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Planar equivalence between the large N limits of N = 1 Super Yang–Mills (SYM) theory and a variant 
of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-
perturbative results in QCD itself. In particular, it allows the quark condensate for N = 3 QCD with quarks 
in the fundamental representation to be inferred from exact calculations of the gluino condensate in 
N = 1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD 
with a general number n f of flavours and confront these with lattice results.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. The QCD condensate and planar equivalence

One of the challenges in theoretical studies of QCD is to 
find analytic, non-perturbative methods for calculations of strong-
coupling quantities such as the quark or gluon condensates. Such 
methods are an important complement to direct evaluations us-
ing lattice gauge theory and give extra physical insight into the 
underlying dynamical mechanisms. One proposal is to use the 
special properties of supersymmetric theories to perform exact 
non-perturbative calculations in N = 1 gauge theories, then relate 
these in suitable limits to infer results in QCD itself. This approach 
has been pioneered in Refs. [1,2].

The key idea is to exploit a remarkable property of SU(N) QCD 
with a single flavour of Dirac fermions in the antisymmetric repre-
sentation,1 QCDAS, viz. that as N is varied, it interpolates between 
three theories of special importance – pure Yang–Mills theory, 
QCD with one flavour of fundamental fermions and N = 1 super-
Yang–Mills theory.

Specifically, for N = 2, the antisymmetric representation be-
comes trivial and QCDAS becomes simply SU(2) Yang–Mills. For 
N = 3, the antisymmetric representation (which has dimension 
1
2 N(N − 1)) coincides with the fundamental representation (di-
mension N) and so QCDAS(N = 3) is identical to one-flavour 

* Corresponding author.
1 This is the theory referred to in [1–3] as “QCD-OR” or “Orientifold QCD”. This 

name highlights its origin in string theory [12], though this will play no role in the 
analysis here.

SU(3) QCD.2 In the large N limit, QCDAS(N → ∞) becomes equiva-
lent to a theory with SU(N) gauge group and a single real fermion 
in the adjoint representation (dimension N2 − 1). Crucially, this 
theory is supersymmetric, viz. N = 1 super Yang–Mills (SYM), and 
this is the key to being able to perform the exact non-perturbative 
calculations we exploit.

The relation of QCDAS at large N with N = 1 SYM has been 
extensively described in a series of earlier papers on “planar equiv-
alence” [1–4]. It has been shown that in the ’t Hooft large-N
limit the two theories become equivalent in the common bosonic 
C-parity even sector. A necessary and sufficient condition for pla-
nar equivalence to hold is that charge conjugation symmetry is not 
broken spontaneously [5]. This was verified by a dedicated lattice 
simulation [6] (see also [7]) where it was shown that charge con-
jugation symmetry is broken if one dimension is compactified on a 
small-enough circle, but is restored at large (in particular infinite) 
compactification radius.

In this paper, we focus on a single issue – the prediction of the 
value of the quark condensate in QCD, its N and n f dependence, 
and its confrontation with lattice data. The gluino condensate [8,9]
has been evaluated exactly in N = 1 SYM [10,11] and the idea here 
is to use QCDAS with varying N to infer the value of the quark 
condensate for one-flavour N = 3 QCD by interpolating between 

2 Here we use n f for the total number of quark flavours. Note this is in contrast 
to [4] where it was used as the additional number of fundamental flavours in a 
“QCD-OR′” theory comprising one antisymmetric flavour plus fundamentals, which 
we call QCDAS−F here.

http://dx.doi.org/10.1016/j.physletb.2014.12.035
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Table 1
Renormalisation group coefficients for general N and n f for the theories considered here. Gamma is the anoma-
lous dimension for the condensate, i.e. the running mass anomalous dimension. In general, for a (complex) 
representation R with n f flavours, β0 = 11

3 C2(A) − 4
3 n f T (R), β1 = 17

3 C2(A)2 − 1
3 n f T (R)(10C2(A) + 6C2(R)) and 

γ = 3C2(R), where C2(A) is the quadratic Casimir for the gauge group.

