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DynaMoVis: Visualization of dynamic models for urban
modeling

J. Dearden · M. W. Jones · A. Wilson

Abstract In association with Urban modelers, we have

created DynaMoVis, a system for the visualization

of dynamic models. The prediction of the evolution

of urban and ecological systems is difficult because

they are complex nonlinear systems that exhibit self-

organization, emergence and path dependence. Without

a good understanding of the dynamics, interventions

might have unintended side-effects. This study aims to

make progress in the understanding of dynamic mod-

els in the application areas of urban modelling. Ana-

lyzing these simulations is challenging due to the large

amount of data generated and the high-dimensional na-

ture of the system. We present a visualization system

for exploring the behavior of a simulation from many

different points of view. The system contains a number

of different modes which allow exploration of: the sim-

ulation parameter space, the introduction and effect of
noise on the simulation and the basins of attraction in

the phase space of the simulation. Through use of this

system it has been possible to develop a deeper under-

standing of the inter-dependencies in the models, their

parameter spaces and corresponding phase spaces.

Keywords Dynamic Models · Urban Modeling ·
Visualization

1 Introduction

We present the results of an ongoing two year collabora-

tion between ourselves and Urban modelers to speed-up

J. Dearden · M. W. Jones (M.W.Jones@Swansea.ac.uk)
Visual Computing Group, Swansea

A. Wilson
CASA, UCL

and visualize the dynamic models used in urban mod-

els. Latterly we also have a collaboration with Biolo-

gists who use similar dynamic models for eco-system

simulation. As a result of this later collaboration we

have been able to identify common requirements, and

therefore we have classified the more general problem

of simulating and visualizing dynamic models of this

type. We followed an iterative design and implementa-

tion process. After understanding the data and dynamic

models of the urban modelers, we implemented visual-

izations that triggered further research questions and

stages of our iterative process. Informed by the visual-

izations, we made identified that we could reduce the

complexity of the computation by utilizing the reported

hyperplane or hypervolume, which opened a further av-

enue of research for the experts. Through working with

the Biologists we have identified the general research
questions asked of dynamic models.

The contributions of this paper are:

– We present the various modes of operating dynamic

models and map them onto specific example re-

search questions, and signpost visualizations.

– Simulations started from a hyperplane are likely to

detect all basins of attraction, and vastly reduces

computational time.

– We can introduce noise into the simulation to repre-

sent external factors, and do so in a reasonable time

due to the previous point.

– We introduce a multiple vector field plot visualiza-

tion to depict the speed and direction of the simu-

lation towards the attractors.

– We introduce a spline based parallel coordinates

plot (PCP) with blending to show future probabili-

ties from a starting state. The splines help the user

to spot relationships amongst the parameters. The

blending helps to understand the probability of solu-



2 J. Dearden et al.

tions. The PCP depicts discontinuities in the phase

space.

– A fully interactive network visualization incorporat-

ing: nodes to represent attractors in phase space,

plots at those nodes representing the attractor state,

the degree of connectedness between nodes and the

possible outflow or inflow between basins due to

noise. We also have an adjacency matrix view, var-

ious interactive elements and linked views.

This tool is assisting model developers to expand their

own research areas and aid their development of suit-

able models for predicting spatio-temporal dynamic in-

teractions.

2 Related Work

Parameter Space Exploration Paraglide [2] is a system

for assisting in setting model input parameters, running

models, and comparing outputs. Users interactively de-

fine sampling spaces, clustering, testing and through

this can run models using their directed input, then

compare the parameters and output. Berger et al. [1]

