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Rheological Gel Point measurements may incur errors in the case of rapid gelling systems due to the lim-
itations of multiple frequency oscillatory shear techniques such as frequency sweeps and Fourier Trans-
form Mechanical Spectroscopy, FTMS. These limitations are associated with sample mutation and data
interpolation. In the present paper we consider how an alternative rapid characterisation technique
known as Optimal Fourier Rheometry, OFR, can be used to study a rapidly gelling material, namely col-
lagen at near physiological temperatures. The OFR technique is validated using a model reference gelling

g?l'vggirg? system whose GP characteristics have been widely reported. An analysis of the susceptibility of OFR mea-
Mutation number surements to rheometrical artefacts is made prior to its use in the study of rapid gelling collagen gels
OFR formed over a range of physiologically relevant collagen concentrations. The results of this OFR study
FTMS are the first measurements of the stress relaxation characteristics of collagen gels performed in a single
Collagen rheological experiment.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The gelation characteristics/properties of biopolymer systems
are of significant scientific interest and are a fundamentally
important aspect of many biological processes. Salient examples
include the formation of collagen gels, the microstructure of
which depends on polymerisation conditions [1,2] and which
are widely used as scaffolds in tissue engineering and 3D cell cul-
ture applications [3,4]. Other examples include the formation of
fibrin gels which form the principal microstructural component
of blood clots and provide the requisite mechanical properties
for haemostatic functionality [5,6]. Such systems undergo a sol-
gel transition which can be identified by rheological Gel Point,
GP, measurements [7-11]. In many biopolymer systems such as
fibrin-thrombin gels (or clots formed in whole blood) this can
occur rapidly due, for example, to underlying prothrombotic con-
ditions. The inherent rapidity of collagen gel formation at physi-
ologically relevant conditions has restricted previous rheological
studies of the GP in collagen based systems to sub physiological
temperatures [12] or have necessitated the use of pepsin-
solubilised collagen [13]. The ability to accurately measure the
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viscoelastic properties at the GP has particular relevance in char-
acterising the fractal microstructure of biological systems such as
blood clots [7,8,11,14].

A convenient and widely reported technique for detection of the
GP involves measurements of the complex shear modulus, G*, over
a range of frequencies, w, in oscillatory shear. At the GP the elastic
and viscous components of the complex modulus, G' and G”,
respectively scale in oscillatory frequency, w, as G(w)~
G"(w) ~ w* where o is termed the stress relaxation exponent
[15]. Thus, the GP may be identified as the instant where the ¢’
and G” scale in frequency according to identical power laws [15],
behaviour corresponding to attainment of a frequency independent
phase angle, §(= atan(G"/G')). GP measurements may involve ‘fre-
quency sweeps’ with repeated consecutive application of a set of
small amplitude oscillatory shear, SAOS, waveforms [15,16], or
by Fourier Transform Mechanical Spectroscopy, FTMS, in which
G"(w) is found by simultaneous application of several harmonic
frequencies in a composite waveform and its subsequent Fourier
analysis [17,18]. Frequency sweeps are limited to relatively slow
gelation processes due to sample mutation and interpolation errors
[9,19,20]. FTMS may overcome these limitations, but is unsuitable
for markedly strain sensitive materials, such as fibrin gels, due to
the strain amplitude of the composite waveform exceeding the lin-
ear viscoelastic range (LVR) [9].

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Due to the rapidity of gelation, GP measurements on acid-solu-
bilised rat tail (type I) collagen are not viable at physiological
(37 °C) temperatures and remain challenging at near-physiological
temperatures. Yet the potential use of such biopolymer materials
for in vivo tissue engineering applications for example [3], prompts
the need to better understand their rheological properties. In the
present paper we consider how recent developments in a rapid
oscillatory shear characterisation technique, known as Optimal
Fourier Rheometry, OFR [21] can be successfully applied to the
study of such systems at near physiological temperatures.