QCDAS−F(N,n f ) Yang–Mills QCDF(N,n f ) N = 1 SYM

β0 3N + 2 − 2
3 n f

11
3 N 11

3 N − 2
3 n f 3N

β1 3N2 + 17
2 N − 9

2N − 1
6 n f (13N − 3

N ) 17
3 N2 17

3 N2 − 1
6 n f (13N − 3

N ) 3N2

γ 3
N (N − 2)(N + 1) [AS] – 3

2N (N2 − 1) 3N
3

2N (N2 − 1) [F]

N = 1 SYM at large N and pure Yang–Mills at N = 2, where of 
course the condensate disappears. For many flavours, we consider 
a generalisation to a theory, QCDAS−F, with one AS representation 
fermion and (n f − 1) fundamentals.

The calculation of the gluino condensate 〈λλ〉 ≡ 〈λaαλa
α〉 in 

N = 1 SYM relies on the holomorphy of F -terms in supersymmet-
ric theories to analytically continue a weak-coupling, semi-classical 
evaluation of the condensate in a deformed version of the the-
ory to the strong-coupling regime of N = 1 SYM itself. Specifically, 
in Ref. [10], additional matter fields with mass m are added al-
lowing the condensate to be calculated from the one-instanton 
contribution in a weak-coupling regime at small non-zero m be-
fore taking m → ∞ to decouple the extra fields and recover the 
original theory. In Ref. [11], N = 1 SYM itself is considered on 
a compactified space R3 × S (with β the radius of the compact-
ified dimension) and the condensate is evaluated initially in the 
limit of small β where the theory is weakly-coupled and the 
condensate is dominated by contributions from monopole config-
urations, both conventional BPS type and additional Kaluza–Klein 
monopoles. Both approaches agree and, quoting the result for the 
condensate for an SU(N) gauge group in terms of the scale ΛMS
appropriate to SYM (see below), we have

〈λλ〉MS = − N2

2π2

3

2λ(μ)
Λ3

MS

∣∣
SYM. (1.1)

Before proceeding, we need to carefully specify our conven-
tions and the definitions of the key quantities used below.3 First, 
for ease of reference, in Tables 1 and 2 we collect the N and 
n f dependence of the main group theoretical parameters and the 
renormalisation group coefficients for the theories considered here.

Our results are presented first in terms of renormalisation 
group invariant quantities, written in terms of the ’t Hooft cou-
pling. We define the RG invariant scale parameter

Λc = μ
(
cλ(μ)

)−β1/β2
0 e−N/(β0λ), (1.2)

and the RG invariant condensate for a Dirac fermion ψ as

〈ψ̄ψ〉c̃ = (
c̃λ(μ)

)γ /β0〈ψ̄ψ〉MS, (1.3)

where 〈ψ̄ψ〉MS denotes the renormalised condensate in the MS
scheme at scale μ. The normalisation parameters c and c̃ are es-
sentially arbitrary, but should admit an expansion in 1/N around 
a finite O (1) large-N limit. This ensures the condensate matching 
condition (1.5) below is consistent with planar equivalence at large 
N [3]. The conventional MS definition of the scale parameter ΛMS

3 Our conventions follow those of the Particle Data Group, QCD review, 2008 [13]. 
Since we work here with the ’t Hooft coupling λ = g2 N/8π2 rather than 
αs = g2/4π , it is more convenient to use the RG coefficients β0, β1, . . . rather 
than the more recent PDG 2014 [14] definitions b0, b1, . . . to absorb convention-
dependent factors of 4π . The gluino field in (1.1) is normalised so that its kinetic 
term in the SYM Lagrangian is L = iλ̄/Dλ.

Table 2
The Dynkin index T (R) and quadratic Casimir C2(R) for various representations 
of SU(N). For a representation R of SU(N) with generators ta they are defined as 
tr tatb = T (R)δab and (tata)i j = C2(R)δi j and satisfy T (R)dim(A) = C2(R)dim(R).

