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Abstract: We consider supersymmetric configurations in Type IIB supergravity obtained

by the beackreaction of fundamental strings ending on a stack of D3-branes and smeared

uniformly in the three spatial directions along the D3-branes. These automatically in-

clude a distribution of D5-brane baryon vertices necessary to soak up string charge. The

backgrounds are static, preserving eight supersymmetries, an SO(5) global symmetry and

symmetry under spatial translations and rotations. We obtain the most general BPS

configurations consistent with the symmetries. We show that the solutions to the Type

IIB field equations are completely specified by a single function (the dilaton) satisfying a

Poisson-like equation in two dimensions. We further find that the equation admits a class

of solutions displaying Lifshitz-like scaling with dynamical critical exponent z = 7. The

equations also admit an asymptotically AdS5 × S5 solution deformed by the presence of

backreacted string sources that yield a uniform density of heavy quarks in N = 4 SYM.
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1 Introduction and summary

Theories with spatially isotropic (nonrelativistic) scale invariance emerge as descriptions

at quantum criticality [1–4] of various condensed matter systems. Such fixed point theories

display a “dynamical” or Lifshitz scale invariance under the transformation,

t → λz t , x⃗ → λ x⃗ , z ̸= 1 , (1.1)

which acts differently on the spatial (x⃗) and temporal (t) coordinates. Theories at Lif-

shitz points and at strong coupling are particularly interesting as they arise in the con-

text of strongly correlated electron systems and models of high-Tc superconductors. The

holographic duality between (large-N) quantum field theories (QFTs) and gravity/string

theory [5, 6] has provided a natural setting for exploring properties of strongly interacting

QFTs at Lifshitz points [7, 8], which can be further extended to theories with Lifshitz-like

scaling accompanied by hyperscaling violation [9–11].

In this paper we will show that Lifshitz scaling arises in an interesting and unusual

fashion in a family of supersymmetric ( 14 -BPS) solutions within type IIB supergravity. The
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backgrounds in question have a natural interpretation as long distance descriptions of a

state in N = 4 supersymmetric Yang-Mills (SYM) theory at large-N and strong coupling,

with a spatially homogeneous distribution of static quark impurities. The configurations

correspond to backreacted geometries of the intersections of D3-branes, F-strings (heavy

quarks) and D5-branes (baryon vertices) [12]. The main result of this paper is the deriva-

tion of the most general conditions to be satisfied by static 1
4 -BPS configurations in IIB

supergravity preserving ISO(3) × SO(5) symmetry,1 which includes solutions discussed

in [13], but also new ones as we describe below.

Our work is motivated by the goal of eventually obtaining holographic models suitable

for understanding high density physics in QCD-like theories and unravelling the “condensed

matter physics of QCD” [14–16] (albeit within holographic toy models). In order to make

progress towards this goal, it is necessary to understand the dynamics of quark flavours

and how they influence or backreact on the gluonic degrees of freedom at strong coupling.

There are two reasons for this: the first reason is technical and a direct consequence of

the large-N ’t Hooft limit that accompanies any classical holographic dual description

of gauge theories. Since QCD has “unquenched” quarks, it is necessary to address the

backreaction of quark flavours in the large-N theory to model unquenched flavours. The

second factor that necessitates inclusion of quark backreaction is intrinsic to physics at

finite or high quark densities (in a deconfined phase) in the absence of temperature or any

other comparable scale in the problem. In such a situation, when the quark density is not

parametrically small, its backreaction on the large-N vacuum will determine the ground

state of the system.

The necessity of incorporating flavour backreaction effects in holographic models at

finite density (and low temperatures) has been emphasized in [17, 18]. While both issues

above should be addressed simultaneously in principle, it is useful and interesting to first

understand the possible manifestations of backreacting quark density within a holographic

setting. If the quark flavours are (sufficiently) massive, at low enough energies we expect

to be able to treat them as static objects. A state with a uniform density of these static

quarks should, however, also be expected to backreact non-trivially on the glue degrees of

freedom provided the quark density is ∼ O(N2) in the large-N limit.

In gauge theory, a heavy static quark corresponds to a straight timelike Wilson line

(e.g. [19]). Therefore the state with a finite density of heavy-quarks can be viewed as the

insertion of a distribution of Wilson line operators into the gauge theory. For densities

scaling as N2 in the large-N limit, we expect a non-trivial ground state (saddle-point) to

emerge. This idea was implemented in a non-supersymmetric fashion in [20] in N = 4 SYM

theory at large-N and strong ’t Hooft coupling. A heavy quark or straight Wilson line in

N = 4 SYM corresponds to a macroscopic, infinite string stretching radially from the con-

formal boundary of AdS5×S5 to the interior [21, 22]. As is well known, this (BPS-)Wilson

line also carries an orientational SO(6) index associated to its location on the internal

S5. In [20], the distribution of static quarks was chosen to be both spatially uniform and

1ISO(3) is the symmetry group, including translations and rotations, of the three spatial dimensions of

the gauge theory along which quark density is uniformly distributed.
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SO(6)-symmetric, i.e. uniformly smeared around the S5. The resulting non-supersymmetric

background was shown to exhibit a flow from AdS5 × S5 to an IR geometry Lif5 × S5 dis-

playing Lifshitz scaling with dynamical critical exponent z = 7. The scale invariance was

found to be mildly broken by a logarithmically running dilaton.2 Since the N = 4 theory is

scale invariant, there is no small parameter that controls the appearance of this IR scaling

regime; any non-zero quark density leads to this (approximate) Lifshitz point.

