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A robust finite element modelling approach to conjugate
heat transfer in flexible elastic tubes and tube networks.

Alberto Coccarelli and Perumal Nithiarasu∗

Biomedical Engineering and Rheology Group
Zienkiewicz Centre for Computational Engineering

College of Engineering, Swansea University, Swansea SA2 8PP, UK

Abstract

In this work, heat transfer between fluid flow in elastic tubes and external environment is
modelled using a robust finite element approach. The transport of energy is coupled to fluid
flow that is linked to the pressure and cross sectional area variations of the tube. The novel
model developed is applied to flow and heat transfer in elastic tubes with different geometric
and material properties. The effects of reflections due to discontinuities and bifurcations in
the tubes are also investigated. To determine the heat transport by conduction in the elastic
walls, a radial heat conduction model is also incorporated. The coupled flow equations are
solved using the locally conservative Galerkin (LCG) finite element method, which provides
an explicit element-wise conservation of fluxes. Several simulations have been performed for
different parameter variations to understand the relevant aspects of heat transfer in flexible
elastic tubes. The results show that small temperature fluctuations are possible, inline with
the pulsatile flow boundary conditions. It is also observed that increased flexibility of tubes
leads to better heat transfer between the fluid and the wall. The results clearly indicate that
any flow reflections also increase the heat transfer between the fluid and the wall.

KEY WORDS: elastic tubes, conjugate heat transfer, finite element, blood vessels, bioheat
transfer.

Nomenclature

A Cross sectional area
Aex External surface area
Ain Internal surface area
Ao Stress free cross sectional area
c Intrinsic wave speed
cmax Maximum intrinsic wave speed
cp Specific heat at constant pressure of fluid
cs Specific heat at constant pressure of wall
∗Correspondance to Professor P Nithiarasu, e-mail: P.Nithiarasu@swansea.ac.uk
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DeT Element matrix for temperature diffusion in fluid
E Youngs modulus of wall material
Es Specific energy
e Internal energy
fΓe Boundary terms at element boundaries
F Convective and Taylor Galerkin fluxes
Ḡ Diffusion vector
H Jacobian matrix
h Pipe wall thickness
hex External heat transfer coefficient
hin Internal heat transfer coefficient
I Identity matrix
Ke Element matrix for convection and Taylor Galerkin terms
KeT Element matrix for temperature convection and Taylor Galerkin terms
k Thermal conductivity of fluid
ks Thermal conductivity of solid
L Eigen matrix
Le Element matrix of source terms
l Total length of a tube
li Eigen vectors
Me Element mass matrix
MeT Element mass matrix for temperature
N Shape function matrix
N Number of daughter vessels
P Parent vessel
p Pressure
p̄ Given pressure value
pext External pressure
Q Jacobian of source
Q Flow rate
qv Heat generation
qΓe Element boundary term for energy equation
R Inner radius of a tube
Rt Terminal reflection coefficient
r Radial direction
rin Internal radius
rex External radius
S̄ Source vector
T Temperature
Tex Atmospheric temperature
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Ts Outer wall temperature
Tw Inner wall temperature
t Time
Ū Primitive variable vector of area and velocity
u Velocity
x Cartesian coordinate
Ẇshear Loss due to viscous effect
Ẇwall Work by wall forces
w1, w2, w3 Characteristic variables

Greek letters

α Thermal diffusivity
β Material parameter of wall
∆t Time step
∆x Element size
∆T = Tn+1 −Tn, Nodal values of difference in T
∆U = Un+1−Un, Nodal values of difference in Ū

Λ̄ Eigen value matrix
λ Eigen value
µ Viscosity
Φ̇conv Heat convection flux
Φ̇diff Heat diffusion flux
ρ Fluid density
σ Poisson’s ratio
τ Shear stress

1 Introduction

One-dimensional flow modelling in elastic tubes and tube networks has tremendously improved our
understanding of human circulatory system. Although a large number of works on blood circulation
has been published in the last thirty years [1]–[18], the focus of these works has been limited
to isothermal flow. However, understanding energy transport in circulatory systems is vital for
applications such as hypothermia and hyperthermia [19, 20, 21, 22]. Thus, a comprehensive model
to study the relationship between fluid flow and temperature in flexible tubes is very relevant and
important in bioheat transfer problems.