Representation (R) T (R) C2(R) dim(R)

Antisymmetric (AS) 1
2 (N − 2) 1

N (N − 2)(N + 1) 1
2 N(N − 1)

Fundamental (F) 1
2

1
2N (N2 − 1) N

Adjoint (A) N N N2 − 1

is simply Λc with c = β0/2N . Later, we will choose c̃ = β0/N to 
facilitate easy comparison with lattice results.

Expressed entirely in terms of these RG invariant quantities, the 
SYM gluino condensate is therefore

〈λλ〉c̃/Λ
3
c

∣∣
SYM = − N2

2π2
cc̃, (1.4)

noting that for N = 1 SYM both γ /β0 and 3β1/β
2
0 are simply 1.

One flavour, QCDAS:
To determine the condensate in one-flavour QCD, we start from 

the QCDAS theory, where planar equivalence has been firmly es-
tablished. Our basic ansatz for the QCDAS condensate is

〈Ψ̄ Ψ 〉c̃/Λ
3
c

∣∣
AS

= − N2

2π2

(
1 − 2

N

)
c3β1/β2

0 c̃γ /β0 KAS(1/N;n f = 1), (1.5)

where Ψ denotes a fermion in the AS representation of SU(N)

and the appropriate RG coefficients can be read off from Table 1. 
The content of (1.5) is that the most significant 1/N correction to 
the leading large N behaviour of 〈Ψ̄ Ψ 〉c̃ as determined by planar 
equivalence with the exact SYM result (1.4) is given by the relative 
(1 − 2/N) factor. Assuming a smooth dependence of 〈Ψ̄ Ψ 〉c̃ on N
in the QCDAS theory, this is the simplest interpolating factor be-
tween the large N SYM result and the vanishing of the condensate 
for N = 2, where the antisymmetric representation is trivial and 
QCDAS degenerates to pure SU(2) Yang–Mills. Notice that this fac-
tor is simply the ratio of the Dynkin indices for the AS and adjoint 
representations, a feature we may conjecture to be more gener-
ally valid. The remaining sub-leading corrections are encoded in 
the factor KAS = 1 + O (1/N), which we initially assume to be rel-
atively small.

Given the arbitrariness in the normalisation of the RG invari-
ant condensates and scale parameters, it is natural to separate 
the dependence on the c, c̃ factors explicitly on the rhs of (1.5). 
Notice4 that in the ratio of ratios between (1.5) and (1.4) for the 

4 Explicitly, for a single AS representation, γ /β0 = 1 − 13
9

1
N and 3β1/β2

0 =
1 + 11

9
1
N , so c̃−1+γ /β0 = 1 − 13

9N log c̃ + O (1/N2) and c−1+3β1/β2
0 = 1 + 11

9N log c +
O (1/N2).
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AS and adjoint representation condensates, both these factors are 
1 + O (1/N) since the RG factors in the exponents are both O (1/N)

(see Table 1), so could in principle be absorbed into the KAS factor. 
However, this would not be appropriate since they are clearly con-
vention dependent whereas KAS should reflect the basic O (1/N)

physics of the theory.
Our prediction for the condensate can be expressed in several 

ways, which will be useful for comparing with lattice data. In par-
ticular, we may write

〈Ψ̄ Ψ 〉c̃/Λ
3
MS

∣∣
AS = − N2

2π2

(
1 − 2

N

)(
β0

2N

)3β1/β2
0

× c̃γ /β0 KAS(1/N;n f = 1), (1.6)

and

〈Ψ̄ Ψ 〉MS/Λ
3
MS

∣∣
AS = − N2

2π2

(
1 − 2

N

)(
β0

2N

)3β1/β2
0

× λ(μ)−γ /β0 KAS(1/N;n f = 1), (1.7)

where in the latter form, 〈Ψ̄ Ψ 〉MS is μ-dependent and we need 
to find the ’t Hooft coupling λ(μ) by inverting the relation (1.2)
for ΛMS . Finally, as used in Ref. [4], we could express the conden-
sate entirely in terms of the ’t Hooft coupling at scale μ, viz.

