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a b s t r a c t

Processes involving a unidirectional shear flow component are widespread in industrial manufacturing
techniques such as printing and coating, or in physiological events such as blood coagulation. Standard
rheometric techniques are usually employed under quiescent conditions and as such are inappropriate
for the study of microstructural modification induced by the presence of a unidirectional shear flow.
We demonstrate how controlled stress parallel superposition (CSPS) may be exploited to enable accurate
detection of the Gel Point and analysis of Gel Point parameters for systems undergoing a viscoelastic
liquid (VEL) to viscoelastic solid (VES) transition in the presence of a unidirectional flow field. Specifically,
we note that certain features of the CSPS experiment, when performed near the Gel Point, may obviate
previously reported concerns regarding the experiment. A biopolymer system (gelatin) which forms gels
by thermoreversible gelation is employed as a model gelling material to confirm the ability of CSPS to
characterise the stress relaxation characteristics of critical-gels in the presence of (a) progressively
decreasing and (b) progressively increasing unidirectional strain rate and oscillatory strain amplitude.
Additional validation of CSPS results is reported for a silicone dielectric gel used in the industrial produc-
tion of printed electronic products. Finally, CSPS is used to investigate microstructural modification of
fibrin–thrombin gels as a consequence of clot formation under a unidirectional shear stress. The results
confirm the validity of the CSPS technique in gelation studies and the technique is used, for the first time,
to directly record the thermally induced VES to VEL transition in aqueous gelatin systems.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A wide range of complex fluids are used as a basis for creating
products by industrial processes involving flow, e.g. in manufacture
by printing or coating. In biology the physiological process of blood
coagulation involves a significant element of shear flow which may
influence the formation and functionality of blood clots. There is a
need to better understand and characterise the rheological proper-
ties of such systems and products, in particular the evolution of their
viscoelastic properties and microstructure under imposed shear
flows. One rheometric response to this requirement involves the
superposition of a steady (or unidirectional) shear flow on a small
amplitude oscillatory shear (SAOS) flow component. This may

involve parallel or orthogonal superposition of the unidirectional
and oscillatory flow components, under controlled stress or con-
trolled deformation rate conditions.

Superposition rheometry provides a basis for probing micro-
structural changes associated with a steady (or unidirectional)
deformation. Interpretation of such experiments involves the
assumption that the oscillatory (or ‘probe’) deformation has neg-
ligible effect on the material and hence any apparent microstruc-
tural changes may be attributed to the steady deformation alone
[1–6]. Davies et al. [7] reported the implementation of superpo-
sition experiments in a controlled stress rheometer. The ability
to perform controlled stress parallel superposition (CSPS) has
since been available on many commercial rheometers but its
use has not been widely reported in the context of systems
undergoing gelation. In this paper we consider the application
of CSPS to three material systems which are the basis of very dif-
ferent products but which share a rheological feature in terms of
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their gelation characteristics, all displaying critical-gel behaviour
at the Gel Point, GP.

The first of these systems, a biopolymer gel, involves the ther-
moreversible gelation of aqueous gelatin solutions to form a phys-
ical gel, whereas the other systems considered herein involve the
formation of chemical gels featuring permanent cross-linked
branching networks. The second system is a commercial silicone
dielectric gel (SDG) which is used in the production of electronic
products created by industrial printing processes. The third exper-
imental system is a fibrin gel formed by the thrombin-induced
polymerisation of fibrinogen molecules. The gel network product
in the latter case forms the principal microstructural component
of a blood clot [8]. The latter case is particularly interesting as
the critical-gel which is established at the GP serves as a ‘template’
for the ensuing development of microstructure and associated rhe-
ological properties in the post-GP phase of fibrin clot evolution [9].