The literature available in the area of energy transport in flexible tubes or circulatory systems
is very limited. The work of Craciunescu and Clegg [23] analysed the effect of blood velocity pulsa-
tions on temperature field. They obtained some important results on the relationship between the
pulsating axial velocity and temperature profile and the effect of the Womersley number. However,
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blood vessels in this study are treated as rigid tubes and thus the effects of area variations are not
accounted. Thus the results obtained in their study have limitations. Ying et al. [24] proposed a
thermo-fluid model for circulation in the upper limb, which involves arteries, capillaries, and veins.
Here, the temperature is evaluated along the network by considering the effects of blood flow rate,
transmural pressure, cross-sectional area and elasticity. However, this model is not comprehensive
as it has not fully accounted for reflections due to variations in vessel topology and properties. Al-
though the comprehensive models for temperature transport in the circulatory systems are limited,
a large number of robust models are available for isothermal flow in circulatory systems [10, 11].
Therefore, in the present work we used such existing isothermal models to build a non-isothermal
model to comprehensively describe not only the heat transfer in the fluid but also through the solid
wall.

In the present work, the coupled one-dimensional equations of flow and energy are expressed
in terms of a tube cross-sectional area, velocity, pressure and temperature. To relate pressure to
area, a non-linear elastic wall law is used. The viscous effects are modelled using Poiseuille flow
assumptions. The physics of the problem may be described as follows. The fluid in the flexible
tube exchanges heat to the wall along its path in the axial direction. This results in variable axial
velocity, pressure and temperature in space and in time. These variables are then coupled to the
wall heat condition via an inner and outer wall thermal conditions.

The numerical scheme used for solving the set of flow and temperature equations is the ex-
plicit form of locally conservative Taylor Galerkin method (LCG) [25, 26]. Local method implies
that spatial integration is performed element by element, which eliminates the need for large ma-
trix inversions. Besides, this choice is particularly suitable for including discontinuities and vessel
branching points, where multiple nodes occupy the same spatial location. The conduction problem
in the walls along the radial direction is solved using a standard implicit finite difference method.

To demonstrate the proposed energy transport model, relationships between temperature field,
material properties and geometry are extensively studied for a single tube first. The model is also
applied to complex systems that accounts for discontinuities and vessel branching, so that the effects
of reflections can be analyzed. As the governing equations are hyperbolic and the flow is subsonic,
boundary conditions for primitive variables are required at the inlet and at the exits. The nature
of the problem allows one to calculate the characteristic variables and these variables may be used
for prescribing boundary conditions at the inlet and exit and also for determining the conditions at
discontinuities and bifurcations.

The paper is organised into following sections. The section that follows describe the detailed
mathematical formulation of the problem. Section 3 provides a brief summary of the finite element
formulation and the results are discussed in Section 4. Finally, Section 5 derives some conclusions.

2 Mathematical formulation of the problem

The variables considered in the system are cross sectional area (A), the average values of velocity
(u), fluid pressure (p) and temperature (T ) over the cross section (see Figure 1). The density (ρ)
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of the fluid and wall are assumed to be constant due to the incompressible nature of the materials
assumed. The viscosity (µ) of the fluid is also assumed to be a constant. Due to the one-dimensional
nature of the model, the shear stress is evaluated using Poiseuille’s flow assumption, i.e.,

dτ

dx
= −8µQ(x, t)

πR4
= −8πµu(x, t)

A(x, t)
(1)

where Q = Au is the volume flow rate averaged over a cross-section. Due to the simplified
assumptions, the model is not valid for cases in which flow is non-Newtonian or turbulent. In order
to reduce the number of parameters, specific heat (cp) and thermal conductivity (k) of the materials
are also assumed to be constant.