2. Theoretical
2.1. Fourier Transform Mechanical Spectroscopy (FTMS)

In FTMS the input waveform, i.e. that applied to the test mate-
rial, is generated by combining a sinusoidal waveform with several
of its harmonics. The dynamic viscoelastic parameters at each of
the discrete component frequencies are obtained by comparing
the Fourier Transform, FT, of the input and response waveforms
[17,18]. Whilst FTMS significantly reduces the time required to
obtain G’ and G” over a range of frequencies, the amplitude of
the applied waveform increases as more harmonics are included
and may exceed the LVR for strain sensitive biopolymer systems
even where a modest number of harmonics are employed [9].
Reducing the amplitude of the harmonics in an attempt to main-
tain linearity generally leads to a loss of resolution in the pre-GP
data. This can cause inaccurate GP identification in a sample of
low initial viscosity.

2.2. Optimal Fourier Rheometry (OFR)

Optimal Fourier Rheometry (OFR) is a ‘multi-frequency’
technique involving frequency modulated (chirp) waveforms of
the following form [21].

7(t) = Yo sin2mK (et — 1)) (1)
where

_Th
K= In(f,/f+)

and

(2)

B T
~In(f,/fy)

where y, denotes the strain amplitude, T denotes the waveform
duration (herein set to 1/f,) and f; and f, denote the initial (lowest)
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Fig. 1. OFR waveform characterised by the parameters f; = 1 Hz, f, = 10 Hz and
T=1s with a peak strain amplitude, y,, of 100%.

and final (highest) frequency (Hz) of the waveform’s frequency
range, respectively. A typical OFR waveform is shown in Fig. 1.
The dynamic rheological parameters G'(f) and G"(f) are calculated
by comparing the FT of the strain input and stress response signals
(see Section 3.3.2).

In contrast to FTMS, in which the perturbation signal consists of
discrete frequencies, the OFR waveform undergoes a continuous
frequency modulation between two predefined limits. Hence, Fou-
rier analysis of OFR waveforms identifies a number of frequency
components limited only by the sampling rate of the original per-
turbation and response waveforms. As a result, OFR offers two sig-
nificant advantages over FTMS, namely (i) the ability to obtain very
high densities of data (G'(f) and G”(f)) over a finite frequency win-
dow, and (ii) the strain amplitude is independent of the number of
component frequencies sampled.

As the OFR technique has been relatively little reported, preli-
minary experiments were conducted to assess its validity and
examine any potential restrictions on its application to biopolymer
systems undergoing gelation. The test systems chosen for this
aspect of the work were gels formed from aqueous solutions of gel-
atin. The GP characteristics of these systems have been widely
reported and they have been used as model reference systems in
previous rheometric studies invoking GP measurements [18].

3. Methods
3.1. Sample preparation

3.1.1. Gelatin gels

The required mass of general purpose gelatin powder (Fisher
G015053) was added to deionised (type I) water (dH,0) (heated
to 60 °C) and agitated vigorously for 5 min to give a final gelatin
concentration of 30 wt% (this high concentration allowing suffi-
cient stress resolution in the pre-GP state). The gelatin solution
was maintained at 60 °C for 45 min with further agitation every
10 min to ensure complete dissolution of the gelatin powder. The
solution was then aliquoted and refrigerated until use. Aliquots
were melted in a 60°C water bath for 45 min before being
immediately transferred to the temperature controlled stage of
the rheometer which was maintained at 60 °C, see below.

3.1.2. Collagen gels

High concentration type I rat tail collagen (RTC) (10 mg/ml, BD
Bioscience), dH,0 and 1M NaOH (Fluka) was placed on ice. The
required amounts of dH,0, 10x Phosphate Buffered Saline (Fluka)
and RTC were then mixed well using a pipette tip before NaOH
was added to initiate gelation (as per the manufacturer’s instruc-
tions). The collagen gelation process is temperature dependent
[1] with the rate of gelation being significantly reduced at low tem-
peratures, hence the rheometer’s Peltier plate temperature (see
below) was lowered to 5 °C immediately prior to sample loading.

3.2. Rheometry

All experiments were performed using a TA-Instruments ARES-
G2 controlled strain type rheometer fitted with a 50 mm Titanium
parallel plate geometry. Temperature control was achieved
through the use of a Peltier plate system, the gap zero setting being
performed at the test temperature. A shearing gap, h, of 200 um
was employed throughout to minimise sample inertia effects.
The free surface of the sample was coated with a thin layer of sil-
icone oil (10 mPa s) to prevent evaporation. A preliminary study
employing a range of gaps confirmed the absence of wall slip for
gelatin samples while for collagen (in which sample inertia con-
straints require the use of small gaps) insignificant 3rd and 5th
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Table 1
Details of FTMS waveforms for the study of 30 wt% gelatin.