In the present paper we report a further evaluation of the CSPS
technique which focuses on its application to critical-gels. Dealy
and Wissbrun [5] note that molecular rearrangement and disen-
tanglement (as a consequence of the large deformation) always
result in deviations from linear viscoelasticity and hence violation
of the Boltzmann superposition principle. Whilst the material
response to the steady deformation will be non-linear the response
to the superposed oscillation should not affect the materials micro-
structure [10]. Previous workers have suggested that the Kramers–
Kronig relations may be violated where the steady (or unidirec-
tional) shear field causes significant enhancement of microstruc-
ture, with gelling systems near the GP being a possible example
of such a situation [10]. We report herein how certain features of
CSPS experiments on systems near the GP may obviate such con-
cerns and how they may be exploited to enable accurate detection
of the GP and analysis of GP parameters, and other rheological
characteristics, in the presence of a unidirectional flow field.

2. Theoretical

2.1. Superposition rheometry for Gel Point detection

In parallel superposition an oscillatory deformation of ampli-
tude c0 and frequency x are superimposed upon a steady strain
rate, with both deformations occurring in the same direction. The
resulting equation for the total applied stain rate, is [5,11,12]:

_cðtÞ ¼ _cm þ c0x cosðxtÞ ð2:1Þ

Booij [11] suggested that if the oscillatory deformation was car-
ried out within the linear viscoelastic range (LVR) then the result-
ing stress waveform would take the form

rðtÞ ¼ rm þ jG�kjc0sinðxt þ dkÞ ð2:2Þ

Thus G�k (and hence G0k and G00k) can be defined for systems
undergoing parallel steady and oscillatory shear, provided that
the oscillatory deformation has negligible effect on the material
(i.e. occurs within the LVR). The subscript k is used to differentiate
these parameters from their counterparts determined under quies-
cent conditions [13]. Alternatively, an oscillatory stress, ro, may be
superimposed on a steady stress, rm, resulting in a similar pair of
equations. In parallel superposition the effect of the oscillatory per-
turbation on _cm can be assessed using:

c0 �
_cm

x
ð2:3Þ

Satisfying this inequality (in conjunction with the usual LVR
considerations) confirms that the effect of the oscillatory deforma-
tion on the steady deformation will be minimal [3] (as shown in
Fig. 1). And hence the molecular rearrangements and dis-entangle-
ments can be assumed to be due solely to the steady deformation.

It should be noted that in controlled deformation rate superpo-
sition experiments, the flow is usually described in terms of its
oscillatory (SAOS) and steady components. This is not appropriate
to the CSPS work reported herein which involves time-varying uni-
directional shear flow developed under constant stress due to the
rheological changes associated with gelation. Thus we refer herein
to the unidirectional shear flow component, rather than the steady
component of the superposition experiment.

Somma et al. [3] studied parallel superposition of oscillation on
steady flows in polymer melts. They report significant differences
between G0k, G00k , g�k or dk and their corresponding quiescent param-
eters where x > xc (where xc can be defined as _cm=co). In other

Fig. 1. Representative strain rate profiles during gelation of a sample of SDG for
unidirectional shear (C), oscillatory (D) and CSPS (E) experiments. (A and B) Show
data obtained using oscillatory and unidirectional stresses of 5 Pa and 30 Pa,
respectively. Figures (C–E) are derived from g⁄ data (B) assuming a frequency of
0.01 Hz (for illustration). It should be noted that 0.01 Hz is not an appropriate
frequency for GP studies unless gelation occurs extremely slowly.
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superposition experiments Boukany and Wang [14] report values
of G0k similar to under SAOS when G0k was probed at frequencies
corresponding to timescales lower than that associated with the
background steady shear.

Prompted by these findings we have sought to assess the appli-
cation of CSPS to systems undergoing gelation. Specifically, we
refer to systems which display a GP in terms of the ‘Winter-Cham-
bon’ GP criterion [15]. For such systems the GP defines the transi-
tion between a viscoelastic liquid (VEL) and a viscoelastic solid
(VES). At the GP, the elastic and viscous components of the com-
plex shear modulus G⁄ (the dynamic rigidity, G0 and loss modulus,
G00, respectively) scale as power-laws in frequency, x, as
G0 � G00 � xa. This feature enables the ‘critical-gel’ which is estab-
lished at the GP to be identified by the corresponding frequency
independence of the loss tangent, tan d ¼ G00=G0 where d represents
the phase angle between stress and strain waveforms in SAOS
measurements and is related to the stress relaxation exponent a
as a = 2d/p.