samples parameter space in a star pattern – along 1D

axes around the target, or in a hypersphere around a

target. Output is visualized using scatterplots, uncer-

tainty visualization and parallel coordinates. The sys-

tem assists engineers exploring parameter spaces for a

turbo engine. Torsney-Weir et al. [21] generate samples

of image segmentation parameters, execute the segmen-

tation, measure against the ground truth, and present

plots back to the user for interaction with in-filled simu-

lated runs. The user can determine good control param-

eters, fill in more exact samples where necessary, and

iterate towards a good parameter tuning for segmen-

tation. The above methods present a matrix of plots

based on HyperSlice [28]. Vismon [4] also explores pa-

rameter spaces and the sensitivity of the model to input

parameters providing comparative and predictive tools

to the user. Unger at al. [23] develop a visual system

to aid validation of earth system simulations. Matkovic

et al. [15] display the inputs, model structure and out-

puts for multiple simulation runs in order to gain in-

sight into how a simulated system works - in this case

a diesel engine. Bischi et al. [3] visualize the basins of

attraction of a three firm oligopoly game in order to

better understand bifurcations in the system. The game

is a dynamical system which is similar to many sym-

bolic urban models. We give some examples of three

center retail models, but focus on higher dimensions.

Some general methods for visualizing the behavior of

high dimensional dynamical systems were presented by

Gröller et al. [9]. These cover low-dimensional phase

space representations. Basins of attraction are a con-

cept linked to the idea of dynamical systems, of which

many dynamic symbolic models are examples. Pitzer

et al. [18] visualized the basins of attraction of heuris-

tic algorithms and Orrell and Smith [16] visualized the

Lorenz attractor.
Common to the first three approaches parameter

(phase) space is sampled, running the accurate model,

then in-filled with a predictive model, and providing

tools to help the user manually target areas for running

the full model. In contrast we use our hyperplane sam-

pling to accelerate the model running. We provide our

experts with different visualizations and interactivity,

suited to their investigation of attractors and their as-

sociated basins. We also introduce variance runs to test

model stability and present pertinent views. We also

extend the multi-dimensional plots used above to in-

clude vectorial data, giving information about the speed

and direction of the model. Regarding the classification

of workflow, we found different requirements which we

place in our taxonomy that were related to how simu-

lations are carried out. We also provide network views

of the simulations with variance that demonstrate au-

tomatic clustering and provide a useful means to select

data for inspection through linked views.

Iconic Urban Models Since we concentrate on urban

models as our application area in this paper, we review

that literature here also. Urban models can be catego-

rized as iconic or symbolic. Iconic models [19] are con-

cerned with reproducing the look of a city while sym-

bolic models reproduce how cities function. A survey

of iconic modeling methods is presented by Vanegas

et al. [26]. UrbanSim (http://www.urbansim.org) [27]

software simulates the interactions between housing de-

mand, real estate values, employment, household and

others to produce per-cell values. These simulations are

used in iconic urban models [24]. Vanegas et al. [25]

tightly couple the simulation with modeling by allow-

ing the designer to brush values for variables such as

jobs or population, then iterate the dynamical system

to equilibrium and generate the geometry. Symbolic

rather than iconic models are the focus of our research.

Geographic visualization This has similar requirements

to that of urban model visualization because both deal

with similar datasets [17, 22]. Dykes and Brunsdon [7]

demonstrate density estimation at different bandwidths

to produce scale varying visualizations of geographical

data. Chang et al. [6] display 3D urban models along

with a parallel coordinates view and matrix view of de-

mographic data. Guo [10] visualizes spatial flow (migra-

tion of the US population) by analyzing the flow. Flow-
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strates [5] provides an interactive view of human migra-

tion data. Our work differs in that we explicitly support

the exploration of the phase space through simulation

and visualization for the purposes of understanding the

dynamic models, in order to aid the development of the

science and systems underpinning urban modeling.

3 Phase Space Exploration

Terminology The n dimensional phase (or state) space

contains all possible states of a dynamic system. Each

nD point in phase space represents an nD state and

each state is a unique point in the nD phase space.