The full problem may be described by four equations: the conservation laws of mass, momentum
and energy and a constitutive elastic wall model to define the relationship between the fluid pressure
and the cross section area. Following existing literature [27], the equations of mass and momentum
for an elastic vessel may be written as

∂A(x, t)

∂t
+
∂Q(x, t)

∂x
= 0 (2)

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
+

1

ρ

∂p(x, t)

∂x
− 1

ρ

∂τ(x, t)

∂x
= 0 (3)

It is important to remind the reader that these equations are valid for an infinitesimal cylindrical
element of area A and length dx. For relating pressure and cross sectional area, a non linear relation
used by Formaggia et al. [28] and Olufsen et al. [29] is employed, i.e.,

p(x, t) = pext + β
(√

A(x, t)−
√
A0(x)

)
(4)

where pext is the external pressure acting on the walls of the tube, A0 is the unstressed cross-
section area and β is the characteristic property of elastic material and it is defined as

β =

√
πhE

A0(1− σ2)
(5)

where E is Young’s modulus of the wall material, h is the wall thickness (see Figure 1) and σ the
Poisson ratio of the wall material. By inserting Equations (1) and (4) in to Eq. (3), it is possible
to express the momentum equation only in terms of area and velocity:

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
+

β

2ρ
√
A(x, t)

∂A(x, t)

∂x
− 1

ρ

∂τ(x, t)

∂x
= 0 (6)

Considering the 1D elastic vessel shown in Figure 1, the integral balance of energy may be
written as:
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Φ̇conv(t) =Ẇwall(t) + Ẇshear(t) + Φ̇cond(0, t)− Φ̇cond(l, t)

+ ρQ(l, t)

(
Es(l, t) +

p(l, t)

ρ

)
− ρQ(0, t)

(
Es(0, t) +

p(0, t)

ρ

)
+ ρ

∂

∂t

∫ l

0

A(x, t)Es(x, t) dx

(7)

where Es represents the specific energy of the fluid obtained as a sum of the specific internal
energy and the kinetic energy (Es = e+ u2

2 ), Φ̇cond is the conduction fluxes in the fluid, while Φ̇conv,
Ẇwall and Ẇshear are respectively the thermal flux exchanged by convection, integral quantities
along the tube due to fluid forces on the walls and viscous losses. After simplification, the differential
one-dimensional energy conservation equation for an infinitesimal tube (without considering viscous
effects) may be written as,

∂T (x, t)

∂t
+ u(x, t)

∂T (x, t)

∂x
− α∂

2T (x, t)

∂x2
=

2hin

ρcp
√
A(x, t)/π

(Tw(x, t)− T (x, t)) (8)

where α is the thermal diffusivity of the fluid, hin is the heat transfer coefficient at the inner
surface of the wall and Tw is the inner wall temperature. The full system of equations composed of
Equations (2), (6) and (8) and it is non-linear and the first and second equations are strongly cou-
pled. However, the mass and momentum conservation equations do not depend on the temperature.
Thus, it is possible to split the solution process into two steps: in the first step one can calculate
the velocity, cross sectional area and pressure using Equations (2) and (6) before computing the
temperature in the second step. In order to asses the heat transfer between the inner fluid and the
external environment, a one-dimensional heat conduction equation in the radial direction is used,
i.e.,

ρscs
∂T (r, t)

∂t
− ks

1

r

∂

∂r

(
r
∂T (r, t)

∂r

)
− qv = 0 (9)

In the above equation, r is the radial coordinate, qv is the volumetric heat generation (assumed
to be zero in the present study) and ρs, cs, ks are respectively the density, the specific heat and the
thermal conductivity of the wall material. The system of equations is completed by appropriate
initial and boundary conditions.