The non-trivial picture above leaves several open questions. Firstly, the significance

and the origin of the numerical value of z = 7 was a priori not understood. Second,

given that the SO(6)-symmetric configuration is non-supersymmetric, the stability of the

IR scaling solution was not established. Finally, although it is fairly clear that the picture

should apply for dynamical massive quark flavours at low enough energy scales, its relevance

for the large-N theory with massless quark flavours requires further clarification.3

In this paper, following on from an earlier publication [13], we derive the general

BPS configurations describing supersymmetric backgrounds preserving eight supercharges

in type IIB supergravity, generated by smeared strings intersecting with or ending on4 a

stack of D3-branes. In the latter case when semi-infinite strings end on branes, a non-

vanishing density of baryon vertices or D5-branes is automatically induced. These appear

and are necessary in order to soak up the string charge. The configurations described by

our equations preserve an SO(5) subgroup of R-symmetry. The intersecting brane solutions

with vanishing D5-charge were already explored in [13] and they are interpreted as quark-

antiquark pairs with antipodal SO(6) orientation smeared uniformly in the gauge theory.

The analysis in the present work allows us to further explore the situation where the strings

end on the D3-branes and act as a source for non-zero quark density with all the quarks

aligned with the same internal orientation (preserving an SO(5) internal symmetry).

The 1
4 -BPS configurations we find in this paper are determined by a single function,

namely the dilaton, which satisfies a Poisson-like equation in two dimensions. It is some-

what remarkable then that this Poisson equation admits a class of solutions that exhibit

Lifshitz scaling with z = 7 and a logarithmically running dilaton. Together with [20]

and the F1-D3 intersection of [13], this provides the third distinct instance of backreacted

quark impurities in N = 4 SYM yielding identical scaling behaviour, independent of the

global symmetries or supersymmetries of the configuration. This lends strong support to

the physical picture found in [20] — that the static quark impurities trigger an RG flow

at strong coupling in N = 4 SYM to the long-wavelength Lifshitz scaling regime with

z = 7. The F1-D3 intersections examined in [13] suggested that this scaling was a specific

instance of a general dynamical critical exponent for F1-Dp intersections with z = 16−3p
4−p .

Indeed, a recent extensive and systematic study of smeared string configurations in Dp-

brane theories with p < 6 has revealed this scaling accompanied by hyperscaling violating

behaviour [24]. We will return to the potential significance of these results for addressing

the larger questions that formed the motivation for this work, at the end of this paper.
2The existence of this scaling solution has also been noted in [23].
3We would like to thank David Mateos and Javier Tarrio for enlightening discussions on this issue.
4Here we would like to make a distinction between the two situations: a string ending on a brane is

semi-infinite and terminates at its endpoint on the brane, whilst a string intersecting a D-brane is of infinite

extent and pierces through the D-brane.
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In section 2 we present the ansätze and the broad categories of the BPS configurations

for the setup described above. The detailed analysis of BPS conditions and the derivation

of the equation to be satisfied, is presented in the appendices. In section 3 we obtain some

solutions to the Poisson-like equation that determines the supersymmetric backgrounds of

interest. We summarise our results and discuss future directions in section 4.

2 The setup and ansätze

The backgrounds we are interested in result from the backreaction of mutually BPS Wilson

lines, represented in the brane picture by parallel strings ending on or intersecting a stack

of N D3-branes. The worldine C of a static heavy quark associated to a string endpoint

on the D3-branes is a straight timelike line, corresponding to the Maldacena-Wilson line

which naturally incorporates a coupling with the six real scalars of the N = 4 theory,

WR[C] = TrRP exp

∫

C
(i ẋµAµ + niφi) ds . (2.1)

Here φi, i = 1, · · · , 6 are the scalars in the N = 4 vector multiplet, and n is a constant unit

six-vector. Note that one also needs to specify the representation R for the Wilson line. A

single such Wilson line preserves the following set of symmetries: an SO(5) subgroup of the

SO(6) R-symmetry group of N = 4 SYM, 16 of the 32 supercharges, a spatial rotational

SO(3) symmetry, and an SL(2,R) subgroup of the full conformal group (generated by time

translation, dilatation, and timelike special conformal transformations). Depending on

the representation R and for small enough representations, the holographic dual involves

either fundamental F-string probes or wrapped D3- and D5-brane probes carrying string

charge [25–28]. For large representations with dim[R] ∼ O(N2), the D-branes/Wilson loops

can backreact to create a smooth supergravity geometry. Such backreacted “bubbling”

geometries have been constructed in [29–31] for a single Wilson line.

