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Abstract 15 

A pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric 16 

gaseous elemental mercury (GEM) concentrations at high temporal resolution was used 17 

to successfully conduct eddy covariance (EC) flux measurements of GEM. GEM fluxes 18 

from soils are important to understand because they can originate from natural sources, 19 

legacy emissions, and re-emission of previously deposited anthropogenic pollution, 20 

which together exceed primary anthropogenic emissions. Eddy covariance flux 21 

measurements require sub-second concentration measurements, hampering the 22 

measurement of GEM fluxes due to slow response instrumentation. Measurements took 23 

place near Reno, Nevada in September and October 2012 encompassing natural, low-24 

mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements 25 

with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, clear 26 

covariance of GEM concentration and vertical wind speed was measured, showing that 27 

EC fluxes over an Hg-enriched area were detectable. During three separate days of flux 28 

measurements over background soils (without Hg-enriched soils), no covariance was 29 

detected – indicating fluxes below the detection limit. When fluxes were measurable, 30 

they strongly correlated with wind direction; and highest fluxes occurred when winds 31 

originated from the Hg-enriched area. We also measured fluxes with the modified Bowen 32 

ratio (MBR) and a dynamic flux chamber (DFC). Comparisons between the three 33 

methods generally showed good agreement in direction (e.g., emission or deposition) and 34 

magnitude of fluxes measured, in particular when measured fluxes originated from within 35 

the area of Hg-enriched soils. This study demonstrated that a CRDS system can be used 36 
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to measure GEM fluxes over Hg-enriched areas, with a conservative detection limit 37 

estimate of 32 ng m-2 hr-1, equivalent to the lowest measured absolute flux. 38 

 39 

  40 
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Introduction 41 

Long-range atmospheric transport and deposition contributes to significant 42 

environmental mercury (Hg) loading even in remote ecosystems1-3. Large uncertainties 43 

remain in our understanding of deposition processes, in particular of gas-phase dry 44 

deposition which contributes significantly to deposition loads4. Gaseous elemental 45 

mercury (GEM), the dominant atmospheric form of Hg, is semi-volatile and subject to 46 

atmospheric deposition and re-emission leading to a complex pattern of net Hg surface-47 

atmosphere exchange4-6. Processes contributing to GEM re-emission include 48 

photochemical reduction7-10 as well as other abiotic and biotic processes11-15
. Atmospheric 49 

GEM emissions from natural sources, legacy emissions, and re-emission of previously 50 

deposited anthropogenic pollution have been estimated to exceed primary anthropogenic 51 

emissions by a factor of four 16. GEM is the dominant form of Hg in the atmosphere and 52 

is therefore the main pathway for Hg to enter ecosystems where it can then be methylated 53 

(MeHg) and become bioavailable. Once Hg becomes bioavailable it can bioaccumulate 54 

up the food web where it can reach concentrations in marine and terrestrial species 55 

known to cause health problem in wildlife and humans 17-19. 56 

Several methods for measuring net GEM exchange between surfaces and the 57 

atmosphere have been employed, many of them have a number of shortcomings. The 58 

most widely used technique, the dynamic flux chamber (DFC), is an easy-to-deploy and 59 

relatively inexpensive method that is used to measure the exchange of GEM over a small 60 

area (usually <1 m2). The DFC method is, however, highly sensitive to pressure 61 

differences and flow rates through the chamber20; and placement of the chamber also 62 

impacts ambient conditions such as temperature, radiation, humidity, and turbulence 63 
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levels20-24. Micrometeorological techniques, including the modified Bowen ratio (MBR), 64 

aerodynamic and relaxed eddy accumulation methods, also have been used to measure 65 

GEM fluxes21, 25-31. These methods can be used to measure surface fluxes in situ without 66 

modification of environmental conditions, but have other limitations; in particular, the 67 

MBR and aerodynamic methods assume equal transport characteristics for GEM and a 68 

reference scalar (heat, water, or CO2) to calculate fluxes (e.g., similarity theory) – which 69 

is not always valid32. Another limitation is that concentration measurements are required 70 

at two heights which may represent different source areas33 or cause a bias due to the 71 

time lag of alternating measurements between the two heights26. The relaxed eddy 72 

accumulation method is a direct flux method, long sampling times are needed to acquire 73 

enough sample volume to distinguish concentration differences between updrafts and 74 

downdrafts25, 34, 35.  75 

Many of these issues could be overcome by using the eddy covariance (EC) technique 76 

– the only known direct, in situ method of determining fluxes36-38 and the current 77 

standard for measuring atmospheric fluxes of many other trace gases (CO2, methane, 78 

ozone, and water vapor)27, 36, 39. The technique uses a sonic anemometer to measure high-79 

frequency eddies (small to large changes in vertical wind direction) and a suite of other 80 

instruments to measure scalar atmospheric data to determine vertical turbulent fluxes and 81 

therefore exchange rates of trace gases over a variety of landscapes and is useful for 82 

assessing exchange over a whole ecosystem for hours to years40. This is done by 83 

analyzing the covariance between the change in vertical wind speed from the mean (zero) 84 

value and the change in a gas concentration (GEM) from its mean value40, 41. This 85 

analysis allows for detailed spectral analyses of conditions and allows the operator to 86 
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qualify data as useable based on conditions favorable for micrometeorological 87 

measurements, which is not possible for other techniques discussed previously. 88 