Alternatively the GP may be described in terms of the power
law stress relaxation given by the Winter and Chambon gel
equation

GðtÞ ¼ St�a ð2:4Þ

where G denotes the stress relaxation modulus, S the gel strength
parameter and a the stress relaxation exponent [15].

The following points are noteworthy in the context of the oscil-
latory and unidirectional shear flows arising in the application of
CSPS in GP experiments. We refer to Fig. 1 which shows CSPS data
obtained on a silicone dielectric gel, SDG. Fig. 1C–E shows shear
rate profiles obtained from experiments involving unidirectional
flow (C), small amplitude oscillatory flow (D) and parallel superpo-
sition flow (E), respectively. The shear rate profiles were derived
from complex viscosity (g⁄) measurements (Fig. 1B) using a 5 Pa
oscillatory stress amplitude, ro, at a frequency of 0.01 Hz (D and
E) and a unidirectional stress, rs, of 30 Pa (C and E). The profiles
illustrate the main differences between unidirectional, oscillatory
and CSPS experiments in terms of their pre-GP details. As expected,
the strain rate profiles C and E show that the unidirectional shear
rate tends to zero as the GP is approached (see Fig. 1A). It follows
that the CSPS experiment approximates the SAOS experiment (D)
under these conditions i.e. in the near vicinity of the GP. In this
paper we report work designed to test the hypothesis that, under
such conditions, CSPS measurements may be interpreted in terms
of derived GP parameters (a, S) in the same way as their SAOS
counterparts. The criterion used as a basis for assessing the validity
of this assumption is discussed below (Section 2.2). Further work is
then reported for a system in which a rheological VES to VEL tran-
sition is approached under conditions involving increasing ampli-
tudes of oscillatory and unidirectional strain rates.

2.2. Assessing the validity of Gel Point parameters from CSPS
measurements

A complete characterisation of the stress relaxation characteris-
tics of the incipient gel network requires the gel strength parame-
ter, S, in addition to the exponent a (Eq. (2.4)). S can be calculated
using Eqs. (2.5) and (2.6) [15].

S ¼ 2CðaÞ sinðap=2ÞG0c
p

ð2:5Þ

G0c ¼
G0ðxÞ
xa ð2:6Þ

Whilst a is obtained by identifying the frequency independent
phase angle, d, and is therefore sensitive to the power-law fre-
quency scaling of G0 and G00, S is calculated based on the magnitude

of G0 at a reference frequency (1 Hz in this study). Thus the value of
a places no constraints on the value of S and the two parameters
can be viewed as independent.

Scanlan and Winter [16] reported a linear relationship between
ln(S) and a in several divinyl-terminated poly(dimethylsiloxance)
prepolymers crosslinked with tetrakis(dimethylsiloxy) silane for
which the critical-gel’s microstructural characteristics were modi-
fied by controlling sample stoichiometry. In that work, S was con-
sidered to be composed of a short time constant k0 and a modulus
G0, both being characteristic properties of the prepolymer, where

S ¼ G0k
a
0 ð2:7Þ

It follows that for samples in which the critical gel network is
formed from the same gelation precursor but which display differ-
ent microstructures (and hence differing stress relaxation proper-
ties), valid rheological measurements yield a linear relationship
between ln(S) and a, (as confirmed by measurements reported
on polymer melts [16]). Conformity to this relationship (Eq. (2.7))
was used in the present study as a basis for the validation of esti-
mates of a derived from CSPS measurements. For this purpose the
GP criterion used was based on attainment of frequency indepen-
dence of tan dk.

