∣∣∣∣− dS =
(
λ− 1

2

)∫
∂B

ri(λI − K∗
B)

−1(n̂′ · ∇r′r′
j)(r) dS

=
(
λ− 1

2

)
[[MB(c)]]ij. (B.16)

Thus, since λ− 1
2 = 1/(c − 1), and by considering (B.11), we have [[MB(c)]]ij = −[[MB(c)]]ij. In Das-

sios & Kleinman (2000, p. 168), the authors present an alternative form of their general polarization
tensor where the equivalence with Ammari and Kang’s tensor is almost immediate. �
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