〈Ψ̄ Ψ 〉MS = −μ3 N2

2π2

(
1 − 2

N

)
λ(μ)−3β1/β2

0 −γ /β0

× e−3N/(β0λ(μ))KAS(1/N;n f = 1). (1.8)

n f flavours, QCDAS−F:
So far, we have discussed the condensate in theories with only 

a single flavour, where planar equivalence with N = 1 SYM has 
been demonstrated for QCDAS. In Ref. [4], we explored to what ex-
tent planar equivalence could be shown directly in a multi-flavour 
theory. Since we need the additional flavours to decouple in the 
large-N limit, and since we ultimately wish to discuss N = 3 QCD 
with quarks in the fundamental representation, we considered the 
hybrid theory QCDAS−F, viz. QCD with one AS and (n f − 1) funda-
mental fermions (see footnote 2).

The demonstration of planar equivalence and matching of con-
densates with N = 1 SYM in this case involved comparison of 
Wilson loops and the construction from anomalous chiral Ward 
identities of a ‘decoupling’ current, which defines a sector in which 
the Goldstone bosons of spontaneously broken chiral symmetry do 
not affect the relevant correlation functions. These theoretical con-
siderations are described at length in [4]. Here we just quote our 
conclusions for the RG-invariant condensates:

〈Ψ̄ Ψ 〉c̃/
(
Λ

(n f )
c

)3∣∣
AS−F = − N2

2π2

(
1 − 2

N

)

× c3β1/β2
0 c̃γ /β0 KAS(1/N;n f ), (1.9)

for the AS fermion Ψ , while for the fundamental fermions q,

〈q̄q〉c̃/
(
Λ

(n f )
c

)3∣∣
AS−F = − N

2π2
c3β1/β2

0 c̃γ /β0 KF(1/N;n f ). (1.10)

Once again, the K factor for the AS representation is KAS =
1 + O (1/N), with the n f dependence contained in the O (1/N)

terms. For the fundamental representation fermions, however, we 
do not necessarily need to impose this. All that is actually required 
is self-consistency for N = 3 when the two representations coin-
cide, i.e. KF(1/3; n f ) = KAS(1/3; n f ).

Fig. 1. Plot showing the dependence of the RG-invariant condensate Σ1/3
RGI /Λ

(n f )

MS
on 

the KF(1/3; n f ) parameter for different numbers n f of flavours.

These K factors encode the sub-dominant 1/N corrections, 
which we conjecture to be relatively small. Our initial conden-
sate predictions for QCD are therefore based on taking the relevant 
K 	 1 and confronting these with lattice data. Further dynamical 
insight and assumptions may subsequently be used to refine the 
prediction. For example, in Ref. [4] we used the argument that 
QCD with n f flavours, the K factors should go smoothly to zero 
as the conformal window is approached to estimate their flavour 
dependence, finding a rather mild dependence. Ideally, lattice sim-
ulations with sufficient precision to pin down the variation of the 
K factors for different numbers of flavours could ultimately give 
information on the behaviour of the condensate near the confor-
mal window and the nature of the transition.

2. Numerical predictions and lattice data

We now specialise to QCD with N = 3 and n f fundamental 
flavours and present numerical predictions for the 〈q̄q〉 conden-
sate based on the formulae above. These predictions will then be 
critically compared with available results from lattice gauge theory.