For the configurations that we are interested in, the number density of mutually BPS

heavy quarks scales as N2 and we replace them by a smeared uniform spatial distribution

so as to restore translation invariance. However, in doing so we give up dilatation invari-

ance, since a scaling of the spatial coordinates would change the smearing density. Thus

the symmetries of our static setup are Rt × ISO(3) × SO(5), where Rt represents time

translations. Such configurations preserve one quarter of the original supersymmetry or

eight real supercharges.

In order to find the appropriate supersymmetric backgrounds, our strategy is first to

solve for the vanishing of the type IIB supergravity supersymmetry variations, and then

to check which equations of motion remain to be solved. An elegant method for doing

this, pioneered in papers such as [32–34], is to work with all possible bilinears of the

Killing spinor, using the BPS equations to deduce the equivalent algebraic and differential

equations governing the system. The details of our approach are presented in the appendix.

2.1 Supergravity ansatz

Based on the symmetries preserved by the putative backgrounds, the ansatz for the Einstein

frame metric is,

ds2Einstein = e2Adxidxi + e2BdΩ2
4 + gµνdx

µdxν , (2.2)
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which describes an Euclidean three-plane and a four-sphere, with metric dΩ2
4, both fibered

over a base Lorentzian (2+1)-dimensional manifold M3 which itself has a metric gµν . This

ansatz is invariant under the rotational and translational symmetries ISO(3) of the R3, as

well as the SO(5) isometry group of the S4.

For the fluxes we choose the most general ansätze consistent with the same symmetries.

Denoting the volume form of the manifold X as volX , our ansätze for the fluxes read

F5 = F2 ∧ volR3 + df ∧ volS4 , (2.3)

G3 = g volR3 + h volM3 ,

P6 = P (xµ) , Pi = Pa = 0 ,

where f ∈ R and g, h ∈ C are functions on M3, while F2 is a real two-form on M3. The

complex one-form P contains the axio-dilaton (A.1) and has components only along M3.

The complex three-form G3 encodes both the RR and NS three-forms. For the specific case

of a vanishing axion it is given by G3 = e−φ/2H3 + i eφ/2F3. Furthermore, ten dimensional

self-duality of F5 implies that

F2 = e(3A−4B) ∗3 df (2.4)

where ∗3 is the Hodge star on M3.

Upon substituting this ansatz into the fermionic variations of type IIB we find the most

general supersymmetric configuration preserving (at least) 1/4 of the supercharges. The

detailed analysis leading to this is presented in appendices A and B. In a particular S-duality

frame in which the axion is vanishing, the supergravity fields take the following form

ds2 = − e2(A+φ)dt2 + e2Adxidxi + e−2A
[
e−φ

(
dy2 + y2dΩ2

4

)
+ eφdx2

]
, (2.5)

F5 =
y4

4
(1 + ∗)

[
−∂x(e−4A−3φ)dy + ∂y(e

−4A−φ)dx
]
∧ volS4 , (2.6)

H3 = ∂y(e
2φ) dt ∧ dy ∧ dx , F3 = −2 e4A∂x(e

−φ) dx1 ∧ dx2 ∧ dx3 , (2.7)

where t, x and y are coordinates on M3. Given that we are only interested in static

configurations, the warp factor A and the dilaton φ are only functions of x and y. Note

that we have solved for the warp factor B appearing in (2.2) in terms of A and φ. The

SUSY projection conditions on the ten-dimensional complex spinor ϵ are

Γt̂ x̂D−1 ϵ∗ = ϵ iΓt̂ x̂1x̂2x̂3
ϵ = ϵ , (2.8)

where D is the complex conjugation matrix and hatted coordinates denote flat indices.5

From the forms of the fluxes switched on, and the analysis presented in the appendix,

it is clear that the supergravity fields are sourced by D3-, D5-branes and fundamental

strings. We look for solutions which have at most localized (delta function) sources for D3

and D5 branes and fundamental strings. As explained in appendix C our equations can

be easily extended to include smeared source distributions in the x-y plane, but we will

5The spinor ϵ takes the form ϵ = e(A+φ)/2ϵ0, where ϵ0 is a constant spinor satisfying the projections.