Limitations of the EC method include the necessity for flat terrain, steady conditions but 89 

turbulent winds, and consistent vegetation40. EC measurements also require a fast-90 

response (sub-second) field-deployable sensor, which until recently has not been 91 

available for GEM. To test the application of EC for GEM flux measurements, we 92 

deployed a newly developed pulsed cavity ring-down spectroscopy (CRDS) system42, 43 93 

capable of a measurement resolution of 25 Hz for GEM surface flux measurements with 94 

the EC technique. EC flux measurements were conducted over natural low-Hg 95 

background soils and over artificially Hg-enriched soil and compared to GEM fluxes 96 

measured with the MBR and DFC methods. The CRDS system was used to measure 97 

GEM concentrations at 25 Hz. These measurements were then averaged over half hour 98 

periods to calculate average GEM fluxes.  99 

 100 

2. Methods 101 

2.1 Field site 102 

Measurements were performed from September 14 to October 1, 2012 at a site 32 km 103 

northeast of Reno, Nevada, USA (39° 41’ N, 119° 32’ W; elevation 1570 m) over a flat 104 

area (0.61 km2) of mixed bare soil and shrubs in the Northern Desert Shrub Zone. 105 

Surrounding vegetation consisted mainly of sagebrush (Artemisia tridentata), rabbitbrush 106 

(Ericameria nauseosa), and juniper species (Juniperus spp.), (Supp. Info. S1). The 107 

micrometeorological flux tower was located in the northwest corner of a 50 x 90 m2 flat, 108 
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non-vegetated area with a small hill (elevation 35 m) starting 300 m to the southwest of 109 

the tower (Supp. Fig. S1a).  110 

GEM flux measurements were first made at the site over soils with low background Hg 111 

concentrations (average soil Hg concentration: 0.11 ± 0.04 µg g-1) from September 14 to 112 

18, termed “background” measurements. From September 19 to September 29, plastic 113 

storage boxes containing Hg-enriched soil were deployed as additional GEM sources 114 

upwind, in the footprint area (cf. Section 2.4) of the micrometeorological towers, termed 115 

“Hg-enriched” measurements (Fig. 1a and Supp. Fig. S1). For this, 41 plastic storage 116 

boxes (58 cm x 41 cm) were deployed filled with a layer of Hg-enriched soil (average Hg 117 

concentration: 84.5 ± 5.25 µg g-1) in a semi-circle around the micrometeorological towers 118 

(between 90˚ and 270˚ based on predominant wind direction in the area) equally spaced 119 

with 10 m between each box (Fig. 1a; Supp. Info. S.1). From September 29 to October 1, 120 

the boxes filled with Hg-enriched soil were removed for renewed background 121 

measurements (only atmospheric concentrations were measured, no fluxes). The sonic 122 

anemometer of the EC system was positioned, due to tower orientation, toward the south-123 

southeast at an angle of 172° allowing unobstructed wind direction and ideal 124 

measurements from 82° to 262°, similar to the deployed Hg-enriched soil boxes (see Fig. 125 

1a). All flux measurements were made between 12:00 and 18:00 Pacific Daylight Time, 126 

the time period when winds typically originated from the 90-270° sector (see Supp. Info. 127 

S.2, and Supp. Fig. S.2). 128 

 129 

Figure 1 130 
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 131 

 132 

2.2 Flux measurements 133 
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2.2.1 Eddy covariance 134 

Three measurement towers were deployed 10 m southeast of a trailer that contained the 135 

CRDS system42, 43 and auxiliary analyzers. One tower supported a three-dimensional 136 

(3D) ultrasonic anemometer for measurement of the three wind components and the 137 

speed of sound (CSAT3, Campbell Scientific, Logan, UT, USA) mounted 75 cm above 138 

the ground along with an open-path infrared gas analyzer (IRGA, LI-7500, LiCor Inc. 139 

Lincoln, NE, USA) for CO2 and water vapor concentration measurements (Supp. Info. 140 

S.3). The open-path IRGA and the air sampling inlet to measure GEM and ozone were 141 

mounted 20 cm below the center of the sensing volume of the sonic anemometer, with the 142 

IRGA positioned 10 cm east and 20 cm north of the air inlet. The air inlet was connected 143 

by 20 m Teflon® tubing (4.76 mm ID) to the mobile measurement trailer (Supp. Fig. 144 