3. Experimental

3.1. Materials

3.1.1. Gelatin gels
Aqueous gelatin solutions were prepared with general-purpose

grade bovine gelatin powder, with a bloom strength of 100 and an
average molecular weight of 80,000 (Fisher Scientific, UK). Each
sample was freshly prepared for each experiment, gelatin being
added to deionised water and dispersed vigorously for 2 min
before being heated to 60 �C and held at that temperature for
45 min, the samples being removed every 10 min to be further agi-
tated for 1 min.

3.1.2. Fibrin–thrombin gels
Human fibrinogen (43.0 mg/ml) and human-a-thrombin (500

NIH mL�1) were obtained from Enzyme Research Laboratories
Ltd., UK, and prepared as instructed by the manufacturer. Aliquots
were stored at �80 �C until required. Samples of human albumin
(Sigma Aldrich, 10 wt%), and CaCl2 (Fluka, 1 M) were stored at
4 �C until required. Samples of fibrinogen and thrombin were
allowed to thaw at room temperature before being placed on ice.
Appropriate amounts of albumin diluted to 4.5 wt% in Tris Buffered
Saline (Sigma Aldrich), fibrinogen and CaCl2 were mixed (in that
order) to give the required final concentrations of c = 10 mg/mL
fibrinogen and 0.005 M CaCl2. Thrombin was added to initiate gela-
tion at the final concentration, /, in the range 0.01 < / < 0.19
NIH ml�1 immediately prior to the sample’s transfer to the
rheometer.

3.1.3. Silicone dielectric gels
The silicone gel used herein was a 2 part addition cure system

from ACC silicones Ltd. The gel comprised vinyl-ended silicone
polymers, hydride cross-linker, bulking fillers, platinum catalyst,
adhesion promoters and a pot life extender. During gelation vinyl
polymers become cross-linked by the hydride cross-linker in the
presence of the catalysts with no by-products. Samples were pre-
pared by mixing equal masses of the components of the silicone
gel at room temperature. The sample was then placed in a refriger-
ator at 4 �C for at least 30 min to allow degassing of the sample
(gelation taking approximately 48 h at this temperature).
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3.2. Rheometry

A TA Instruments AR-G2 rheometer fitted with a 60 mm 2� alu-
minium cone was used to perform all experiments on gelatin and
silicone dielectric gels. The same system was used for CSPS studies
of fibrin–thrombin gels to facilitate removal of the intact sample
from the rheometer after gelation for further studies not reported
herein. SAOS studies of fibrin–thrombin gels were performed using
a double gap concentric cylinder geometry. Measurements on gela-
tin were performed using a frequency sweep experiment with 7 fre-
quencies logarithmically spaced between 0.2 Hz and 2.0 Hz
(limited by sample mutation and sample inertia considerations),
experiments on fibrinogen–thrombin gels were also performed
between 0.2 Hz and 2.0 Hz but with 4 logarithmically spaced fre-
quencies to minimize interpolation errors [17]. A Fourier Transform
Mechanical Spectroscopy, FTMS, approach to GP detection was
employed for SDG experiments. FTMS combines several harmonic
frequencies in a composite test waveform with the dynamic
response of the material to each component frequency being stud-
ied separately via Fourier analysis [18,19]. The waveform employed
in the study of SDG samples herein consisted of a fundamental fre-
quency of 2 Hz with 3rd, 5th, 7th and 10th harmonic components.

An initial assessment of the LVR for the materials studied herein
was made by performing amplitude sweeps in the pre and post Gel
Point regions. A more rigorous assessment of linearity at the GP is
difficult to achieve using the conventional stress or strain ampli-
tude sweep due to the transient nature of the critical gel. Accord-
ingly, Hawkins et al. [17] employed the relative amplitude of the
3rd harmonic and fundamental frequency components of the dis-
placement signal (i.e. H3/H1) at the GP as a measure of deviation
from linearity. In the present study H3/H1 was used to assess line-
arity over a range of unidirectional stress levels, a ratio (H3/H1)
greater than 0.001 being taken to indicate the onset of non-linear-
ity. This threshold value was established by monitoring H3/H1 dur-
ing a stress amplitude sweep on a suitably slowly gelling gelatin
sample. The absence of mutation artefacts was ensured by exclud-
ing data associated with rapid gelation where the mutation
number (Nmu) exceeded 0.15 as proposed by Winter et al. [20].