– 5 –
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y

xF1 D3

F = 03

Figure 1. Left : solutions with F3 = 0 or intersecting F1-D3 configurations depicted on the x− y
plane with D3-branes at the origin and F-strings on the x-axis piercing through them. Right : brane
picture of configurations with F3 ̸= 0 correspond to semi-infinite strings ending on the branes. Such
solutions are also endowed with D5-brane baryon vertices smeared along the gauge theory directions
with the D5-branes wrapping S4 and extending along the y-axis.

not explore these in this paper. Inspection of the equations of motion and the fluxes (2.7)

shows that the strings and branes in the system must have the following orientations

x1 x2 x3 y x S4

F1 · · · · × ·
D3 × × × · · ·
D5 · · · × · ×

(2.9)

The kappa symmetry conditions for these brane orientations are consistent with the SUSY

projectors.

The functions A and φ are not arbitrary, but are determined by the Einstein equations

and equations of motion for the fluxes. We find that the solutions to the system of equations

fall into two distinct categories:

• Category I (F3 = 0): these solutions have a dilaton independent of x, i.e. ∂xφ = 0 ,

which immediately implies F3 = 0, as can be seen from eq. (2.7). Such backgrounds

do not have D5-brane sources associated to them and are backreacted descriptions

of supersymmetric D3-F1 intersections. The D-brane picture is indicated in figure 1

and corresponds to a bundle of parallel infinite strings piercing/intersecting the D3-

branes. The entire family of such solutions was explored in earlier work [13] and

includes the delocalised intersections studied in [36–39]. Such configurations were

shown to yield both Lifshitz and hyper scaling violating IR geometries. These in-

cluded a partially localised intersection with z = 7.

• Category II (F3 ̸= 0): for the second category of solutions the dilaton depends both

on x and y coordinates. This automatically leads to a non-vanishing three-form flux.

From the orientation of this flux we infer that it can be associated to D5-branes

wrapping S4 × Ry and distributed uniformly along the spatial coordinates x1,2,3. In

particular,

F3 = QB dx1 ∧ dx2 ∧ dx3 , (2.10)

– 6 –
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for some constant QB, proportional to the number of D5-branes. The precise normal-

ization and its relation to the number density of strings can be inferred by comparison

with [20]. Consistency with (2.7) requires the warp factor to be specified in terms of

the dilaton, that is,

e−4A = − 2

QB
∂xe

−φ (2.11)

which remains the only function to be determined by the equations of motion. Notice

that once this replacement is executed the limit QB → 0 is not smooth and for that

case we refer again to [13]. Using the intermediate results quoted in the appendices, it

is easy to compute the Maxwell charges associated to the different branes and strings

in the system:

QD5 =

∫

Σ3

F3 = QB vol
(
R3
)
,

QD3 =

∫

Σ5

4F5 = 4 f vol
(
S4
)
= − 1

QB
y4∂y(e

−2φ) vol
(
S4
)

QF1 =

∫

Σ7

e−φ ∗H3 = y4∂y(e
−2φ) vol

(
R3
)
vol
(
S4
)
. (2.12)

As usual, the Maxwell charges are not gauge invariant (not topological). Note also

that they are not constants and can depend on the radial coordinates x and y.

Nevertheless, the expected relation between the number of D3-branes, the number

of fundamental strings and the number of baryon vertices, which is of course gauge

invariant, is verified

QF1 = −QD5QD3 . (2.13)

3 Poisson-like equation and some solutions

The endpoint of the analysis of the BPS configurations and the ensuing type IIB field

equations is that the whole system is governed by a non-linear Poisson-like equation

1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ = ρ(x, y) , (3.1)

where we have allowed for a source term on the right hand side in keeping with the dis-

cussion in appendix C.1. In this paper we will not have explicit smeared sources on the

x-y plane. All branes and strings will be taken to be localized in these coordinates (con-

sistent with the depiction in figure 1), so that we can set ρ(x, y) = 0. Recall, for instance,

that the strings are located on the x-axis, corresponding to a delta-function source for the

Poisson equation.

In general the BPS configurations solve the equations of motion as well as the Einstein

and dilaton equations with source terms for the strings when we identify the smearing form

Ω8 for the strings as Ω8 = −y4ρ(x, y) dy ∧ dx1 ∧ dx2 ∧ dx3 ∧ volS4 (see appendix C.1).

The Poisson equation for the dilaton is similar in spirit to the Toda equation which

appears in the analysis of [40, 41]. In that case there was an implicit variable change

– 7 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
4

which mapped the problem into a linear electrostatics problem. In the present case we are

not aware of such a simplification and are confronted with a nonlinear partial differential

equation.

The backreacted solutions contain two holographic “radial” coordinates x and y as

would be expected of backgrounds generated by two sets of extended intersecting sources

(e.g. [13] and references therein). In the UV limit (as discussed in detail below), one com-

bination of these two directions will be identified with the standard radial direction in

AdS5 whilst a second independent combination measures the transverse distance from the

F-string source distribution. From the field theoretic standpoint, it is not immediately

obvious how to think about the two emergent holographic directions since the heavy quark

impurities interact strongly with the degrees of freedom of N = 4 SYM. However, intu-

itively, it is natural to associate one of the holographic directions to the scale dependence

of the physics of observables of the N = 4 theory, whilst the second holographic direction

is probed by the scale dependence of observables associated to the impurity theory.