S.1b). In addition, the sample air was routed through a set of glassware and ovens for 145 

ozone decomposition prior to measurements42 and to the closed-path, 1 m quartz-coated 146 

stainless-steel measurement cavity of the CRDS system at a flow rate of 8 L min-1 for 147 

laminar flow (Reynolds number of ~1800). After the CRDS cavity, flow was distributed 148 

to an Hg vapor analyzer (Model 2537B, Tekran Inc., Toronto, Canada) which was used to 149 

correct CRDS GEM concentrations at 2.5 min time intervals, a closed-path IRGA (LI-150 

7000, LiCor Inc.; Supp. Info. S.3), and an ozone analyzer (Model 205, 2B Technologies). 151 

The trailer also housed two additional Model 2537B analyzers to measure GEM 152 

concentrations for the MBR and DFC methods (see Supp. Info S.4). 153 

 154 

2.2.2 Modified Bowed Ratio 155 
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In order to compare EC fluxes with other techniques, we also measured GEM fluxes 156 

with the MBR method. Since we were measuring in an arid environment, we chose to use 157 

sensible heat as the reference scalar for this technique. A third tower was used for the 158 

gradient setup where GEM concentrations and temperature were monitored at 0.58 and 159 

1.09 m above the ground. Temperature at each height was continuously measured (1 min 160 

average) with two 1000 Ohm platinum resistance thermometers (PRTs; ±0.01o C; 161 

Thermometrics Corporation; Los Angeles, CA, USA). Each set of PRTs was placed in a 162 

fan-aspirated radiation shield (Model 076B; Met One Instruments; Grants Pass, OR, 163 

USA). Both heights were sampled for GEM by a single Tekran 2537B, located inside the 164 

adjacent mobile trailer and connected by Teflon® tubing, over five minute intervals (two 165 

2.5 min samples on each trap consecutively). A Tekran automated Dual Switching unit 166 

(Model 1110; Tekran Inc.; Toronto, Canada) was used to switch between the two sample 167 

inlets. We used a pump to flush the inlet that was not being sampled to avoid stagnant air 168 

in the sample lines between sampling. A data logger (CR3000; Campbell Scientific; 169 

Logan, UT, USA) was used to collect data from the PRTs. More information can be 170 

found in Supp. Info. S.4. 171 

 172 

2.2.3 Dynamic flux chamber 173 

Further, a dynamic flux chamber constructed of Teflon was used to quantify GEM 174 

fluxes over a surface area of 0.036 m2. The flux chamber – provided by the laboratory of 175 

M. Gustin at the University of Nevada, Reno – had a height of 6.5 cm, 2 L of volume, 176 

and 1 cm diameter holes every 2.5 cm around the chamber circumference located 2 cm 177 

above the surface to allow unrestricted airflow at 1.2 L min-1 during background 178 



11 
 

 

measurements and 4 L min-1 during measurements over a source tub20. The chamber was 179 

positioned over an area of open soil with minimal disturbance. GEM concentrations 180 

inside and outside the chambers were measured by a second 2537B Tekran Hg analyzer 181 

connected by 25 m of Teflon tubing. Switching between chamber inlet and outlet air was 182 

controlled with a Tekran Model 1115 multi-port switching unit. More information can be 183 

found in Supp. Info. S.4. 184 

 185 

2.3. EC flux calculations 186 

We calculated half-hour average fluxes for GEM as well as sensible and latent heat 187 

based on the covariance between turbulent fluctuations of the vertical wind speed and the 188 

scalar mixing ratios using Reynolds (block) averaging27, 37, 38, 44, 45. Negative fluxes 189 

reported here represent transport from the atmosphere toward the surface (deposition), 190 

while positive fluxes represent emission. For details on the post-processing of EC fluxes 191 

see Supp. Info. S.3. We assigned half-hour fluxes quality control (QC) flags: 1 (good), 2 192 

(usable), and 3 (not usable). The following criteria were used to assign QC flags: (i) 193 

following the procedure outlined by Ruuskanen36, the GEM cross-correlation with 194 

vertical wind speed (covariance of vertical wind speed and GEM concentrations with the 195 

latter shifted in time sample-by-sample) was visually assessed and given QC flag 1 when 196 

a well-defined peak in the cross-correlation was found within the searched time window 197 

(±10s); QC flag 2 was assigned when a less defined, but still detectable, peak was found; 198 

and QC flag 3 was assigned when no peak was observed; (ii) optimal wind directions for 199 

the sonic anemometer setup according to the manufacturer’s specifications (QC flag 1: > 200 

90° and < 270°; QC flag 2: > 45° and ≤ 90° plus ≥ 270°and < 315° ; QC flag 3: all other 201 
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cases); (iii) following 46454443434343424141McMillen46, QC flag 3 was assigned when the 202 

third rotation angle exceeded  ±10° (QC flag 1 in all other cases); (iv and v) following 203 

Mauder et al. 47, QC flag 1 was assigned when the deviation of the stationarity test (a test 204 

of how variable the covariance is over time)47, for the GEM flux or the integral similarity 205 

characteristics (a comparison with an accepted model of turbulence) was <30%, QC flag 206 