3 Solution procedure

3.1 Characteristic system

In order to assign boundary conditions and to apply the Taylor Galerkin method, it is convenient
to write the whole system in a linearized de-coupled form. In Formaggia et al. [3] and Sherwin
et al. [27], the system composed of mass and momentum conservation equations are written in a
quasi linear form. Incorporating the energy equation requires a similar procedure. The system of
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Equations (2), (6) and (8) may be written as

∂Ū

∂t
+ H

∂Ū

∂x
+
∂Ḡ

∂x
= S̄ (10)

with:

Ū =

Au
T

 ; H =

 u A 0
β

2ρ
√
A

u 0

0 0 u

 ; Ḡ =

 0

0

−α∂T∂x

 and S̄ =


0

−8π µρ
u
A

2hin

ρcp
√
A/π

(Tw − T )


where Ū, Ḡ and S̄ are the vectors of primitive variables, the diffusive and source terms, while

H is the Jacobian matrix of the convective term for the primitive variables. If diffusion and sources
are considered negligible (∂Ḡ∂x = 0 and S̄ = 0 ), the characteristic variables of Equation (10) may
be determined.

Eigenvalues (Λ̄) and eigenvectors (li) of the characteristic system are evaluated respectively by
solving |Λ̄I −H| = 0 and liH = λili [30]. In this case all eigenvalues associated to matrix H are
real numbers, i.e.,

Λ̄ =

λ1

λ2

λ3

 =

u+ c

u− c
u

 (11)

where c is the intrinsic wave speed associated with the flexible wall material, expressed as

c =

√
β
√
A

2ρ
(12)

Eigenmatrix is:

L =

 c/A 1 0

−c/A 1 0

0 0 1

 (13)

The characteristic variables are defined as

dwi = liŪ (14)

and integration gives,  w1

w2

w3

 =

 u+ 4c

u− 4c

T

 (15)

By rearranging the above equations, it is possible to express the primitive variables in terms of
the characteristic variables as
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A =
(w1 − w2)4

1024

(
ρ

β

)2

, u =
1

2
(w1 + w2) and T = w3 (16)

Writing Equation (10) in terms of characteristic variables allows one to understand how infor-
mation is transported in the domain considered. The physical interpretation of the first and second
characteristic variables is that pressure and velocity wave fronts propagate forwards (towards exit)
at a speed of u + c and backwards (towards inlet) at u − c. A wave front may be considered to
be a particular point on a pulse [31](for example, the peak or the foot). The third characteristic
variable instead, has the eigenvalue equal to the velocity u. Thus it means that the temperature is
a property transported by the flow with the effective velocity of the fluid u.

3.2 Numerical scheme

In this section, a brief overview on the numerical method employed is provided. The details on the
isothermal formulation is discussed in detail in reference [10]. Equation (10) requires a scheme with
a stabilization term to obtain a stable solution. Thus, in this study the Locally conservative Taylor
Galerkin method is used, which is the finite element equivalent of Lax - Wendroff stabilization in
finite difference discretization. Using this method, the semi-discrete form of Equation (10) may be
written as,

Ūn+1 − Ūn

∆t
= −

[
Hn ∂Ūn

∂x
+
∂Ḡn

∂x
− S̄n

]
+

∆t2

2

{
∂

∂x

[
Hn

(
Hn ∂Ūn

∂x
− S̄n

)]
−Qn

(
Hn ∂Ūn

∂x
+
∂Ḡn

∂x
− S̄n

)} (17)

Applying LCG method, Equation (17) may be written as[25, 26]:

∫
Ωe

NT ∆Ūn+1dx = −∆t

∫
Ωe

NT

[
Hn ∂Ūn

∂x
+
∂Ḡn

∂x
− S̄n

]
dx

+
∆t2

2

∫
Ωe

NT

{
∂

∂x

[
Hn

(
Hn ∂Ūn

∂x
− S̄n

)]
+ Qn

(
Hn ∂Ūn

∂x
+
∂Ḡn

∂x
− S̄n

)}
dx

(18)

The evaluation of Equation (18) for mass or momentum equations have been discussed by
Mynard and Nithiarasu [10] in detail. The final discrete form of Equation (18) may now be written
as

[Me]{∆U}n+1 = ∆t ([Ke]{F}n + [Le]{S}n + fΓe

n) (19)

where [Me], [Ke] and [Le] are respectively the element mass matrix, the coefficient matrix for
convection, Taylor-Galerkin and source terms for the coupled continuity and momentum equations.
These element matrices of the system of equations is solved on individual elements, independent
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of surrounding elements. Information is transmitted between elements via the numerical flux term
(fΓe