3.1 Scaling solution with z = 7

We now observe that the homogeneous version of eq. (3.1) possesses an interesting and

physically relevant family of solutions. If we take

e−2φ =
Q1

y3
Ψ(p) , p ≡ x2y

Q1
, (3.2)

where Q1 is some constant, then the dependence on y simply factors out of eq. (3.1) and

we obtain a non-linear ordinary differential equation for Ψ(p):

p (4Ψ+ p)Ψ′′ + 4 pΨ′ 2 + 2(Ψ− p)Ψ′ = 0 . (3.3)

For any Ψ(p) it is easily seen (using (2.5) and (2.11)) that the resulting metric is

ds2 =
(
−Ψ′Ψ

3
2 p

1
2

)− 1
2

[
− y7/2 dt2 + y1/2Ψ dxidxi +

(
dy2

y2
+ dΩ2

4

)
(−Ψ′)Ψ p

1
2

√
2Q
QB

+y dx2
(
−Ψ′p

1
4

)√
2

QQB

]
, (3.4)

where some numerical and other constants have been absorbed into rescalings of the co-

ordinates t and xi. We have also taken the constant charge densities Q1 and QB to be

positive so that it is necessary for Ψ′(p) to be negative definite for a sensible solution. This

metric is invariant under the transformations:

t *→ λ7t , xi *→ λxi , x *→ λ2 x , y *→ λ−4y , (3.5)

where y plays the role of the standard radial coordinate. It is quite remarkable that a similar

realization of the z = 7 scaling was also found in the intersecting brane setup of [13] with

vanishing F3, through the dependence on the variables p and y as defined above. Note also

that the equations of motion that determine the background for vanishing F3 are effectively

linear, so the actual solutions differ significantly from what we are discussing here. Since

– 8 –
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the dilaton is also scale dependent as in (3.2), the background does not display exact scale

invariance, precisely as found in the solutions of [13, 20]. The manner in which the scaling

solution is realized is unusual because the background contains two radial coordinates x

and y, or equivalently, the pair p and y, accompanied by an S4 factor.

We can now be more specific about the function Ψ(p). For small y, as the x-axis

is approached (we can do this by taking the limit y → 0 first followed by p → 0) the

dilaton (3.2) should be such that it yields the number density of fundamental strings as

indicated by the Maxwell charge (2.12) when y → 0. Note however that this number does

not correspond to the number density of strings in the microsopic setup or to the number

density of heavy-quarks in the boundary gauge theory. This is because of the presence of

a non-zero F3 and F5 in the system.6 Indeed, the number density of quarks in the gauge

theory is determined by QB, the baryon number density. Requiring Ψ(p) to approach a

finite value, normalized to unity, in the limit y → 0 we find

Ψ(p) = 1 + s0 p
1/2 − s20

2
p+

s0
24

(
5 + 12s20

)
p3/2 +O

(
p2
)

(3.6)

where all higher terms in the expansion are determined by a single integration constant s0.

Keeping the leading term we recover the usual Lifshitz metric with z = 7 associated with

the string distribution, but the first correction is different from the one encountered in [13]

as the expansion in the present context involves half-integral powers of p.

3.2 Asymptotically AdS5 × S5 solution

It is an important consistency check to verify that solutions to (3.1) yield a flow away from

AdS5×S5 asymptotics in similar fashion to that encountered in [20] and [13]. In particular,

the AdS5× S5 vacuum, which has F3 = 0 and thus falls into the first category of solutions,

is obtained when

e−2φ = 1 , e−4A =
1

(x2 + y2)2
, x = r cos θ , y = r sin θ . (3.7)

To extract the flow triggered by string sources, we linearize around the vanishing dilaton

solution as

e−2φ = 1 + ϵh(1) +O(ϵ2) . (3.8)

The expansion parameter ϵ will eventually be related to the baryon vertex density QB. We

find that the first correction h(1) satisfies the SO(5) symmetric Laplace equation on flat R6:

1

y4
∂y
(
y4∂yh(1)

)
+ ∂2xh(1) = 0 . (3.9)

This Laplace equation possesses a large family of solutions which takes the form of a sum

over point charges,

h(1) =
1

y2

∑

i

qi

[
(x− xi)

(x− xi)2 + y2
+

1

y

(
arctan

x− xi
y

+
π

2

)]
. (3.10)