4. Results

4.1. Gelatin

The progressive decrease in the unidirectional shear field in the
approach to the GP under constant stress suggests that interpreta-
tion of CSPS experiments might allow accurate GP determination
given sufficiently small _c (see Fig.1). In the present work this
assumption was tested by comparing GP data obtained under FS
and CSPS for gelatin systems. In addition, experiments were
devised in order to test whether CSPS could yield valid data for sys-
tems undergoing rheological change involving a progressive
increase in the amplitudes of the unidirectional shear field and
oscillatory strain under constant stress. In the present work that
rheological change was represented by a transition from a previ-
ously gelled viscoelastic solid (VES) state back to its precursor vis-
coelastic liquid (VEL) state.

These experiments involved exploiting the thermoreversible
gelation of aqueous gelatin solutions by inducing a temperature
increase in the post-GP regime. The result is to produce a VES to
VEL transition (i.e. the opposite of that exhibited in the initial GP
experiment). In the present experiments the temperature was
maintained constant throughout the gelation process at T = 27 �C
until the post GP phase was attained, following which (after
4000 s) the temperature was increased by 0.05 �C/min from 27 �C
to 33 �C, this latter value exceeding the maximum gelation temper-
ature TGPmax for this system (the temperature above which tg is
infinitely large) [21].

Fig. 2A shows the results of FS (SAOS) experiments. The initial
values of d (approximately 90� at all test frequencies) reflect the
near-Newtonian fluid response of the material, this being followed
at later times by the development of a frequency dependence of d
characteristic of a viscoelastic liquid (VEL), with the recorded val-
ues of d declining with increasing oscillatory frequency. The fre-
quency dependence of d declines progressively as the GP is
approached, the GP being marked by frequency independence of
the loss tangent, as previously reported for this system [17,19].
The post-GP phase is marked by development of a viscoelastic

Fig. 2. Rheological transitions (VEL to VES and VES to VEL) for gelatin samples studied under SOAS (Fig. 2A) and CSPS (Fig. 2B). GP marks the Gel Point which in CSPS is
measured under conditions of progressively decreasing unidirectional strain rate and oscillatory strain amplitude whilst SLT marks the solid–liquid (VES to VEL) transition.
Note that under CSPS the latter is approached under conditions of increasing unidirectional strain rate and oscillatory strain amplitude.
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solid-like response with the recorded values of d increasing with
increasing oscillatory frequency.

It is noteworthy that the corresponding results obtained
by CSPS reveal the same rheological features in terms of the fre-
quency dependence of dk (see Fig. 2B). The value of d recorded at
the GP by FS (SAOS) is approximately d = 62�, the corresponding
frequency independent value of recorded by CSPS being also 62�,
in excellent agreement with published data [17,19]. Moreover
the values of G0 (FS SAOS) and G0k (CSPS) corresponding to fre-
quency independence of d and dk, respectively were also indistin-
guishable ðG0k � G0 � 1:4 Pa).