Each full parameter in the model is a dimension in the

phase space. Dynamic models evolve over time from

their initial condition to their converged state which

is known as an attractor. The basin of attraction are

all those initial states that converge to the attractor

in question. During model evolution, the model passes

through states (nD points) in phase space, and thus

a simulation run traces out a path through the phase

space. The model developer is aiming to make their

model realistic. They seek to attain this by developing

their model according to their understanding the phase

space, simulation paths, the relationship of the attrac-

tors to initial conditions (basins of attraction) and the

influence of noise on the system. Noise is of special in-

terest as it gives some indication of the robustness of

the system. If small variations in the model solve to

different attractors the system is considered to be at a

bifurcation point and chaotic. If a model is chaotic, then

small errors in observations used to determine the pa-

rameters or small external influencing factors can have

a high impact on solutions, and thus the system may

not give robust predictions. Conversely, if the model

is in a non-chaotic region, then errors in initial condi-

tions or external influencing factors are tolerable and

the system predictions can be treated as reliable.

Taxonomy Table 1 presents our classification of the

modes of operation of a dynamic model. For each mode

of operation, where applicable, we give an end-user use

case and a model developer use case. We are concerned

with model developers. Each successive row in our tax-

onomy represents an increase in model use complexity

with a corresponding increase in computational time.

Suggested typical visual encodings are given in the

right-most column, along with references to our con-

tributions in the remaining sections of this paper.

Urban Model Dynamic models typically cover time-

dependent behavior and are represented using differen-

tial equations. In this section we briefly introduce the

Model parameter Explanation

ei Spend per person (within zone i)

Pi Population count (within zone i)

Wj Retail floor space of center j

cij Cost of travel between i and j

mj Parking / transport costs to j

α Influence of retail size on the model

β Influence of travel cost on the model

e−βmjcik
Exponential decay (people prefer
to travel to closer retail centers)

KWj The cost of running a center

ε System response speed to inputs

Table 2 The terms used in Eq. 1.

urban model used throughout this paper. A full de-

scription of the urban model is provided in the supple-

mentary material as its development is the focus of the

urban modelers and not this visualization research.

dWj

dt
= ε

(∑
i

[
eiPiW

α
j e

−βmjcij∑
kW

α
k e

−βmjcik

]
−KWj

)
(1)

Equation 1 is a system of nonlinear simultaneous dif-

ferential equations, reflecting the nature of relationships

between size and revenue in retail systems. These equa-

tions cannot be solved analytically: computer simula-

tion and visualization are essential. Table 2 gives the

notation for this model. Parameters can be constant if

no subscript is used (e.g., α), depend on individuals if

one subscript is used (e.g., Pi (zone population)), or

account for interactions (e.g., cij cost of travel between

zones and retail centers). Biological trophic models fol-

low a similar form with population counts, population

dispersal, interactions (e.g., Nij = k indicates the rate,

k, that population i predates population j).

Currently, an average of approximately 1,400 model

runs can be carried out per second (with an average of

approximately 1000 time-steps per simulation).

3.1 Multiple model runs, regular sampling

In this mode, the model developer wishes to investi-

gate how varying parameters influence the model out-

put. It would be useful to explore the entire param-

eter space, but such brute force exploration typically

leads to lengthy computation times. The model devel-

oper may choose to vary one parameter systematically

to explore all the model outputs. We plot the model out-

put on the y-axis, with the single varying parameter on

the x-axis. Such an approach was taken by Orrell [16],
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Mode of operation End user Model developer Visual encoding

Single model run (e.g. for 10D
model, 1 model run).

What happens to species A when
species B is removed from the
food chain?
What happens to shopping center
A when free parking is introduced
at centre B?

Not utilized in this
mode, see next mode.

Bar chart, histogram,
probability plots [2],
not the focus of this pa-
per.

Multiple model runs (regular
sampling of dimensions) [1], e.g.
for 10D model, regularly sam-
pling two of the dimensions with
21 samples equates to 441 runs
and regularly sampling all 10D
with 21 samples equates to ≈16
trillion model runs (i.e., practi-
cally impossible, but see hyper-
plane §3.1. 21 was chosen as it
covers space sufficiently but still
allowed a reasonable computa-
tion.