6In contrast, when F3 = 0 as in [13] the string charge has no such ambiguity.
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Crucially, this family of solutions follows from the first order equation (2.11), upon using

the linearized ansatz around AdS5 × S5,

ϵ ∂xh(1) = −QB

∑

i

qi
1

[(x− xi)2 + y2]2
, (3.11)

where, on the right hand side we have introduced a particular multicentre distribution

of D3-branes corresponding to a Coulomb branch configuration of N = 4 SYM. The qi
represent the fraction of the total number D3-branes placed at the position xi, so that∑

i qi = 1. This leads to the identification QB = −2ϵ, which implies that the ϵ-expansion

is equivalent to an expansion in QB. For simplicity we focus attention on the origin of the

Coulomb branch so that xi = 0. Then we find the following asymptotic components of the

spatial metric component in polar coordinates:

hii = r2 − QB

16

1

r

1

sin3 θ
(2(π − θ) + sin 2θ) +O

(
r−4, Q2

B

)
. (3.12)

This displays the 1/r potential term typical of backreacted string sources in AdS5 [20, 42].

Similarly, the dilaton is

e−2φ = 1− QB

2

2(π − θ) + sin 2θ

sin3 θ

1

r3
+O(Q2

B) (3.13)

and to this order in QB the five-sphere is undeformed with respect to the vacuum AdS5×S5.

The dependence of these corrections on the polar angle θ of the five-sphere is also consistent

with the physical picture of the string sources being placed at one of the poles i.e at θ = 0.

This is reflected in a singularity at this point in the metric and dilaton corrections. There

is no such singularity at θ = π.

3.3 Smeared D5 solution

There is another simple solution to the homogeneous non-linear Poisson equation, obtained

by forcing each term in the equation to vanish separately. It reads

e−2φ = (1 + 2QB x)
1
2

(
1 +

Q1

y3

)
≡ h

1
2
x hy . (3.14)

The metric can be written in terms of these warp factors as

ds2 = h
− 1

8
x h

3
4
y
[
h−2
y dt2 +

(
dy2 + y2dΩ2

4

)]
+ h

− 5
8

x h
− 1

4
y
[
hx dx

idxi + dx2
]
, (3.15)

supported by the fluxes

H3 = −h
− 1

2
x dh−1

y ∧ dt ∧ dx ,

F3 = QB dx1 ∧ dx2 ∧ dx3 ,

F5 =
3

4

Q1

QB
(1 + ∗) dh

1
2
x ∧ volS4 . (3.16)

To interpret this solution it is useful to take the Q1 → 0 limit, i.e. hy → 1, in which case

there are neither strings nor D3-branes. In this limit, the time coordinate combines with
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y and the four-sphere to form a six-dimensional Minkowski space in which D5-branes are

extended. As can be seen through an harmonic superposition analysis, the solution de-

scribes the backreacted geometry due to D5-branes homogeneously distributed along the xi

directions. Allowing for non-vanishing Q1 includes smeared strings and the solution (3.15)

describes the intersection of the strings with the D5-branes. Five-form flux is induced so

that condition (2.13) is fulfilled.

3.4 A different scaling solution

We have also found an exact scaling solution of the type in eq. (3.2) with Ψ(p) = 1
3p.

Changing to the radial variables y = ρ4 and x =
√
3σ−2 this solution reads:

ds2 = L2

(
−ρ10 σ4dt2 + ρ2 dxidxi +

dρ2

σ2
+

3

4

ρ2

σ4
dσ2 +

1

16

ρ2

σ2
dΩ2

4

)
, (3.17)

F5 =
L6

128QB
(1 + ∗) d

(
ρ4

σ4

)
∧ volS4 , (3.18)

H3 = 4
√
3L2 ρ7σ dt ∧ dρ ∧ dσ , (3.19)

F3 = QB dx1 ∧ dx2 ∧ dx3 , (3.20)

eφ = ρ4σ2 , (3.21)

where L = 31/4

23/2
Q1/2

B . Surprisingly, the scaling properties of this metric are enhanced due

to the interplay of both radii. Under a rescaling

t *→ λz t , xi *→ λxi , ρ *→ λ
3−z
4 ρ, σ *→ λ−1 σ, (3.22)

the metric transforms as

ds *→ λ
7−z
4 ds (3.23)

signaling certain hyperscaling properties. Notice that the Lifshitz and hyperscaling co-

efficients are related but in principle arbitrary. We do not expect violations of energy

conditions since the matter supporting the solution (smeared strings) does not have un-

physical features. It is natural to ask whether the hyperscaling violation parameter seen in

the boundary gauge theory satisfies the thermodynamic stability criterion θ ≤ d [11] which

may in turn restrict the allowed values of z. However, it is unclear whether non-extremal

counterparts of these solutions exist. Furthermore, although we are able to identify the hy-

perscaling violation in the 10D metric, the reduction to 5D (dual to a 4D boundary theory)

is ambiguous due to the presence of the two radial directions which are both non-compact.

Naively this would suggest that the IR theory is effectively five dimensional and while such

a picture could be argued (via deconstruction) in earlier work [13], for the above class of

solutions we do not have such compelling arguments.