LE-FTMS (Peak strain: 21%) HF-FTMS (Peak strain: 24%)

flHz Vol % flHz Vol %
0.2 10 1 10
08 5 4 5
16 5 7 5
32 5 10 5

harmonic contributions in the response of the material to single
frequency strain waves confirmed the absence of slip [22,23].

3.2.1. Fourier Transform Mechanical Spectroscopy, FTMS

The arbitrary waveform generation capability of the ARES-G2
was employed to acquire FTMS data (i.e. unprocessed stress and
strain signals) which were processed using an appropriate Matlab
[24] routine (see Section 3.3.1). The rheometers arbitrary wave
utility allowed successive data points to be acquired more rapidly
than in standard FTMS tests (which involve a delay between suc-
cessive measurements). Two FTMS waveforms were used in this
study, namely (i) ‘high frequency’ (HF-FTMS) and (ii) ‘low fre-
quency’ (LF-FTMS) waveforms, respectively. The details of each
waveform are given in Table 1. The peak strain of each waveform
was confirmed as being within the LVR by performing separate
strain amplitude sweeps in the pre- and post-GP regimes. The data
sampling rate employed was 1000 Hz throughout.

3.2.2. Optimal Fourier Rheometry, OFR

OFR was implemented using the arbitrary wave function of the
TA Instruments ARES-G2 rheometer. Two OFR waveforms were
used, these being termed ‘low frequency’ and ‘high frequency’
(LF-OFR and HF-OFR), respectively. The details of each waveform
are presented in Table 2. A conditioning time, t., was added
between waveforms in which the strain amplitude was set to 0%,
the inclusion of the conditioning time allowing adequate stress
relaxation between successive waveforms and ensuring that the
waveform was suitably periodic for subsequent FFT analysis. All
data was obtained using a sampling rate of 1000 Hz and was ana-
lysed using an appropriate Matlab [24] routine (see Section 3.3.2).

3.3. Data analysis

3.3.1. FTMS data analysis

Arbitrary wave FTMS data in the form of unprocessed stress and
strain waveforms were processed by applying a fast Fourier trans-
form (FFT) to consecutively recorded periods of stress and strain
data with length 1/f; seconds, these being zero padded to contain
2" data points (where n refers to the smallest integer greater than
the original signal length). A Bartlett type windowing function was
employed to minimise discontinuity errors. The FTMS test frequen-
cies were then identified by FFT analysis and the values of G'(f) and
G"(f) were calculated as follows:

' FFT(o (t))}
G (f) =Re {7 4
)= Re BT M0) @
Table 2
Details of OFR waveforms.
LF-OFR HF-OFR
fi/Hz 0.2 1.0
f/Hz 32 10.0
T/s 5.0 1.0
o 10.0 10.0
tels 1.0 1.0

and

" FFT(a(t))

)= ey )
where Re and Im denote the real and imaginary parts of the
complex FFT outputs, respectively [21]. All FTMS analysis was per-
formed using an appropriate Matlab [24] routine with the resulting
values of G'(f) and G"(f) being recorded and passed to the GP iden-
tification routine described in Section 3.3.3. For the samples studied
herein an initial assessment of sample inertia based on the relation
p < G /h*f?, where p denotes the sample density [25] indicated
that sample inertia corrections were not required.

3.3.2. OFR analysis

OFR waveforms were analysed by applying an FFT to the stress
and strain waveforms (each of which was zero padded to contain
2" data points) with G'(f) and G"(f) being calculated from Egs. (4)
and (5), respectively. Windowing functions were not employed in
the OFR analysis as preliminary experiments established that the
correct value of o was not recovered when any of the common
windowing functions used in digital signal processing (Hamming,
Hanning and Bartlett) were used to analyse gelatin data - even
in the absence of sample mutation. This was deemed to be a con-
sequence of disproportionate amplitude attenuation of the wave-
form frequency components due to their temporal variation, i.e.
the OFR frequency cycles continuously between the limits of f,
and f, during the data sampling period. The inclusion of a prede-
termined conditioning time ensured that the OFR waveform was
periodic and hence no discontinuity errors (which would usually
require the use of a windowing function) were present. As in the
FTMS analysis described above, the values of G'(f) and G”(f) were
recorded and passed to the GP identification routine described in
Section 3.3.3. OFR analysis was performed using an appropriate
Matlab [24] routine and no inertia correction was deemed
necessary.