2 was assigned for a deviation ≥30% and <100%, and QC flag 3 was assigned in all other 207 

cases. For each half-hour period, the overall QC flag was conservatively derived as the 208 

maximum QC flag of the five criteria above (Supl. Fig. S.3). 209 

  210 

2.4 Footprint analysis 211 

We estimated the EC flux source area (footprint) for each half-hour period with the 212 

Hsieh et al.48 footprint model (Supp. Info. S.5, Fig. 1.b). The flux footprint is an estimate 213 

of the actual source area contributing to the GEM flux based on atmospheric conditions 214 

(e.g., wind direction, wind speed, stability), surface properties (e.g., roughness), and 215 

height of the measurement instruments30, 31, 33, 48. This was important for estimating the 216 

source area contributing to flux measurements as Hg-enriched surface sources were 217 

placed within 60 m of the tower and within an angle of 90° to 270°. The flux footprint is 218 

expressed as X90% values representing the upwind distance from the tower within which 219 

90% of the flux originated (source area). In addition, the concentration footprint for each 220 

of the two intake heights of the MBR system was estimated using a 3-D backward 221 

Lagrangian footprint model (LPDM-B) 33.  In contrast to the flux footprint, which was 222 

calculated for each available half-hourly period, the LPDM-B model was run with typical 223 

atmospheric conditions during the entire measurement campaign (i.e., mixing-layer 224 
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heights of 3500 and 5000 m, Monin-Obukhov lengths of -5 and -15 m, and convective 225 

velocity scales of 2 and 3 m s-1, respectively). The roughness length was set to 0.01 m for 226 

bare soil in the LPDM-B model, which corresponds to the average value calculated from 227 

the logarithmic wind law under near-neutral atmospheric conditions when winds 228 

originated from the 90-270° sector.  229 

 230 

3. Results and discussion 231 

3.1. High-frequency signal analysis 232 

We thoroughly checked collected GEM concentrations for data quality before 233 

calculation of EC fluxes, including Allan variance plots (Supp. Fig. S.4), (co-)spectral 234 

(Fig. 2) and cross-correlation analysis (Fig. 3); these served to validate GEM 235 

concentration measurements and supported processing data prior to calculating fluxes (as 236 

detailed below). We used Allan variance plots to assess the stability of GEM 237 

concentration measurements through time. An example, shown in Supp. Fig. S.4, 238 

demonstrates that the variance of high-resolution GEM measurements (red line) during 239 

stable background conditions decreased with a slope inversely proportional to the 240 

integration time until approximately 50 s. The Allan variance started to increase after an 241 

integration time of approximately 200 s with a slope proportional to the integration time. 242 

The latter is an indication of linear drift of the CRDS system causing an increase in the 243 

GEM variance at longer integration times49. In order to account for this instrument drift, 244 

which would result in an overestimation of GEM flux calculations, we corrected CRDS 245 

GEM signals using GEM concentrations measured downstream of the CRDS with a 246 

slower-time response (2.5 min) Model 2537B Tekran Hg analyzer. To this end, we 247 
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calibrated CRDS GEM data every 2.5 min with concentrations measured by the Model 248 

2537B. As shown in Supp. Fig. S.4, this procedure (blue line) effectively removed low-249 

frequency drifts, causing the variance to decrease with a slope inversely proportional to 250 

the integration time through 1000 s. 251 

We used spectral and co-spectral analyses to compare the quality of the CRDS GEM 252 

signals with the temperature data as measured by the sonic anemometer in the frequency 253 

domain50. Power spectra and co-spectra, typical for QC 1, are shown in Fig. 2. This 254 

comparison between temperature and GEM power spectra showed that the GEM signal 255 

started to be dominated by noise above frequencies of 0.45 Hz, causing it to deviate from 256 

the expected f-5/3 (where f is frequency) decay in the inertial sub-range (solid line Fig. 2a) 257 

and the temperature spectrum measured with the sonic anemometer51. The co-spectra of 258 

vertical wind speed with temperature and GEM, respectively, generally agreed in the 259 

lower frequency range and up to around 0.2 Hz, indicating that the removal of the linear 260 

drift in the GEM signals was successful (Fig. 2b). At frequencies around 0.2 Hz, the 261 

GEM co-spectrum started to roll off, which is indicative of low-pass filtering by the 262 

measurement system (in particular attenuation of concentration fluctuations down the 263 

sampling tube)52. The dashed line in Fig. 2b represents the co-spectral reference model 264 

convolved with a series of transfer functions which account for all sources of low-pass 265 

filtering (Supp. Inf. S.3). Our approach of correcting for low-pass filtering was able to 266 

reproduce (and thus allowed correcting for) this flux loss 51, 52. At frequencies >0.45 Hz 267 

(which corresponds to ca. 12% of total flux), the noise observed in the GEM spectra (Fig. 268 