First we need to emphasise that the result of any calculation, 
analytic or lattice, is a dimensionless ratio, since the overall QCD 
scale is the free parameter of the theory. The cleanest way to 
present our results is therefore in terms of the ratio 〈q̄q〉1/3

c̃ /Λ
(n f )

MS
of the RG-invariant condensate to the QCD scale parameter in the 
MS scheme for the relevant number of flavours. For ease of com-
parison with the lattice, we adopt here the convention of Ref. [15]
for the RG-invariant condensate, viz. take c̃ = β0/N . We denote this 
condensate by ΣRGI ≡ −〈q̄q〉c̃=β0/N . The results of the previous sec-
tion imply:

Σ
1/3
RGI /Λ

(n f )

MS
=

(
3

2π2

)1/3(
β0

6

)β1/β2
0
(

β0

3

)γ /3β0

K 1/3
F (1/3;n f ).

(2.1)

Our fundamental prediction (2.1) is shown in Fig. 1, where we 
plot the ratio of the RG-invariant condensate to ΛMS for different 
numbers of flavours as a function of the KF parameter. As we see 
below, lattice data supports the view that KF is close to 1, so for 
orientation we list here our predictions taking KF = 1:

Σ
1/3
RGI /Λ

(n f )

MS
= 0.786 (n f = 1), 0.763 (n f = 2),

0.737 (n f = 3), 0.710 (n f = 4). (2.2)

It is also useful to express our results in terms of the MS con-
densate ΣMS = 〈q̄q〉|μ=2 GeV. This requires the relation between 
ΛMS and the ’t Hooft coupling λ(μ). In fact, for accuracy in the 
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Fig. 2. Plot showing the relation between the scale parameter Λ(n f )

MS
and the ’t Hooft 

coupling λ(μ) evaluated at μ = 2 GeV for different numbers n f of flavours.

Fig. 3. Plot showing the condensate ratio Σ1/3
MS

/Λ
(n f )

MS
in the MS scheme in terms of 

the scale parameter Λ(n f )

MS
for different numbers n f of flavours.

numerical predictions, we do this using the three-loop RG formula, 
rather than two-loop expression given above, viz.

Λ
(n f )

MS
= μ

(
β0

2N
λ

)−β1/β2
0

e−N/β0λ

×
[

1 − λ

8N

1

β2
0

(
β2 − 8β2

1

β0

)
+ . . .

]
. (2.3)

This is shown, for N = 3, in Fig. 2.
From the previous section, we have the following formula for 

the MS condensate in N = 3 QCD:

Σ
1/3
MS

/Λ
(n f )

MS
=

(
3

2π2

)1/3(
β0

6

)β1/β2
0

× λ(μ)−γ /3β0 K 1/3
F (1/3;n f ). (2.4)

This is plotted, taking KF = 1 and evaluating at the standard scale 
μ = 2 GeV, in Fig. 3 for the ratio Σ1/3

MS
/Λ

(n f )

MS
and in Fig. 4 for the 

condensate Σ1/3
MS

itself expressed in MeV units inherited from the 
n f -dependent scale parameter.

To confront these predictions with lattice results, we need to 
be careful about interpreting scale-dependent data in variants of 
‘real-world’ QCD in which the number of flavours is varied. These 
are in principle distinct theories with their own independent free 
scale parameter ΛMS . Only for real-world QCD (which we consider 
as n f = 3 light flavours with quark masses taken into account) 
can predictions be unambiguously linked to experimental data, al-

lowing results to be expressed in genuine MeV units.5 This means 
that the only strictly meaningful comparisons to be made are be-
tween predictions of dimensionless ratios. For our purposes, this 
requires comparing our predictions to a lattice calculation that self-
consistently determines the ratio of the condensate to ΛMS .

While, as we discuss in Appendix A, there are several evalu-
ations in the literature of the condensate for various n f , these 
are usually expressed in some definition of MeV units and are 
not linked to a self-consistent determination of ΛMS . This makes 
a precision confrontation of lattice data with our planar equiva-
lence predictions difficult.