) that is imposed along the boundaries of each element[10, 25]. As mentioned previously, the
energy equation may be decoupled from the other equations due to one way nature of the coupling.
If decoupled, the energy Equation (18) may be discretized as

[MeT ]{∆T}n+1 = ∆t{([KeT ] + [DeT ] + [LeT ]){T}n + qnΓe
} (20)

where the matrix [DeT ] is the coefficient matrix for diffusion and qΓe
is the numerical conduction

flux exchanged between two adjacent elements. The time step restrictions of the numerical scheme
employed may be computed using the condition [10],

∆t = 0.9
∆xmin
cmax

(21)

For the problem of heat conduction in the wall, the standard forward Euler method is used. The
method uses the central difference scheme for spatial discretization and a first order discretization
for the time term. Thus, the discrete form of Equation (9) for a node i may be written as

Tni−1

∆tks
ρscsri

(− ri
∆r2

+
1

2∆r
) + Tni (1 +

2∆tks
ρscs∆r2

)− Tni+1

∆tks
ρscsri

(
ri

∆r2
+

1

2∆r
)

=
∆t

ρscs
qv + Tn−1

i , i = 1, 2, ..m

(22)

Since the matrix of the linear system is tridiagonal, Thomas algorithm is used to solve the above
system.

3.3 Boundary conditions

For the system of discrete equations discussed in the previous subsections, inlet and outlet variables
may be imposed by calculating the characteristic variables. This is one of the best ways of imposing
the correct boundary conditions. For the inlet node the forward characteristic (w1) variable may
be calculated if forward pressure is prescribed (that is strictly linked with forward area). From
Equation (15), we may write

wn+1
1in = w0

2 + 4

√
2

ρ

√
(p̄n+1 − pext) + β

√
A0 (23)

where w0
2 is the initial value of w2 and is also equal to the value of w2 at any time if no backward-

running waves reach the inlet. In the above equation, p̄n+1 is the given pressure boundary condition
at the inlet. The backward characteristic variable (w2) at the inlet may be evaluated via linear
extrapolation in the x− t plane, i.e.,

wn+1
2 |x=x0 = wn2 |x=x0+λn

2 ∆t (24)

It is now possible to evaluate the primitive variables A and u at the inlet node using Equation
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(16). In the same way, it is possible to assign the boundary condition to the exit node of the domain.
Calculation of the backward characteristic variable on the exit node may also be performed by
prescribing reflections at the exit. In this case, the change in the incoming characteristic variable
could be determined from the change in the outgoing characteristic variable. For a wave front
travelling in +x direction the terminal reflection coefficient is,

Rt =
wn+1

2 − w0
2

wn+1
1 − w0

1

(25)

The value of w1 for the next time step (t = n+1)may be determined via extrapolation, whereas
w0

1 and w0
2 are the initial values of the characteristic variables. The unknown (wn+1

2 ) may then be
determined by simply rearranging Equation (25) if the reflection coefficient is known, i.e.,

wn+1
2 = w0

2 −Rt(wn+1
1 − w0

1) (26)

Further details on the flow boundary conditions may be obtained from relevant published work
[10, 11]. The boundary conditions for the energy equations are discussed next. The constant tem-
perature conditions at the inlet and exit is straightforward to prescribe. For conduction in the
solid, the boundary conditions are prescribed after obtaining the solution in the fluid domain. In
the present work, for the interface node between the fluid and wall either constant wall or convec-
tive boundary conditions are assumed. For the outer surface node connected to the atmosphere,
only convective boundary conditions are imposed. The inner and outer wall convective boundary
conditions are given respectively as

hinAin(Tin − Ts(rin)) = −kAin
∂Ts
∂r
|rin (27)

and

hexAex(Ts(rex)− Tex) = −kAex
∂Ts
∂r
|rex (28)