2a) compensated for the low-pass filtering and even caused an increase in co-spectral 269 

density, while the temperature co-spectrum further decreased in the inertial sub-range as 270 
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expected51 (Fig. 2b). In order to remove the noise in the high-frequency part of the GEM 271 

co-spectrum, we used a low-pass Finite Impulse Response (FIR) filter51 with a time 272 

constant of 2 s to filter out any unwanted contributions at frequencies >0.45Hz. The 273 

missing high-frequency (>0.2 Hz) flux contribution due to low-pass filtering by the 274 

measurement system and the low-pass FIR filter (>0.45 Hz) was then back-corrected 275 

based on the reference model co-spectrum of Kaimal and Finnigan51. The resulting 276 

average frequency response correction factor was 1.89 (range 1.29–2.58).  277 

Figure 2 278 

 279 

 280 

We used a cross-correlation analysis to identify whether a covariance existed between 281 

vertical wind speed and GEM concentration for each half hour sampled. Following 282 

Ruuskanen et al.36, a well-defined peak in the cross-correlation analysis (Fig. 3) indicated 283 
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a significant correlation between vertical wind speed and GEM concentration from which 284 

a flux was calculated. Figure 3 demonstrates examples of a well-defined peak in the 285 

cross-correlation between GEM and vertical wind speed (assigned QC 1) as well as a 286 

lower quality peak (assigned QC 2), which was associated with higher uncertainty. A 287 

lack of cross-correlation (assigned QC 3) indicated fluxes close to zero, which may be 288 

because no fluxes existed or because fluxes were below the detection limit of the system. 289 

The time lag shown in the cross-correlation analysis, as indicated by the shift in the peak 290 

covariance, at roughly 3.3 s represents the time for sample air to travel from the sample 291 

inlet on the EC tower (where vertical wind speed was measured) to the CRDS system 292 

inside the measurement trailer (where GEM was measured). This time lag, which was 293 

consistent throughout the measurements, was used to properly align all vertical wind 294 

speed and GEM concentration data for covariance calculations. 295 

Figure 3 296 
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 297 

Of a total of 85 half-hour measurements, 17%, 21%, and 62% fell into the overall QC 298 

classes 1, 2, and 3, respectively (Supp. Fig. S.3), and 57% of the data in QC 3 was due to 299 

lack of a clear cross-correlation. During sampling under background conditions, all 300 

available half-hour fluxes failed to meet the cross-correlation criterion (i.e., fluxes close 301 

to zero and/or below detection limit). During deployment of the Hg-enriched soils, 43% 302 

of the data failed to meet the cross-correlation criterion, which usually was associated 303 

with air masses originating from outside the Hg-enriched soil area. Overall, the wind 304 

direction, stationarity, integral turbulence, and third rotation angle criteria were not 305 

fulfilled in 7, 11, 0, and 1% of all cases.  306 
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Several methods were used to evaluate the detection limit of the EC flux system. The 307 

smallest, absolute detected GEM flux with a clear cross-correlation was 32 ng m-2 h-1 308 

(QC 2), Using the method described in Pihlatie et al. (2005)53, which requires the 309 

standard deviation of vertical wind speed and the noise level of the instrument (30 min 310 

standard deviation during background measurements), we calculated a flux detection 311 

limit of 2-60 ng m-2 h-1. Standard deviation of vertical wind speed varied between 0.20-312 

0.45 m s-1. The standard deviation of GEM during background measurements varied 313 

between 0.0022-0.0050 µg m-3. This flux detection limit is similar to the smallest 314 

absolute detected GEM flux of 32 ng m-2 h-1. However, using the power spectra of the 315 

background noise (before Hg-enriched soil boxes were in place) and an estimate of the 316 

vertical wind power spectra as described in Pattey et al. (2006)54, we calculated a flux 317 

detection limit of 82-195 ng m-2 h-1 for the range of observed wind speeds of 0.3-4 m s-1. 318 

This technique gives a higher flux detection limit. Following Wienhold et al. (2005) a 319 

signal-to-noise (S/N) ratio analysis was performed. For the 85 half-hour periods of 320 

calculated fluxes, 33% exceed a S/N of 3. In QC 1 S/N varied from 4.1 to 9.5 (100% S/N 321 

> 3), QC 2 S/N varied from 2.6 to 9.2 (95% S/N > 3) and QC 3 S/N varied from 1.8 to 322 

23.4 (72% S/N > 3). This indicates that for QC 1 and 2 S/N ratios were generally above 323 

3. Although some fluxes with acceptable S/N ratios were rejected in QC 3, the use of 324 

other quality criteria in this case assures us that these fluxes are not useable (Supp. Fig. 325 

S.3 and S.5).  326 

 327 

3.2. EC GEM fluxes 328 
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Mean background afternoon (12:00–18:00) ambient air GEM concentrations measured 329 

with a Model 2537B analyzer were 1.42 ng m-3 with a range of 1.20 to 2.23 ng m-3 prior 330 

to the Hg-enriched soil being deployed and 1.53 ng m-3 with a range of 1.06 to 2.85 ng m-331 