We now consider the results obtained on these systems follow-
ing an increase of the test temperature to a constant value above
TGPmax. These results are obtained during the resulting transition
from a previously gelled viscoelastic solid state, back to the precur-
sor viscoelastic fluid state (SLT in Fig. 2). This increase in tempera-
ture to a value above the maximum gelation temperature causes a
marked and progressive decrease in G0 and G0k, with a correspond-
ing increase in d and dk, the significant point being that their
VES-like frequency dependence is initially preserved. A striking
feature of the ensuing rheological change is that both d and dk sub-
sequently pass through a second frequency independent point as
the system loses its solid-like characteristics, this being accompa-
nied by a rapid decline in the value of both G0 (FS) and G0k (CSPS).
It is noteworthy that the frequency independent values of d and
dk at the SLT are also indistinguishable at this ‘de-gelling’ (VES to
VEL) transition; and are identical to those recorded during the ini-
tial gel formation (GP) experiments. Thereafter, the frequency
dependence of d and dk change, becoming characteristic of a VEL,
the values of d and dk both increasing progressively towards 90�
as the temperature is maintained above TGPmax.

A significant feature of Fig. 2 is the increase in the frequency
dependence of dk (CSPS) in the pre-gel region (t < tg) compared
with that of d (FS) in the same region. This phenomena is consis-
tent with previously reported findings that the presence of a unidi-
rectional shear component has greatest effect on measurements
performed at frequencies corresponding to shear rates lower than
those associated with the background unidirectional shear flow
[3,14]. Hence, decreasing frequency is expected to generate larger
differences between dk and d resulting in a more pronounced fre-
quency dependence of dk than d where the unidirectional shear
rate is significant (i.e. only in the pre-gel region).

The experiments reported above established that when con-
ducted under appropriate conditions (in terms of linearity and
mutation number criteria) the results of FS and CSPS experiments
on a system undergoing rheological transition (from VEL to VES, or
vice versa) may be taken as indistinguishable. This conclusion is
drawn on the basis that, during gelation, attainment of frequency
independence of dk indicates the same rheological significance (in
terms of the GP) as frequency independence of d. A further (and
hitherto unreported) feature of the present experiments is revealed
during the transition from a previously gelled VES state back to the
precursor VEL state. The significant feature of the latter CSPS
results is that they are obtained from experiments in which both
the oscillatory strain amplitude and the unidirectional shear field
increase progressively during the approach to the rheological tran-
sition (SLT).

The findings reported above for thermoreversible gelation, in
which no permanent cross-links are formed in the gel network,
suggest that CSPS could be used as a basis for investigating criti-
cal-gel formation under the influence of unidirectional flow.
Accordingly, a further series of experiments was devised to further
assess the validity of the application of the CSPS technique using a
criterion which has previously been employed in studies of critical-
gels formed in systems involving permanently cross-linked gel net-
works (Section 2.2 and Scanlan and Winter [16]). The first system

chosen in the present study for this assessment was a silicone
dielectric gel.

4.2. SDG systems

The results shown in Fig 3 below were obtained on samples of
SDG by separate FTMS (SAOS) and CSPS tests. In order to generate
a range of a in the FTMS tests, the test temperature, T, of the sys-
tem was varied over the range 20 �C < T < 50 �C. Higher tempera-
tures resulted in values of tg which incurred mutation effects due
to the rapidity of gelation, while values of T lower than 20 �C
resulted in extremely slow gelation, the large values of tg (>104 s)
being deemed too long to be of any process relevance for this
material.

The corresponding range of a achieved in the CSPS tests results
from the application of the unidirectional stress, rs, in the range
0 Pa < rs 6 20 Pa with tests being conducted at constant tempera-
ture (T = 50 �C). Note that under the superposed unidirectional
stress the values of tg are markedly reduced relative to those
resulting from temperature variation in the FTMS tests, with CSPS
test values being in the range 800 s 6 tg 6 1100 s.

The data shown in Fig. 3 lie on a single exponential curve of the
form S ¼ G0k

a
0. ANCOVA tests [22] showed no significant difference

between exponential fits to the CSPS and FTMS data sets. Thus the
results of determining GP parameters by CSPS are valid in terms of
satisfying the assessment criterion (i.e. conformity to Eq. (2.7)) – a
finding further confirmed by the fact that the estimated GP param-
eters based on CSPS measurements of G�kðxÞ are essentially indis-
tinguishable from the corresponding GP parameters estimated
from FTMS (SAOS) measurements of G�ðxÞ. For comparison, exam-
ples of pre-GP, GP and post-GP data sets for G�kðxÞ and G⁄(x) are
shown in Fig. 4.