It is possible to absorb the rescaling (3.23) of the metric into the radius through the

parameter QB. This would mean that under a dilatation we are only changing the baryon

density, or equivalently the string density. If we do so, the only fields that transform are

the dilaton, H3 and F3, but in such a way that the relation between charges (2.13) is

maintained.
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Interestingly, F5 only depends on the combination ρ4/σ4 ∼ x2y = p. An analogous

argument to that in [13] tells us that the D3-branes are not localized in these solutions.

We further note that the curvature in string frame is

RString = −288

L2

σ

ρ4
. (3.24)

Therefore there is a curvature singularity situated all along the x and y axes. The physical

significance of these and other properties of this solution remain to be understood.

4 Conclusions

The main motivation behind this work was to understand whether the emergence of the IR

z = 7 scaling found in [20] for the N = 4 theory with heavy quarks could be reproduced

within a supersymmetric setup. A significant outcome of our work is the derivation of

the most general BPS configurations with eight supercharges in type IIB supergravity

preserving ISO(3) × SO(5) global symmetry, showing that they are determined by the

solutions to the two dimensional Poisson-like equation (3.1). We found solutions to this

equation with z = 7 Lifshitz-like scaling, and also showed that the equation correctly

captures the flow away from the asymptotically AdS5 × S5 regime. Obtaining the flow

interpolating between these two limits requires numerical integration of the PDE (3.1)

which is interesting work for the future.

It would be extremely interesting to understand if there is a general structure under-

lying the solutions of the Poisson equation (3.1) for this system, along the lines of the

picture found in [29–31]. In particular, our equations, with suitable sources on the x-y

plane, should also be able to describe distributions of Wilson lines/quarks in more general

representations. Such information should be contained in a general linearized analysis of

the UV asymptotics around AdS5×S5 which we have not explored completely in this paper.

It would be interesting to know whether different choices of impurity representations have

any effect on the long wavelength/IR description of the system or if they all flow to the

same Lifshitz-like scaling solution.

The supersymmetric scaling solutions in this paper are singular due to the running of

the dilaton. In order to make sense of such backgrounds it is important to have a non-

extremal version of these solutions where the singular region is shielded behind a horizon

and one may reliably speak about the scaling properties of physical quantities. This was

easily achieved in the non-supersymmetric SO(6) symmetric configuration of [20]. The

corresponding generalization to the SO(5)-symmetric setup of this paper is not obvious

due to the presence of effectively two radial directions in the bulk solutions.

The results of this paper also lend support to the general idea of applying the smearing

technique to understand holographic backreaction of quark flavours at finite density [24, 43–

47], in that long-distance properties of systems may not be sensitive to the details of the

smearing procedure itself. It is important, however, to understand in detail the embedding

of the scaling solutions found in [20, 24] within the setup of backreacted and smeared

flavoured holographic duals [45]. This would open the way for understanding possible

instabilities and their end-points that may lead to (colour) superconducting phases along

the lines of the ideas presented in [17, 48, 49].
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A BPS equations

We use the conventions of [31], which are stated explicitly in [35]. Note that the nor-

malization of F5 differs from that usually used in string theory by a factor of 4. Type

IIB supergravity is written in terms of two field strengths P and Q, and string theory in

terms of the dilaton φ and axion C(0). Following e.g. [34], we write the map between the

supergravity and string theory variables:

P =
1

2
dφ+

i

2
eφdC(0) , Q = −1

2
eφdC(0) . (A.1)

The supergravity equations of motion have a local U(1) invariance with associated gauge

field Q. Each field has a definite charge q under this U(1): ϵ has q = 1/2, P has q = 2 and

G3 has q = 1. The field strengths have corresponding Bianchi identities written in terms

of the U(1)-covariant derivative D ≡ ∇− iqQ

DP = 0 (A.2)

dQ = −iP ∧ P ∗ (A.3)

which are automatically satisfied when we use the map to string theory variables. This

formulation comes from a gauge fixing of the version of the theory with an extra auxiliary

scalar field, and the remnant of this is that each SL(2,R) action is accompanied by a local

U(1) gauge transformation. This is the only way in which SL(2,R) duality acts on the

variables G,P,Q.