3 after removal. During the three days of background flux measurements, GEM fluxes 332 

calculated with the EC method (Table 1; Fig. 1b, left panel) all failed the cross-333 

correlation criteria (QC 3). As a result, all of these fluxes can be considered below the 334 

detection limit of the system. 335 

When the Hg-enriched soil was deployed (Sept. 19 to 28), mean ambient air GEM 336 

concentrations increased to 3.75 ng m-3 with a range of 0.68 to 21.40 ng m-3. The LPMD-337 

B footprint model showed that during typical afternoon conditions, the source area (X90%) 338 

for 80% of the half-hour EC GEM fluxes originated within 14 to 18 m of the 339 

measurement tower, well within the area where Hg-enriched soil sources were deployed 340 

(extending 60 m). As expected, the highest fluxes (1000–3200 ng m-2 h-1) commonly 341 

were observed during periods when X90% fell within the Hg-enriched area. As can be seen 342 

in Figure 1b, large fluxes (>1000 ng m-2 h-1) also were observed on three occasions where 343 

X90% values were beyond, but closely adjacent to, the Hg-enriched soil sources (discussed 344 

below). Lower fluxes, below 1000 ng m-2 h-1 and often below 500 ng m-2 h-1, occurred 345 

mainly when fluxes originated from wind directions outside the Hg-enriched soil sources 346 

and during background measurements. GEM fluxes derived with all methods increased 347 

(Table 1), and EC GEM fluxes were more consistently classified as QC 1 and QC 2 (Fig. 348 

1b, right panel; Supp. Fig. S.3). Figure 1b shows flux magnitudes and the source area of 349 

GEM fluxes expressed as X90% for all 85 half-hour GEM EC measurements.  350 

 351 
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Table 1. Comparison of fluxes over background and Hg-enriched soils derived using all 352 

three techniques. 353 

*atmospheric concentrations measured by Tekran 2537B 354 
**all background EC fluxes were QC 3 and had no cross-correlation, MBR fluxes were below the 355 
minimum resolvable gradient (MRG) 356 
***MDL = 32 ng m-2 h-1

 357 
 358 

In general, GEM fluxes measured with the EC method when the Hg-enriched soil 359 

boxes were deployed had a wide range of values (QC 1&2 standard deviation ± 626.4; 360 

Supp. Fig S.6). Fluxes previously reported from naturally Hg-enriched soils 23, fluxes 361 

measured in large ecologically controlled lysimeter laboratories (EcoCELLs) over Hg 362 

amended soils 55, and fluxes calculated from DFC measurements using Hg-enriched 363 

substrates 56-58 showed a range that spanned five orders of magnitude in comparison to 364 

our measurements. We believe the measurement set-up contributed most of this 365 

variability (Table 1); and, in particular, the differences between GEM fluxes over the Hg-366 

enriched soil and background soil area. The Hg-enriched soil boxes were limited to a 367 

Background 
measurements 

Mean Min Max StdError n % no cross- 
correlation 

GEM (ng m-3)* 1.48 1.06 2.85 0.01 448  

EC (ng m-2 h-1) ** <MDL*** <MDL <MDL <MDL <MDL 100 

MBR (ng m-2 h-1) ** -76 -265 50 17 20 - 

DFC (ng m-2 h-1) 0.01 -8.9 6.8 0.09 277 - 

Hg-enriched area 
measurements 

      

GEM (ng m-3)* 3.75 0.68 21.40 0.09 743  

EC QC 1 (ng m-2 h-1) 1105 71 2339 180 14 0 

EC QC 1&2 (ng m-2 h-1) 849 -304 2339 111 32 0 

MBR QC 1 (ng m-2 h-1) 1712 -795 3934 367 14 - 

MBR QC 1&2 (ng m-2 h-

1) 
1309 -1026 3934 217 32 - 

DFC (ng m-2 h-1) 1105 23 3848 68 150 - 



21 
 

 

semi-circle from due east through south to due west (Fig. 1a), and it was likely that 368 

variability in EC GEM fluxes was induced by flux source areas switching between 369 

background and Hg-enriched areas (e.g., an “edge effect”, during any half-hourly 370 

averaging period). Another possibility is that environmental conditions caused some of 371 

the variability. This is unlikely since measurements were taken during relatively unstable 372 

conditions in afternoon hours, with no major precipitation events occurring. 373 

To highlight the edge effect, Fig. 4 shows three days of EC and MBR flux 374 

measurements that were impacted differently by the Hg-enriched soil area due to changes 375 

in dominant wind directions. On September 19, all measurements corresponded to 376 

average wind directions from the Hg-enriched area (between 90 and 270). Fluxes were 377 

highest when the wind direction was centered within the Hg-enriched soil area and as 378 

winds moved towards the edge and out of this area, measured fluxes decreased. All 379 

measurement points on September 19 were characterized as QC 1 and 2. The edge effect 380 

also was obvious on September 28 when dominant winds first originated from the Hg-381 

enriched soil area (first three measurements), but fluxes dropped significantly after the 382 

flux source area moved into the background soil area. While the initial three 383 

measurement points were characterized as QC 1 and 2, the last four points were 384 

characterized as QC 3 due to a lack of a cross-correlation and acceptable wind direction, 385 

and were consistent with lower GEM fluxes expected over the background soil area. 386 