What happens to species A when
differing numbers of species B are
culled?
What happens to shopping centre
A when the rent per m2 is varied?

How do parameter
changes affect the
model outputs? Model
testing leading to
model understanding.

Small multiples, e.g.
Spectral bifurca-
tion [16], parallel
coordinates [13,14] and
scatterplots [1], Fig. 1
(not the main focus of
this paper).

Multiple model runs (introducing
variance), e.g. for 10D model, can
choose number of noise runs (e.g.
1000 model runs).

How stable are species popu-
lations (or retail centre size)
based on current observed num-
bers and assumed parameters?
(Using variance integrates any
observational errors or external
factors into the model).

Model testing leading
to understanding. Un-
derstanding attractors
and exploration of bi-
furcation and catastro-
phe theories.

Our new visualization
§3.2, Figs. 3 and 4.

Multiple model runs (regular
sampling), running each with n
noise iterations (e.g. n = 1000),
e.g. 10D with 21 samples per di-
mension and 1000 noise, ≈16,000
trillion model runs.

Complete exploration
of basins of attraction
and bifurcations. Com-
prehensive understand-
ing of model.

Our new visualiza-
tions, §3.3, Fig. 5,
made tractable using
hyper plane idea §3.1.

Adaptive sampling rather than
regular sampling, constraining
variance (and adaptive sam-
pling), e.g. using importance sam-
pling / probability density func-
tions or tracking features and
sampling either side of the bound-
ary.

As above, but reducing
simulation time, and
increasing resolution in
critical areas (bifurca-
tions).

Future research work.
Achieved through man-
ually directing sam-
pling [1, 2, 21].

Table 1 We have identified the main utilization of a dynamic model. We give just a few examples of the types of questions
each mode can answer for end-users and model developers/researchers (our work focuses on helping model developers). We
also highlight the visual encoding that could be used for each mode.

who has produced bifurcation diagrams for the Lorenz

dynamic model. In the approach 2D plots are created

that are useful for determining bifurcations and chaotic

behaviour. The visualisations will not scale to higher

levels in our taxonomy since they appear to be lim-

ited in the numbers of attractors that can be visualised

clearly. A second parameter may be varied producing

multiple 2D plots which could be visualised using the

technique of small multiples. We focused on the more

complex problems posed by the higher levels of our tax-

onomy.

Locating attractors Exploring the entire parameter

space to locate all of the attractors requires the sim-

ulation to run to equilibrium starting at each point in

the phase space. As an example, we executed a small

three centre retail model, allowing just floor area to

vary as initial condition (3 dimensions). We sampled

with a discrete spacing of 21 in each dimension result-

ing in 213 = 9261 starting conditions for simulation.

Each of the 9261 simulations were run to equilibrium,

resulting in 3 attractors (we have found up to 7 by ex-

ploring parameter space). In this simpler simulation,

each attractor represents a solution where that retail

center dominates the other two. Visualizations of the



DynaMoVis: Visualization of dynamic models for urban modeling 5

Fig. 1 (a) shows the two-dimensional equal-total hyperplane in three-dimensional phase space with labels providing one
possible real world interpretation of the basins of attraction in the phase space of a dynamic retail model. (b) and (c) show
a number of trajectories from uniformly spaced start points in three-dimensional phase space moving quickly to the two-
dimensional equal-total hyperplane

paths through phase space (Figs. 1(b,c)) show the so-

lution quickly converges to a point on a hyperplane

then travels along the hyperplane to the attractor. This

prompted the realization that the model has a certain

amount of spending power supported by the population

that ultimately dictates the amount of retail the system

can support. Initial conditions with too much or too

little retail quickly move to the hyperplane that repre-

sents the equi-total spending power (e.g. retail grows to

accommodate spending power, then retail centers com-

pete before one dominates these cases). Further exper-

iments with the urban modeler confirmed this.