At branching points and discontinuities, the work of Mynard and Nithiarasu is followed [10].To
transmit information between co-located nodes, the characteristic variables are used, in addition
to standard flow conditions. If we consider a parent vessel P with N daughter vessels, each of
the N + 1 co-located nodes are treated as boundaries and the boundary conditions will be set
using upstream and downstream information. There are therefore 3(N + 1) unknowns and as many
equations required to solve the system. For example, in a bifurcation there are one parent vessel and
two daughter vessels. Thus, we need a total of nine equations to determine the primitive variable
values at three nodes. The conservation of mass gives one equation, pressure continuity between
parent and daughter vessels gives two more equations, three characteristic flow variables at three
nodes give three more equations. This is normally sufficient to carryout the flow calculations as
explained in [10]. The set of non-linear equations resulting from the application of conditions at
discontinuities is solved using the Newton -Raphson method [32].

To add the energy equation, we need to have three more equations. The characteristic variable
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for temperature from Equation 15 may be rewritten as

w3p = Tp for a forward moving flow and w3i = Ti for a backward moving flow (29)

where subscripts p and i indicate parent and daughter vessels respectively.
Thus, for a forward moving wave, characteristic variable at the parent node may be extrapolated

using an equation similar to Equation24 but for w3. This will give the temperature value at the
parent node (Equation 29). The energy conservation and temperature continuity dictates that the
temperature at the parent node is equal to temperature at daughter nodes. This is due to the fact
that for a forward moving wave temperature values at the daughter vessel nodes are identical.

If the wave is travelling in the backward direction towards the parent node, identical tempera-
tures in daughter nodes are not guaranteed. Thus the characteristic variables at the daughter notes
should be extrapolated to obtain the temperature values at these nodes(Equation 29). Once these
values are determined, energy conservation may be applied to determine the temperature value at
the parent node.

4 Results and discussions

In the following subsections the energy transport results obtained are reported for straight and
bifurcating vessels. The Locally Conservative Taylor Galerkin method used in the present study is
extensively tested previously for fluid flow, and a detailed discussion on the accuracy of the method
is provided in references [10, 11]. Thus, no further validation for accuracy is reported here for the
sake of brevity. The fluid properties used for the simulations are summarized in Table 3. The fluid
motion is generated by applying an inlet pressure signal to the first node of the domain. It should
be recollected that other primitive variables at the inlet and exit are computed via the characteristic
variables. This is the more natural way of determining the boundary conditions at the inlet and
exit of the domain. The inlet temperature of the fluid is set at 37◦C to reflect the human body
temperature. The external pressure acting on the wall is taken equal to zero.

4.1 Straight vessels

4.1.1 Constant inner wall temperature

In order to check the behaviour of the method, a simple problem of straight tube with constant inlet
temperature is considered first. In this case the inner wall temperature is assumed to be constant
in space and time (Tw=35.3◦C). All the parameters related to the straight tube problem are listed
in Table 4. All the variables are monitored at the mid point of the segment.

The effects of a constant and pulsatile flow on temperature field are compared in Figure 2.
The periodical signal is characterized by a pressure pulse with a width equal to 0.43s. For both
cases, pressure, area, velocity and temperature evolutions in time at mid point are shown in Figure
2. As discussed in section 3, A, u and p waveforms propagate in time along the tube at an
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intrinsic wave speed velocity of c, while T is transported by velocity field u. For the case in which
velocity is constant, the temperature reaches an expected steady and stable value, slightly lower
than the inlet temperature due to lower inner wall temperature. With a periodic pressure pulse,
the behaviour is completely different. While there are no surprises in the velocity, area and pressure
value distributions, very small local oscillations in temperature are observed. This is inline with
the variations in velocity values. When the velocity value peaks, it introduces an reduced cooling
effect resulting in a slightly higher temperature than average temperature. However, when the
velocity value is reduced, increased flow stagnation decreases the temperature value. This decrease
in temperature is a result of enhanced heat transfer between the fluid and the wall due to reduced
velocity. Such behaviour continues according to the prescribed pressure pulse in a cyclic manner as
shown in Figure 2.