Finally, on September 24, all measurements were taken when the flux source area was 387 

located outside of the Hg-enriched soil area, and fluxes, although relatively small, should 388 

be considered with caution during this period since five of the seven points were 389 

characterized as QC 3 data.  390 
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The examples on September 19, 24, and 28 show sensitivity of the EC measurements to 391 

wind directions shifting over the Hg-enriched soil area. It is further possible that 392 

additional flux variability was due to the deployment of discrete Hg sources; these 393 

sources were placed in boxes to avoid contamination of the site with 10 m in between, 394 

and the emissions from these tubs may not have been thoroughly mixed in the 395 

atmosphere prior to measurements at the EC tower, inducing additional variability both in 396 

concentrations and calculated fluxes. 397 

Figure 4 398 

 399 

3.3 Comparison of GEM flux measurement methods 400 

We compared EC fluxes with measurements from two other flux measurement 401 

methods, the MBR method and a DFC. Over background soils, mean GEM fluxes 402 

measured with the DFC (Table 1) were within the range of GEM fluxes measured with 403 

DFCs in other background areas (ranging from -1 to 45 ng m-2 hr-1)24, 59, 60 and over 404 

background soils in Nevada (averaging 1.0 to 2.0 ng m-3 h-1; with ranges of -3.7 to 9.3 ng 405 

m-2 h-1)61-63. The range of measured EC GEM fluxes was substantially higher than those 406 

measured with the DFC and actually showed an average depositional flux across all 407 

background measurements of -43 ng m-2 hr-1. We considered these measured EC fluxes 408 

over background soils unreasonable (both regarding variability and magnitude) as 409 
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compared to background soil fluxes reported by other studies and our own background 410 

GEM fluxes measured by the DFC method. This is supported by all of the EC fluxes 411 

falling into the QC 3 category with no detectible cross-correlation between GEM and 412 

wind speed.   413 

The issue with many GEM fluxes falling below the detection limit was not unique to 414 

the EC method but was also apparent in fluxes measured with the MBR method 415 

(averaging -76 ng m-2 hr-1). Resolving very small vertical gradients between two 416 

measurement heights is challenging over non-contaminated background sites, which was 417 

further exacerbated by a short separation (0.51 m) between measurement inlets compared 418 

to more commonly used gradients of 2 to 4 m. In this study, the small vertical separation 419 

was necessary to restrict flux footprints to the Hg-enriched soil area (60 m upwind). 420 

Other GEM fluxes measured with micrometeorological methods over background 421 

ecosystems fell in the range of -68 to 34 ng m-2 hr-121, 28, 62, 64 and often showed high 422 

variability as well. Calculated minimum resolvable gradients (MRG) between the two 423 

GEM inlets in MBR setups are in the range of 0.01 to 0.05 ng m-3 in several studies21, 31, 424 

64. During our background measurements, MBR gradients averaged 0.04 ng m-3 with a 425 

range of -0.04 to 0.16 ng m-3, and 50% of the data was below an absolute value of 0.05 426 

ng m-3 which was the smallest detectable gradient in a previous study 21. 427 

Unlike under background conditions, GEM fluxes measured with the EC, MBR, and 428 

DFC methods over the Hg-enriched soil area were in similar ranges, generally in the 429 

same direction (emission or deposition), and showed similar average fluxes and temporal 430 

patterns (Table 1). Fluxes measured with DFCs have been reported to be lower than those 431 

measured with micrometeorological methods22, 23, which was not the case for our 432 
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measurements. Figure 4 shows a flux comparison between EC and MBR measurements 433 

for the three days that were presented above to discuss the effects of wind direction. The 434 

patterns show that EC and MBR measurements compared well during these days, 435 

showing similar temporal patterns and magnitudes of fluxes. This may indicate that 436 

conditions that were favorable or unfavorable for the EC measurements, based on 437 

spectral analysis, are similarly favorable or unfavorable for the MBR method. For 438 

September 19, when all EC measurements fell into QC 1 and 2, the coefficient of 439 

determination, r2, of a significant linear regression between EC and MBR method was 440 

0.62 and showed a slope of 2, although the r2 and slope decreased to 0.53 and 1.3, 441 

respectively, when the regression was forced through the zero offset. The linear 442 

regression for September 28 had an r2 of 0.7 and a slope of 0.82 which decreased to 0.68 443 

and 0.9, respectively, when forced through the zero offset. No significant linear 444 

regression between EC and MBR measurements, however, was found on September 24 445 

when most of the data fell into QC 3.  446 

GEM fluxes measured with the MBR method showed an even higher range of values 447 

and greater variability than to the EC measurements (Table 1). One possible reason for 448 

this includes potentially different concentration footprints for the MBR method, which 449 

has two different inlets at heights of 0.58 m and 1.09 m, respectively, compared to the EC 450 

method (single inlet at 0.75 m).  However, concentration footprint distances amounted to 451 