4.3. Fibrin–thrombin gels

The results shown in Fig 5 below were obtained on fibrin–
thrombin systems undergoing gelation in FS and CSPS tests. In
order to generate a range of a in the FS tests, the thrombin concen-
tration, /, was varied in the range 0.01 < / < 0.19 NIH/ml, at con-
stant temperature (T = 10 �C). The range of a achieved in the
CSPS tests results from the application of the unidirectional stress
rs in the range 0 Pa < rs 6 0:4 Pa. The results obtained are shown
in Fig. 5.

Fig. 3. Values of S and a derived from the results of separate FTMS and CSPS
experiments on SDGs. The data lie on a single exponential curve of the form
S ¼ G0k

a
0. The insignificant difference (p-value⁄ = 0.097) between the CSPS and FTMS

data sets confirms that the results of determining Gel Point parameters by CSPS are
valid in terms of satisfying the assessment criterion. ⁄p-Value reported is that for an
ANCOVA test for separate linear regressions with p-value < 0.05 being the standard
acceptance of significant differences between the regression slopes.
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5. Discussion

In the work reported herein the biopolymer gel system formed
by the thermoreversible gelation of aqueous gelatin systems was

employed as a model gelling material to confirm the ability of CSPS
to characterise the stress relaxation characteristics of critical gels
in the presence of (a) progressively decreasing and (b) progres-
sively increasing unidirectional shear field and oscillatory strain
amplitude. In addition to confirming the validity of the CSPS tech-
nique in gelation studies, the latter feature involved CSPS being
used to record the thermally induced VES to VEL transition. In pre-
vious work Michon et al. [23] conducted frequency sweeps on gel-
atin gels which had previously gelled at a fixed/aging temperature
(for an aging period) then subsequently melted by incrementally
increasing the temperature and performing measurements on the
material following a 1 h period of equilibration at each tempera-
ture. These authors plotted values of tand(x) versus temperature
and, by a process of extrapolation between data points obtained
at each temperature, estimated the location of an apparent gel-
sol transition from which estimates of a and ‘‘critical melting tem-
perature’’ were derived. They recognised that the material was not
at a thermal equilibrium following an hour at each test tempera-
ture as indicated by the increasing values of G0 with time, and that
this could lead to an overestimation of critical melting tempera-
ture. However, no comment was made on the validity of the values
of a which were found to range from 0.47 to 0.81, and were depen-
dent on concentration, aging time and aging temperature. In the
present work the gel–sol transition was measured directly, for
the first time using both SAOS and CSPS.

The results obtained for the SDG system are particularly inter-
esting in terms of illustrating the potential applications of CSPS
in industrial process settings. The ability to manipulate the charac-
teristics (S and a) of the SDG critical gels by temperature change
was restricted to a relatively narrow of a (ca. 0.86–0.9, correspond-
ing to a d range of 77–81�). This was due to the fact that tempera-
tures greater than 50 �C resulted in values of tg which incurred
mutation effects, while values of T lower than 20 �C resulted in
extremely slow gelation, the large values of tg (>104 s) being
deemed too great to be of process relevance. However, when gela-
tion proceeded under CSPS (i.e. in the presence of a superposed
unidirectional shear flow) the range of a which could be generated
was significantly enhanced to 0.75 < a < 0.9 (67� < d < 81�), at con-
stant temperature. Significantly, the corresponding range of tg was
also markedly reduced. The present results indicate that manipula-
tion of the CSPS unidirectional flow shear stress component can be
used to both alter the microstructural characteristics of the formed
gel, and the time required to achieve gelation. This may prove valu-
able in process settings such as printing and coating which involve
exposure of process materials to flow induced shear stresses.