3.3.3. Gel point identification

The FTMS or OFR measurements of G'(f, t) and G"(f, t) were lin-
earised using the relationships InG =o/Inf +k and InG' =
o’ Inf + k". The scaling exponents, ¢/ and o’ were subsequently
determined by linear regression with their corresponding residuals
being summed to provide a single parameter, SSE, which character-
ises the quality of the power-law fit. The GP was determined by
identifying the intersection of cubic fits to ¢/(t) and o’ (t) such that
o = o = o (see Fig. 2), i.e. the point at which G'(f) and G”(f) scale
with identical stress relaxation exponents (see Fig. 4B and E). For
all GP data reported herein the parameter SSE was less than
1072, indicating the expected power-law scaling of G'(f) and
G'(f) at the GP. A measure of the uncertainty of the value of «
(i.e. Aa) was obtained using

! 2 " 2
Ao =0 (A“> +<A°‘> 6)
a/ a//
where Ao’ and Ao’ denote to the standard error of the linear regres-
sions of InG'(Inf) and InG"(Inf) at the GP, respectively.

4. Results
4.1. Mutation artefacts in OFR measurements

A fundamental assumption underlying oscillatory shear experi-
ments is that the rheological properties of the sample remain ‘sta-
ble’ (time-invariant) throughout the period t., of deformation. A
criterion for this time-invariance has been established in terms
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Fig. 2. Gel Point identification for gelatin using data obtained by HF-FTMS (A) and HF-OFR (B).
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Fig. 3. Comparison of gelatin GP data obtained by (1) HF-FTMS [X] (2) LF-FTMS [o] (3) LF-OFR [(J] and (4) HF-OFR (-). The dashed line in B shows the critical mutation criterion
of Ny = (T/G')(dG'/dt) = 0.15 as reported by Winter et al. [16, ER1]. Vertical lines overlayed on each data point indicate the uncertainty (as defined through Eq. (6))

associated with each measurement.

of a mutation number, N, which quantifies the change of a
dynamic rheological property during an experiment. In a study of
the gelation of model polyurethanes, Winter et al [19,20] identified
Nimy <0.15 as a cut-off point below which the sample could be
assumed to be ‘quasi-stable’. Fig. 3 shows the apparent value of
the stress relaxation exponent, oy, for gelatin systems undergoing
increasingly rapid gelation as a function of (a) gel time and (b)
mutation number, N,. Rapid gelation appears to be associated
with reduced values of og,, for LF-FTMS and LF-OFR, however,
the high frequency variants of these tests show no such decrease
in the value of oyp,. Fig. 3b confirms that this apparent decrease
in oy is @ consequence of mutation artefacts apparent in LF-FTMS
and LF-OFR procedures. At such (relatively) low frequencies the

material may not remain time-invariant throughout the (rela-
tively) long period of deformation. Hence, OFR is subject to the
same mutation artefacts as FTMS. Further, the data presented in
Fig. 3 shows that OFR and FTMS provide the same estimate of «
under valid rheometrical conditions.

4.2. Comparison of FTMS and OFR techniques

Fig. 4 shows G'(f) and G"(f) for pre-GP (i.e. t =0.5 x t), GP
(i.e. t =tg) and post-GP (t =2 x tg) gelatin gels as measured by
HF-FTMS and HF-OFR with excellent agreement between the
two techniques being observed and confirming the validity of
OFR for gelatin systems throughout gelation. One significant
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Fig. 4. Comparison of pre-GP, GP and post-GP rheological data for 30 wt% gelatin obtained using FTMS and OFR. Closed and open symbols refer to G’ and G”, respectively.

argument in favour of OFR over FTMS concerns the increased
number of frequency data points that can be obtained (see
Fig. 4). In the context of GP measurement this allows the GP to
be determined with a greater degree of precision. Fig. 5 shows
the uncertainty (as calculated using Eq. (6)) as a function of sam-
ple mutation number for 30 wt% gelatin and shows that, in all
cases, OFR outperforms FTMS in terms of the uncertainty in the
value of o.