To investigate the effects of reflections on heat transfer, three cases with prescribed exit reflection
coefficients are examined next. A case without reflection (Rt=0), partial reflection (Rt=0.5) and
total reflection (Rt=1) are studied. The results are shown in Figure 3. As seen, the flow and heat
transfer results with zero reflection coefficient are not different from the one discussed previously.
However, as the wave reflection is introduced at the exit the reverse wave produces a strong cooling
effect on the fluid. This is due to the fact that the reflected flow waves increase the fluid contact
duration with the cold inner wall surface. This cooling effect is particularly pronounced when the
wave is fully reflected.

4.1.2 Convective inside/outside wall conditions

In this problem, the inner wall surface temperature is allowed to vary in time and space. Thus, the
heat conduction model for the surrounding wall material is now invoked. The model parameters
and the outside conditions are reported in Table 5. All the remaining parameters for the study are
same as the previous section.

To study the influence of the external heat transfer coefficient, the temperature is monitored
at three points at the mid cross section of the vessel as shown in Figure 4. To clearly quantify
the influence of external heat transfer coefficient, all other parameters, including internal wall heat
transfer coefficient are fixed as given by Tables 3, 4 and 5. In Figure 4, temperature evolutions
at points 1,2 and 3 are shown for different heat transfer coefficients. As seen the cooling effect is
enhanced as the heat transfer coefficient is increased. Also, the temperature pattern with respect
time in the fluid is very similar to the previously experienced pattern. However, the difference
here is that the reduction in temperature here is controlled by external heat transfer coefficient at
the outer surface of the vessel. In all cases, the time taken for the temperature to reach a steady
state is much higher than the previous, constant wall temperature example. Similar to the previous
problem, the temperature of the fluid shows minor oscillatory behaviour representing the pulsatile
motion of the fluid. This behaviour is especially enhanced at higher external heat transfer coefficient
values.

Next, we investigate the effect of wall properties on heat transfer. A combination of wall
properties may be represented through the material parameter β. However, the wall thickness (h),
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unstressed area (Ao) and Young’s modulus of the material (E) may also be changed along with
β. Apart from β, other parameters used in the calculations remain the same. The effect of wall
thickness and corresponding β variation on flow and heat transfer is shown in Figure 5. As seen
both the velocity and temperature exhibits pulsatile behaviour. It is clear that when β decreases,
the decreased resistance to flow increases the average flow speed. The average fluid temperature
also slightly decreases with β value. However, the peak temperature values slightly increase with
decrease in β values. This may be due to the increased flow speed and reduced contact time between
fluid and cold wall. The pulsating behaviour of the temperature remains the same as the problem
with constant inner wall temperature.

4.2 Vessel branching

In this section, the effect of introducing a bifurcation is studied. The system considered includes
three tubes that are linked by means of a bifurcation. Each of them has a length equal to 10 cm.
Monitoring points (4 and 5) are positioned at the mid point the segments as shown in Figure 6.
The tube associated with the point 5 has an unstressed area (Ao) that is equal to half of unstressed
area of point 4. A comparison is carried out against a straight tube of identical total length with
monitoring points at 6 and 7 as shown in Figure 6. In the straight tube case, the unstressed area is
equal to the area at point 4. The heat transfer results are also shown in Figure 6. As expected, the
bifurcation modifies the velocity field slightly. After the branching, the velocity signal is slightly
attenuated. Both the velocity amplitude values, before and after bifurcation, have been reduced
in comparison to the straight tube value. While there is no significant difference in heat transfer
between parent vessel of the bifurcation and straight tube, a reduction in temperature is observed
in the daughter vessels. This is the result of smaller velocity in comparison to the straight tube and
also due to increase in the ratio between surface area and cross sectional area of daughter vessels.