Hyperplane method We therefore use this as the basis

for our approach. We generate points on the hyperplane

as starting points for the simulation. Fig. 1(a) shows a

hyperplane through the phase space. Each state on the

hyperplane is colored according to its attractor. If an

attractor represents a state we are trying to achieve

through urban planning, and we start in a different

basin from the attractor we want to move to, then we

must use some planning policy tool to effect that (ex-

ogenous) change. This approach has significant impact

on higher dimensional models that were previously im-

possible to explore. For 10 retail centers and 21 sam-

ples in each dimension, 2110 ≈ 16.6 trillion simulations

would be needed for full exploration of floor space, but

in this approach there are ≈ 14 million points on the

hyperplane for the same spacing (300 years compared

to just under 2 hours at the current speed of 1400 model

runs per second).

Hyperplane visualization: Scatter plot approach Model

developers wish to understand how models evolve and

react to changing parameters, and do this through ex-

ploring the basins of attraction. Since they are ulti-

mately targeting their models towards end-users they

also wish to understand how a model could be used

from that perspective. For our first design approach

we chose to render multiple vector fields (like multi-

ple scatter plots) where we plot pairs of dimensions

against each other from the higher dimensional hyper-

plane (Fig. 2). Within each plot we indicate with uni-

formly sized arrows the direction and speed (using a

Color Brewer two hue divergent scale as a continuous

scale) of the model evolution towards the attractor. At-

tractors are indicated by differently sized circles, where

size is a categorical label for each attractor. When the

current real state of the model is known, this is depicted

in the system using a white circle.

Case Study and Interpretation We built a basin net-

work for an 8-zone South Yorkshire (UK) retail system.

The largest 8 centers account for approximately 86% of

the retail floorspace. The simulation finds 12 basins of

attraction (around 0.1% of starting states did not con-

verge to an attractor by the cut-off limit, but these

are not considered further at this stage). From a self-

interest view, a retail center owner could use the phase

space to discover those basins of attraction where their

retail center is successful. They could then determine

which of the favorable basins is closest to the current

state and exert change within their influence to adjust

the vector field such that the direction from the current

observed state favors their basin choice, and maximize

the speed in that direction. For an altruistic planner,

they would target stability in the system. They could

adjust parameters in their control to bring about the co-

incidence of the model state with a region of low speed

and hence stability.
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Fig. 2 Multiple vector field plot with zoomed in Parkgate against Rotherham on the right. A Color Brewer two hue divergent
scale is used as a continuous scale for model velocity (red fast, blue slow). Model evolution direction and speed is encoded by
arrow direction and color. Colored circles are a categorical label for attractors. The white circle is the current observed state
(e.g. using real data).

3.2 Single starting state, multiple model runs with

variance

Dynamic models are normally deterministic, but the ur-

ban modelers wanted to introduce noise into the model

leading to non-determinism and the consequent inves-

tigation of chaos and bifurcations. The motivation for

this is that it is impossible to create a fully accurate

model. For example, urban models are sensitive to ex-

ternal influences which can affect the path of the sys-

tem, e.g. boom and recession, chains of shops opening

/ closing, planning policies, investment, etc. Biological

trophic models are sensitive to external factors such as

weather patterns, changes of land use, etc.

We add a stochastic term to the dynamics to give:

dWj

dt
= ε

(∑
i

[
eiPiW

α
j e

−βmjcij∑
kW

α
k e

−βmjcik

]
−KWj

)
+Wjφ (2)

where φ is a stochastic term drawn from a normal dis-

tribution with a mean of zero, in this case, introducing a

variation to the retail center size, although a multiplier

could be integrated into alternative terms.