4.3. Application of OFR to collagen gels

The results for 30 wt% gelatin presented in Sections 4.1 and
4.2 validate the use of OFR for the study of rapidly gelling mate-
rials. The next system to be examined was acid solubilised
type I collagen at temperatures approaching physiological

temperatures. Fig. 6 shows the variation of o as a function of
collagen concentration, increasing values of concentration result-
ing in lower values of a. Fig. 6 shows that the stress relaxation
characteristics (o) of collagen gels are dependent on collagen
concentration and significantly are not limited to values of
o =0.50r0.7 as suggested in the literature [12,13]. These
results also offer an explanation for some of the variation found
in the literature regarding the value of o. Fig. 7 shows a plot of &
as a function of time for a sample prepared at 8 mg/ml collagen
at 28 °C obtained using the HF-OFR technique. The results for 18
oscillatory frequencies in the range 1.5Hz to 10 Hz show the
transition between a viscoelastic liquid like pre-GP response
(decreasing & with increasing frequency) and viscoelastic solid
like post-GP response (increasing 6 with increasing frequency)
at the GP.
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Fig. 7. Collagen GP data in terms of frequency independence of 4(t) for an 8 mg/ml
collagen gel. Data was obtained using HF-OFR at 28 °C, results shown for 18
oscillatory test frequencies. The GP is identified with ‘B’ and was determined as
described in Section 3.3.3.

5. Discussion

The present study investigated the validity of OFR based GP
measurements in rapidly forming gelling systems. GP measure-
ments on gelatin (see Fig. 3) show that OFR suffers from the same
mutation artefacts as FTMS tests, with values of o, deviating from

an average value of 0.68 at Ny, > 0.15. This critical value of Ny,
(=0.15) is in agreement with that found by Winter et al. [19,20].
Shifting the frequency content to higher values allows accurate
measurements of « at relatively low gel times (ca 60 s) in the case
of both OFR and FTMS. The advantage of the OFR technique in GP
measurements lies in its ability to produce data at a much greater
number of frequencies compared to FTMS (see Fig. 4). Thus the
level of uncertainty in the deduced values of « is reduced (Fig. 5).

Previous rheological studies of collagen gelation have utilised a
different method of GP detection which involved overlaying time
courses of tan § obtained at various frequencies on several samples
in separate consecutive tests [12,13]. Collagen microstructure and
gelation kinetics are extremely sensitive to polymerisation condi-
tions such as collagen concentration, sample pH and temperature
[1,2]. Consequently, no frequency independent point was observed
in these previous studies and the authors estimated the GP to be at
the intersection of tand(t) at the highest and lowest frequency
employed in the experiments [12,13]. Further, no assessment of
mutation artefacts has previously been performed in studies of
collagen gelation [12,13]. The study reported herein measured

the GP in collagen gels in a single experiment and as such no vari-
ation between the frequency responses as a consequence of sample
variation could occur. Further, an assessment of OFR showed that
the technique employed in the study of collagen gelation herein
(HF-OFR) was not subject to mutation artefacts.

Contrary to previous reports in which no systematic variation in
o was observed upon variation of the collagen concentration [13],
OFR measurements of the GP at different concentrations of colla-
gen show that o is dependent on the collagen concentration with
o decreasing with increasing concentration (see Fig. 6). This is an
important finding insofar that the gel network at the GP provides
a template for further microstructural growth [26] and suggests
that the measurement of « at the GP is potentially important in
the field of tissue engineering, for control and early evaluation of
microstructure. The study presented herein also demonstrates
the utility of OFR in the study of rapidly gelling systems such as
those associated with collagen gelation at near-physiological
temperatures. However, in order to measure the GP in even more
rapidly forming gels, such as acid-solubilised collagen at physio-
logical temperature, a further shift to higher frequencies is likely
to be necessary.
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