8–10 m and 18–22 m for the two different gradient intake heights for typical afternoon 452 

conditions and hence were clearly located within the 60 m source area. Therefore, the 453 

different inlet heights of the EC and MBR methods cannot explain the observed 454 

differences between the two methods or the more variable MBR flux data. 455 
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 456 

Conclusions 457 

Wesuccessfully demonstrated applicability of the EC method for GEM flux 458 

measurements by detection of well-defined covariance between high-resolution 459 

measurements of vertical wind speed and GEM concentrations. Such field measurements 460 

were challenging since they required deployment of a complex and highly sensitive 461 

optical CRDS system in the field with significant demands for protecting the system from 462 

vibrations, temperature and power fluctuations, and dust. Calculated GEM fluxes were in 463 

the range of other flux methods under Hg enrichment, and showed high sensitivity to the 464 

presence of Hg-enriched soil with changing fluxes as wind direction changed over the 465 

source area. There was good comparison between the three flux measurement techniques 466 

when conditions were favorable for flux measurements over the Hg-enriched source area 467 

(QC 1 & 2). These measurements, to our knowledge, represent the first-ever EC 468 

measurements performed to quantify GEM surface exchange. It proved to be 469 

straightforward to detect EC fluxes over the Hg-enriched soil area, but detection was not 470 

feasible over natural background areas in the existing setup with the current CRDS 471 

sensitivity. The smallest, absolute, detectable flux with our system was 32 ng m-2 h-1, and 472 

we conclude that this flux was a conservative estimate of the system’s flux detection 473 

limit. Various system improvements could be implemented to increase flux detection 474 

limits and time coverage of measurements, including increasing the sensitivity of the 475 

CRDS GEM detection limit, (e.g., by increasing cavity path lengths to improve 476 

sensitivity), new cavity designs targeted at reducing flow interferences for EC 477 

measurements (reduce noise evident in the GEM spectra and co-spectra and eliminate 478 
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reliance on a slow-response instrument for data correction), and advancements to the 479 

system to make it more robust for longer-term field deployments.  480 

 481 

Figure Caption 482 

Figure 1: a.) Site schematic; blue area represents the area with deployed Hg-enriched 483 

soil boxes (represented by square dots), and dashed lines indicate the 10 m2 spacing 484 

around each individual source tub. b.) Flux measurement over background soils (left 485 

panel) and over Hg-enriched areas (right panel) and associated flux footprints. Symbol 486 

colors represent flux magnitude, and location show X90% values, which represent upwind 487 

distance from tower within which 90% of the flux originated, based on footprint analysis 488 

(note micrometeorological tower located in the center). Solid symbols indicate QC 1 489 

data, open symbols indicate QC 2 data, crossed out symbols indicate QC 3 data. The blue 490 

area on the right panel indicates deployed Hg-enriched soil boxes. c.) Wind rose for the 491 

measurement period. 492 

 493 

Figure 2: a.) Power spectra of sonic temperature (T) and GEM (Hg) (left panel) and 494 

corresponding co-spectra with vertical wind speed (right panel). Lines represent 495 

ensemble averages from 19 September 2012 14-17:00 local time (mean wind speed 1.8 496 

m s-1 and unstable conditions). The dotted vertical line indicates the onset of noise (0.45 497 

Hz). The solid line in the left panel shows the expected f-5/3 slope in the inertial subrange. 498 

The solid and dashed lines in the right panel refer to the cospectral reference model by 499 

Kaimal and Finnigan (1994) and the cospectral reference model attenuated by a series of 500 
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transfer functions that represent the effects of low-pass filtering on the GEM time series, 501 

respectively. 502 

 503 

Figure 3: Cross-correlation analysis of vertical wind speed with GEM density. The red, 504 

blue and green lines refer to cases of a well-defined peak in the cross-correlation (QC 505 

flag 1; 19.09.2012 14:00-14:30, average horizontal wind speed = 2.3 m s-1, Monin-506 

Obukhov stability parameter = -0.15), a less well-defined peak (QC flag 2; 19.09.2012 507 

17:30-18:00, average horizontal wind speed = 2.9 m s-1, Monin-Obukhov stability 508 

parameter = -0.04) and no detectable peak (QC flag 3; 20.09.2012 16:30-17:00, average 509 

horizontal wind speed = 2.9 m s-1, Monin-Obukhov stability parameter = -0.13). 510 

 511 

Figure 4: GEM fluxes (ng m-2 h-1) as measured by the CRDS system (filled dots) and the 512 

MBR method (open dots) during three specific days with different wind directions and 513 

therefore different impact of the deployed Hg-enriched sources. Shaded areas represent 514 

the angles corresponding to the deployed Hg-enriched substrate upwind of the 515 

measurement towers; wind directions are average wind directions during the respective 516 

30 min. measurement periods and show the degree to which dominant wind directions 517 

corresponded to the upwind Hg-enriched source area. Wind direction error bars are 518 

standard deviation of the wind direction. 519 

 520 

  521 
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