An exception is the recent work of Engel et al. [15] and 
the ALPHA lattice collaboration [16] in which they quote self-
consistent evaluations of both the RG-invariant condensate Σ1/3

RGI

and the scale parameter Λ(2)

MS
for n f = 2. The condensate is deter-

mined by studying the rate of condensation of the low eigenvalues 
of the Dirac operator near the limit of vanishing quark mass. For 
the ratio, they quote6

Σ
1/3
RGI /Λ

(2)

MS
= 0.77 (4). (2.5)

Comparing with Eq. (2.2) for n f = 2, this is in quite remarkable 
agreement with our KF = 1 prediction of 0.763.

To illustrate this further, in Fig. 5 we restrict the plot of 
Σ

1/3
RGI /Λ

(2)

MS
(see Fig. 1) to n f = 2 and superimpose our prediction 

for the condensate as a function of KF with the one-sigma er-
ror band of the lattice result (2.5). The lattice constraint on KF
is therefore

KF(1/3;n f = 2) = 1.03 (16) (2.6)

in excellent agreement with the planar equivalence prediction and 
our understanding that the corrections to KF 	 1 are relatively 
small.

Nonetheless, despite this success, it is clear that if we are to 
rely on the lattice to determine KF with the precision to gain 
insight into the flavour-dependence of the quark condensate and 
the transition to the conformal window, the accuracy of lattice 
calculations needs to be increased, along with the extension to 
self-consistent determinations of both the condensate and Λ

(n f )

MS
parameters for other values of n f .

The challenge to the lattice is therefore to extend determina-
tions of the quark condensate in QCD to different numbers of 
flavours with the accuracy required to find a real discrimination 
amongst different n f . Comparison with the planar equivalence pre-
dictions may also be stringently tested by simulations for different 
numbers of colours, N 
= 3, or different fermion representations. 
For example, in Ref. [17], a lattice study of the condensate was car-
ried out in the quenched approximation with fermions in the AS, 
symmetric and adjoint representations of SU(N) for various values 
of N . This broadly confirms the planar equivalence expectations 

5 In practice, a compromise is usually made whereby the MeV scale for QCD 
with n f 
= 3 is set by fixing some quantity which is considered to be only rela-
tively weakly dependent on n f to its experimental, real-world QCD, value. This is 
of course potentially dangerous if we are to use lattice results to determine the 
n f -dependence of the condensate and constrain the KF parameter.

6 In Ref. [15], the results are given in terms of an auxiliary scale F as

Σ
1/3
RGI /F = 2.77 (2) (4), Λ

(2)

MS
/F = 3.6 (2).

Setting MeV units by supplementing the theory with a quenched strange quark and 
fixing the scale through a fit to the physical decay constant F K , they quote

Σ
1/3
MS

∣∣
2 GeV = 263 (3) (4) MeV, Λ

(2)

MS
= 311 (19) MeV.
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Fig. 4. Plots showing the condensate ratio Σ1/3
MS

in the MS scheme at μ = 2 GeV in terms of the scale parameter Λ(n f )

MS
(left) and ’t Hooft coupling λ(μ) (right) for different 

numbers n f of flavours.

Fig. 5. Plot showing the dependence of the RG-invariant condensate Σ1/3
RGI /Λ

(n f )

MS
on 

the KF(1/3, n f ) parameter for n f = 2 superimposed with the one-sigma error band 
of the lattice determination of Engel et al.

and in particular the result (1.5) that to leading order, the ratio of 
condensates for different representations is given by the ratio of 
their Dynkin indices. In particular, we anticipate the following ex-
pression for the quark condensate in a theory with fermions in the 
symmetric (S) representation:

〈Ψ̄ Ψ 〉c̃/Λ
3
MS

∣∣
S = − N2

2π2

(
1 + 2

N

)(
β0

2N

)3β1/β2
0

× c̃γ /β0 KS(1/N;n f = 1). (2.7)

Meanwhile, it would be interesting to extend the planar equiv-
alence programme further by attempting analytic calculations of 
further quantities beyond the gluino and quark condensates, iden-
tifying other scale-setting quantities more suited to comparison 
with the lattice than ΛMS , and looking for further relations be-
tween N = 1 SYM and QCD.
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Appendix A. Lattice calculations of the condensate 
for n f = 1, 2, 3

We present here a brief review and update of earlier ex-
ploratory determinations of the quark condensate in N = 3 QCD 

with n f = 1, 2 and 3 fundamental flavours on the lattice, and their 
comparison with our planar equivalence predictions. Unfortunately, 
this lattice data is not sufficiently accurate to give a reliable dis-
crimination between different n f , although as we show it agrees 
within its uncertainties with our predictions.