5 Concluding remarks

A one-dimensional thermo-fluid model for an elastic tube and tube network has been developed
and numerically tested. The novel aspect of the work is in the introduction of a comprehensive
model for energy transport. Hence, the present model can predict the influence of the flow rate,
and the pressure as well as that of the cross-sectional area on the temperature. The influence
of structural properties of the vessel wall and various other properties on heat transfer has been
investigated. Due to the fact that the transport velocity for the temperature is the velocity of the
fluid, any parameter that influences the velocity also influences the fluid temperature. Although
the inlet fluid temperature is assumed to be constant, the temperature down stream follows a
pattern inline with the pulsatile pattern of flow velocity. It is conclusively shown that decrease in
the material parameter β decreases the average fluid temperature. The effect of bifurcation with
smaller daughter vessels increases the cooling effect. This is due to the increase in surface area to
cross sectional area ratio and reduction in velocity in comparison to an equivalent straight tube.
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Density of fluid, ρ (g/cm3) 1.06
Viscosity of fluid, µ (poise) 3.5x10−2

Thermal conductivity of fluid, k (W/cm°C) 0.05
Specific heat of fluid, cp (J/g°C) 3.9
Inner wall heat transfer coefficient, hin (W/cm2°C) 0.01

Table 3: Fluid parameters and properties used in simulations.
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Poisson’s ratio, σ 0.5
Unstressed area, A0 (cm2) 1.0
Material wall parameter, β (dyne/cm2) 2.26974x105

Wall thickness, h (cm) 0.05
Tube length, L (cm) 20
Finite element size, le (cm) 2.0x10−2

Table 4: Geometrical and material properties of the vessel used.
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Solid wall density, ρs (g/cm3) 1.30
Solid wall thermal conductivity, ks (W/cm °C) 0.075
Solid wall specific heat, cps (J/g °C) 3.0
Outside atmosphere temperature, Text (°C) 20.0
Outside wall heat transfer coefficient, hext(W/cm2 °C) 0.001 - 0.01

Table 5: Solid parameters and the outside conditions.
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Figure 1: Schematic representation of flow and energy transport in a flexible tube.

20



5 6 7 8 9 10
0

5000

Time [s]P
re

s
s
u

re
 [

d
y
n

e
/c

m
2
]

5 6 7 8 9 10
1

1.2

1.4

Time [s]

A
re

a
 [

c
m

2
]

5 6 7 8 9 10
0

50

100

Time [s]

V
e

lo
c
it
y
 [

c
m

/s
]

5 6 7 8 9 10
36.8

37

37.2

Time [s]

T
e

m
p

e
ra

tu
re

 [
°

C
]

5 6 7 8 9 10
0

1

2
x 10

4

Time [s]P
re

s
s
u

re
 [

d
y
n

e
/c

m
2
]

5 6 7 8 9 10
1

1.1

1.2

Time [s]

A
re

a
 [

c
m

2
]

5 6 7 8 9 10
0

20

40

Time [s]
V

e
lo

c
it
y
 [

c
m

/s
]

5 6 7 8 9 10
36.8

36.9

37

Time [s]

T
e

m
p

e
ra

tu
re

 [
°

C
]

Figure 2: Flow and heat transfer in a flexible tube with a constant inner wall temperature. Pressure, area
, velocity and temperature variations for constant (left) and pulsating (right) pressure inputs.
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Figure 3: Flow and heat transfer in a flexible tube with a constant inner wall temperature. Effects of
reflections on velocity and temperature.
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Figure 4: Flow and heat transfer in a flexible tube with a convective wall conditions. Effect of hext on
temperature at points 1 (top right), 2 (bottom left) and 3 (bottom right)
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Figure 5: Flow and heat transfer in a flexible tube with a constant inner wall temperature. Effects of wall
thickness (β) on fluid velocity and temperature.

24



7 7.2 7.4 7.6 7.8 8
0

20

40

Time [s]

V
e
lo

c
it
y
 [
c
m

/s
]

 

 

4 6

7 7.2 7.4 7.6 7.8 8
0

20

40

Time [s]

V
e
lo

c
it
y
 [
c
m

/s
]

 

 

5 7

7 7.2 7.4 7.6 7.8 8
36.99

36.995

37

Time [s]

T
e
m

p
e
ra

tu
re

 [
°

C
]

 

 

4 6

7 7.2 7.4 7.6 7.8 8
36.985

36.99

36.995

Time [s]

T
e
m

p
e
ra

tu
re

 [
°

C
]

 

 

5 7

Figure 6: Flow and heat transfer in a bifurcating vessel with convective wall conditions. Velocity and
temperature in a bifurcation
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