Turning to the results obtained for fibrin–thrombin gels, it is
useful to recall that the blood clotting process involves fibrino-
gen-fibrin transformation due to the catalytic action of thrombin,
and the subsequent polymerisation and network formation of
fibrin fibres [24,25]. In vivo the network of fibrin fibres forms the
primary microstructural basis of a clot whereas in vitro they form
a fibrin gel [26]. Viscoelastic properties are among the most sensi-
tive measures of fibrin polymerisation and clot microstructure
[25]. In haemorheological measurements the clotting time may
be identified with tg, the time required to form the incipient clot’s
sample-spanning network of fibrin fibres at the Gel Point [24,25].

In discussing the results for the fibrin gels it is useful to convert
the values of a to their corresponding values of the fractal dimen-
sion, Df [27]. The exponent a obtained from GP measurements is a
measure of gel network branching and is related to Df as Df =
(D + 2)(2a � D)/2(a � D), where D is the Euclidian dimension
(D = 3). Gel Point measurements have been used to accurately
detect incipient clot formation in samples of whole blood
[8,28,29] and estimates of Df derived therefrom provide a micro-
structural biomarker for altered clotting and a Healthy Index for
normal clotting (based on Df = 1.74 ± 0.04 [29]). For fibrin gels under

Fig. 4. Examples of pre-GP (o), GP (h) and post-GP (/) data sets for (A) G0ðxÞ and
G00ðxÞ (obtained under SAOS conditions) and (B) G0kðxÞ and G00k ðxÞ (obtained under
CSPS conditions) for the SDG system. Both data sets were obtained at 50 �C and
rs = 10 Pa for the CSPS data. Solid lines show power law fits to the GP data with
equivalent scaling in (A) G0ðxÞ and G00ðxÞ and (B) G0kðxÞ and G00k ðxÞ.

Fig. 5. Values of S and a derived from the results of separate FTMS and CSPS
experiments on fibrin–thrombin gels. As in the case of the SDG results the data lie
on a single exponential curve of the form S ¼ G0k

a
0 . ANCOVA tests [22] showed no

significant difference (p-value⁄ = 0.300) between exponential fits to the CSPS and FS
data sets. Thus, for this system also, the results of determining Gel Point parameters
from CSPS measurements may be deemed valid in terms of satisfying the
assessment criterion based on conformity to Eq. (2.7) [16]. ⁄p-Value reported is
that for an ANCOVA test for separate linear regressions with p-value < 0.05 being
the standard acceptance of significant differences between the regression slopes.
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SAOS the increase in Df (1.8 < Df < 2.0) is solely due to gel formation
under progressively higher levels of ab initio thrombin concentra-
tion, with Df = 2.0 being the upper limiting value. For fibrin gels in
CSPS the higher values of Df – up to a maximum of 2.3 – reflect
the effects of clot formation under unidirectional flow and may be
attributed to enhanced monomer activation resulting from mixing
in shear flow [30]. The potential clinical significance of the increase
in Df under CSPS is that fractal networks such as the incipient clot
require large amounts of additional mass to produce small incre-
ments in Df and given the incipient clot’s role as a microstructural
template for ensuing clot development [9] elevated values of Df

might lead to the establishment of denser, less permeable clots with
enhanced resistance to fibrinolysis [31–33] and deformation [34].

The unidirectional shear stresses employed in this CSPS study
are lower than those previously reported to influence the elasticity
of fully formed clots in SAOS tests following exposure of coagulat-
ing plasma to flow [35]. A significant aspect of the CSPS results is
that they reveal the marked sensitivity of incipient fibrin clot
microstructure (Df) to unidirectional flow shear stresses <0.3 Pa.
Such low stresses have physiological relevance insofar as they
are commensurate with estimates of the mean wall shear stress
for flow in the aorta, inferior vena cava and other venous structures
[36,37]. The results obtained on fibrin–thrombin clots suggest that
CSPS may be a valuable haemorheological tool for studying the
effects of physiological and pathological levels of shear on clot
properties.
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