Visual encoding The end states of all the simulations

are plotted together on a parallel coordinates system

that is spline-based (Fig. 3). Each dimension represents

the size of one retail zone in the end state of a simu-

lation run. Using splines, rather than piecewise linear

segments, also makes it easier to follow a single simu-

lation run or cluster of similar simulation runs across

all dimensions of phase space in the plot. The view is

rendered in two stages. In the first stage, each spline

is plotted with a small red color component value and

blended (sourceBlend=One, destBlend=One, blendOp-

eration=Add) so that when splines overlap their red

color components are added together. The accumulated

red color component value of each pixel is then equiv-

alent to a count of the number of lines crossing that

point. In the second stage, a pixel shader is applied

that maps the red color component of each pixel onto a

user selected color map. In these images we have used a

single hue perceptually linear gradient although other

maps can be chosen. This procedure makes it easier

to compare the line density at different points across

the view. Additionally white vertical lines indicate the

range of minimum to maximum values for each dimen-

sion.

Interpretation The thickness of the combined over-

plotted splines for each dimension of the parallel coor-

dinates plot illustrates the stability of that retail zone

– a thin line (e.g. Fig. 3 part A) meaning there is little

variation given noise in the system, while a thicker line

(e.g. Fig. 3 part C) means there is more variation. If,

for a single dimension, the splines pass through mul-

tiple points with a gap between (e.g. Fig. 3 part B)

then this suggests that there are multiple possible end
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Fig. 3 Possible futures parallel coordinates spline density display of the effect of noise on multiple simulation runs: (A) little
variation in a small retail zone. (B) multiple stable solutions for a retail zone. (C) large variation in a large retail zone.

states for this retail center given these input parame-

ters and that the end states represent different attrac-

tors in phase space, the noise added to the model hav-

ing caused a basin boundary to have been crossed. The

color intensity indicates the likelihood of a particular

state being reached. The advantage of this approach

is that multiple attractors or equilibrium solutions can

potentially be identified for each point in the parameter

space. Alternatives are clustering [29], but such an ap-

proach would not give a cue for probability, continuous

PCP [12] could be used, but without splines would not

so clearly indicate the relationship we can see (in the

example below). Curves have before been introduced to

parallel coordinates and evaluated [8, 11,20].
Case study 1000 simulation runs were run for retail

centres of South Yorkshire with 4 percent noise (tak-

ing about 1 second). We used data from 2004 about

retail zone size for South Yorkshire for validation in

Fig. 4a. The possible futures generated are shown in

Fig. 4b. All of the end states tend to be in one of two

solutions or basins of attraction. The first is shown by

the low density blue line over a large range through

Rotherham and the second by the higher density whiter

line going low through Rotherham. This suggests strong

competition between Rotherham and Parkgate Retail

World with Rotherham the more likely of the two to

decline with Parkgate benefiting almost inversely pro-

portional to each other. In reality these two centers are

located very close to each other and Rotherham expe-

rienced a 30 percent decline by 2009. In other words,

using this method in 2004 could have predicted a rea-

sonable chance of decline and explored interventions if

we wanted to avoid it. The use of splines allows us to

follow the result clearly from axis to axis, clearing es-

tablishing relationships like the one just explored. We

also see multiple outcomes and the color intensity in-

dicates the strength of probability. This information is

gained through one static image.

3.3 Multiple starting states, multiple model runs with

variance

For this mode the simulation is run using noise runs

as in the previous section, but for every initial state.

For the urban model, each attractor comprises the sim-

ulated floor size parameters for each retail center and

the whole system has the current set of parameters in

use. For each initial state, we know the attractor it con-
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Fig. 4 (a) South Yorkshire retail zone size data for 2004 and (b) 1000 simulation runs run with 4 percent noise.

verges to, and also the attractors it converges to in the

noisy runs. Together, this data makes up a basin net-

work. We target expert model developers who want to

understand basins of attraction, the start states that

led to them, the effect of noise on their models, and

probability of alternative futures in order to aid their

own research to develop reliable models.