The first comparison of the planar equivalence result with lat-
tice simulations was made in Ref. [3] with the work of DeGrand 
et al. [18] (see also [19]) for n f = 1. Scale-setting in the n f = 1

theory was performed in [3] by equating Λ(1)

MS
with the value of 

Λ
(3)

MS
inferred from the experimental value of λ(μ = 2 GeV) in 

physical n f = 3 QCD to obtain a prediction in MeV units. How-
ever, this does not correspond with the scale-setting used in the 
lattice calculation. Here, we improve on this comparison and up-
date the result of [18] using more recent lattice data for the scales 
involved.

The essential result of [18] is a value for the MS conden-
sate at μ = 2 GeV in units of the Sommer parameter r0, viz.

r0Σ
1/3
MS

= 0.68 (2). The scale ΛMS was introduced using the then 

current values of the ALPHA collaboration [20], viz. r0Λ
(0)

MS
=

0.60 (8) and r0Λ
(2)

MS
= 0.62 (6) with r0 	 0.5 fm 	 (400 MeV)−1, 

corresponding within errors to an approximately n f -independent 
value taken as Λ(2)

MS
= 245 (20) MeV. We can, however, improve 

on this if we take the most recent ALPHA determination of Λ(2)

MS

from [16] and, still assuming r0Λ
(n f )

MS
is not too sensitive to n f = 1

or 2, use this to set the scale for the DeGrand et al. calculation. 
We therefore take r0 = 0.503 (10) fm and r0Λ

(2)

MS
= 0.78 (6), cor-

responding to Λ(2)

MS
= 310 (20) MeV [16], and combining this with 

the value of r0Σ
1/3
MS

given above, we now deduce

Σ
1/3
MS

/Λ
(1)

MS
= 0.87 (7), (A.1)

and Σ1/3
MS

= 270 (20) MeV. This is to be compared with the KF = 1
planar equivalence prediction for n f = 1 (see Fig. 3)

Σ
1/3
MS

/Λ
(1)

MS
= 0.884, (A.2)

corresponding to Σ
1/3
MS

= 274 MeV. With this improved scale-
setting, we see that the n f = 1 lattice result is indeed now in 
good agreement, within its significant uncertainty, with the pla-
nar equivalence prediction.

A similar improvement can be applied to the original n f = 2
condensate prediction by DeGrand et al. in Ref. [21]. Taking the 
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result7 given there as r0Σ
1/3
MS

= 0.69 (2), we find Σ
1/3
MS

/Λ
(2)

MS
=

0.88 (7). This is to be compared with the KF = 1 planar equiva-
lence prediction 0.864 (see Fig. 3) which, with Λ(2)

MS
= 311 MeV [15], 

corresponds to Σ
1/3
MS

= 269 MeV. Again we recover reasonable 
agreement, bringing the result of Ref. [21] into line with the preci-
sion calculation of Engel et al. [15], for which this ratio is 0.85 (5).

For n f = 3, our planar equivalence prediction is

Σ
1/3
MS

/Λ
(3)

MS
= 0.839. (A.3)

If we set the scale by using the PDG [14] value for the ’t Hooft cou-
pling λ(μ = 2 GeV) = 0.143, corresponding to Λ(3)

MS
= 339 (10) MeV

our KF = 1 prediction is Σ1/3
MS

= 284 MeV. This is again supported 

by recent lattice results, taking e.g. Σ
1/3
MS

= 283 (2) MeV [22] as a 
representative figure.
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