Visual encoding We tried graph layout tool Gephi

(http://gephi.github.io/), which provided inspiration

for our experts and our design. This background is

provided as additional material. We implemented our

own force-directed graph layout in order to integrate

with our other views of the data to give multiply linked

views for phase space exploration and to overcome some

limitations. Our data consists of the attractors, initial

states, and for each initial state we have the noise runs

and percentage of runs that moved towards an alterna-

tive attractor. We also have the distance in nD phase

space between the initial state and its attractor on the

deterministic run. We can map any of this data to the

visual channels of color (of node), size (of node) and

length (of edge between attractor and state). We use

force directed layout with an additional relaxation steps

on the image plane. We give various views in the addi-

tional material, but for Fig. 5 we map distance to node

size and attractor to color. Light edges connect initial

states to their deterministic attractor. An opaque edge

connects attractors that are neighbors in phase space

(when noise is added some states move to the neighbor).

The percentage of nodes flipping state is mapped to the

two color divergent blue to red color map (blue=highly

likely to fall to a different attractor, red=low) in the

adjacency matrix. There are examples in the additional

material where this is mapped to node color. The differ-

ent views are linked with a single data point highlighted

across views.

Interpretation This method ensures attractors become

visible in the visualization since they become the center

of large basins. The basins popout since they are the

clusters of states that converge to that basin on the de-

terministic run. States that jump to alternative basins

of attraction are notable using color in the examples in

the additional material. The numbers of nodes in the

cluster visibly give an indication of basin size.

There are several forms of interaction: Direct selec-

tion using mouse interaction (attractors, initial states,

rectangular regions and multiple selections); Selections

through an adjacency matrix view of the basins (click-

ing on the square selects the corresponding initial state

nodes that bifurcate to both attractors); Filtering of

selections (using sliders to filter in or out based on nD

distance, and noise). The parameters of the nodes se-
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Fig. 5 Overall application. In the graph view we see the attractors / basins. Color indicates start states that converge to that
basin. Size is distance from the basin in nD space. A network connecting basins is displayed where an edge means the two
attractors have states that jump to the alternative attractor in noisy runs. We can switch the graph view between any of the
alternative views given in the additional material where properties are mapped to different elements of the visualization.

lected (i.e., retail floor size) are plotted on the PCP

view of the data which can be flipped between splines

or linear piecewise segments. The user can zoom and

pan each display independently.

4 Feedback and Summary

We have created DynaMoVis as a system for the visu-

alization of dynamic models. We have categorized the

main functionality of such models, and explored useful

visualizations for each category, designed with our ex-

perts. We have presented an urban model case study

throughout the paper to demonstrate our spline based

PCPs for noise simulations, our network visualization

for basin and attractor understanding and multiple vec-

tor field plots for understanding model velocity and di-

rection.

We have written our system with two urban model-

ers and two biologists, who work within larger groups

for wider dissemination and use. From our urban mod-

eling domain experts, their feedback on contributions

are: The hyperplane observation which became appar-

ent when visualizing the data and was verified by them

is an observation that enables a massive reduction in the

model runs. Therefore, for the first time, they have been

able to compute models over wide parameter spaces

with noise. These additional modes of operation and

the interactive querying has led for the first time for

them to be able to understand the interaction of basins

with the view of model velocity and give a more com-

plete view of their models than before. From our biol-

ogist colleagues, they also used nested loops to iterate

over Matlab code for exploring parameters over their

models, so likewise the massive improvement in speed

has led to great changes in their research scope. We are

currently exploring variations on the hyperplane idea

where we use rule based approaches to cut down the

domain of parameters for model input. The most im-

portant contribution from their viewpoint is that the al-

ready realized implementation for urban modelers that

includes the exponential decay term for distance can al-

low their models to include population interactions cor-

rectly taking into account distance. The basin network

view allows them to understand the stability of popu-

lations and answer questions such as What happens to

other species if species is removed from the model. The

model velocity allows them to understand how quickly
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species conditions are changing. One interesting out-

come of the cross-discipline work has been the gener-

alization of the approach, and also the application of

models in one area across to another.
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