Type IIB supergravity has 32 real supercharges parametrized by a complex chiral

ten-dimensional spinor Γϵ = −ϵ. We begin by writing down the SUSY variations in the

Einstein frame:

δϵλ = i(Γ · P )B−1ϵ∗ − i

24
(Γ ·G) ϵ (A.4)

δϵψM = DM ϵ+
i

480
(Γ · F )ΓM ϵ−

1

96
[ΓM (Γ ·G) + 2(Γ ·G)ΓM ]B−1ϵ∗ . (A.5)
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The next step is to choose a basis of gamma matrices in ten dimensions. We choose:

Γi = γi ⊗ γS4 ⊗ 1 ⊗ σ1

Γa = 1 ⊗ γa ⊗ 1 ⊗ σ1

Γµ = 1 ⊗ 1 ⊗ γµ ⊗ σ2

where γS4 ≡ +γ6γ7γ8γ9 is the chirality matrix on S4. The ten dimensional chirality matrix

is Γ = 1⊗ 1⊗ 1⊗ σ3, so that the IIB chirality condition reduces to

σ3ϵ = −ϵ . (A.6)

We complete the basis by specifying gamma matrices within each factor space:

i : γ3 = σ1, γ4 = σ2, γ5 = σ3

a : γ6 = σ1 ⊗ 1, γ7 = σ2 ⊗ 1, γ8 = σ3 ⊗ σ1, γ9 = σ3 ⊗ σ2
(
⇒ γS4 = −σ3 ⊗ σ3

)

µ : γ0 = iσ2, γ1 = σ1, γ2 = σ3 .

Note that the basis for the gamma matrices on M3 is real (Majorana). The ten dimensional

complex conjugation matrix B, defined by {B ΓµB−1 = (Γµ)∗, B∗B = 1}, is now

B = σ2 ⊗
(
σ2 ⊗ σ1

)
⊗ 1⊗ σ3 (A.7)

= b3 ⊗ b4 ⊗ 1⊗ σ3 (A.8)

where b3 and b4 are charge conjugation matrices in R3 and S4 respectively:

b3γ
ib−1

3 = −(γi)∗ b4γ
ab−1

4 = −(γa)∗ .

We plug our ansatz and our Clifford algebra basis into the IIB SUSY variations (A.4)

(A.5), and after a few pages of careful work we end up with the following set of BPS

conditions on our ten dimensional complex spinor ϵ:

/PB−1ϵ∗ − 1

4

(
e−3AgγS4 − h

)
ϵ = 0 (A.9)

1

3
e−Aγi∇̃iϵ+

i

2
/∂AγS4ϵ+

1

2
e−4B /∂fϵ− i

16

(
3e−3Ag + hγS4

)
B−1ϵ∗ = 0 (A.10)

e−B∇̃aϵ−
i

2
γa/∂Bϵ+

1

2
e−4Bγa/∂fγS4ϵ− i

16
γa
(
e−3AgγS4 − h

)
B−1ϵ∗ = 0 (A.11)

Dµϵ+
i

2
e−4B /∂fγS4γµϵ+

1

16

(
e−3AgγS4 + 3h

)
γµB−1ϵ∗ = 0 (A.12)

where here and in the following Dµ and ∇µ denote derivatives on M3, and ∇̃i,a are deriva-

tives on R3 and S4 respectively. Also note that when an operator appears which naturally

acts within only one Clifford subspace, it should be taken as the tensor product with the

identity matrix in the other tensor factors. For example, by γS4ϵ we mean (1⊗γS4⊗1⊗1)ϵ.

To proceed we must make an ansatz for the form of the ten dimensional spinor ϵ

ϵ = ηα ⊗ χβ
a ⊗ ϵαβa ⊗ θαβa . (A.13)

– 14 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
4

All repeated indices are to be summed over. The ηα are the linearly independent constant

spinors on R3, α = 1, 2, and the χβ are the two sets of linearly independent Killing spinors

on S4, β = 1, 2, 3, 4, which can be taken to satisfy

∇̃bχ
β
a =

a

2
γS4γbχ

β
a γS4χβ

a = χβ
−a (A.14)

where we hope it is clear that the a = ± appearing here is not a spacetime index on

S4 but rather a label of the two different signs in the Killing spinor equation. The ϵαβa
are commuting spinors on M3, and the θαβa are two-component spinors. The chirality

condition (A.6) implies that σ3θαβa = −θαβa , so that without loss of generality we can set

θαβa =

(
0

1

)
∀ a,α,β .

Following [31], we also note that, again without loss of generality, we can impose a

reality condition on the basis Killing spinors.7 Specifically, we impose8

(b3 ⊗ b4)(η
∗ ⊗ χ∗

a) = η ⊗ χ−a . (A.15)

We can now reduce the BPS to three dimensions, by writing them in terms of the two

complex two-component spinors ϵ± on M3:

2/P ϵ∗−a −
1

2
e−3Ag ϵ−a +

1

2
h ϵa = 0 (A.16)

i

2
/∂Aϵ−a +

1

2
e−4B /∂fϵa −

i

16

(
3e−3Ag

)
ϵ∗−a −

i

16
hϵ∗a = 0 (A.17)

−a

2
e−Bϵ−a +

i

2
/∂Bϵa −

1

2
e−4B /∂fϵ−a +

i

16

(
e−3Ag

)
ϵ∗a −

i

16
hϵ∗−a = 0 (A.18)

Dµϵa +
i

2
e−4B /∂fγµϵ−a +

1

16

(
e−3Ag

)
γµϵ

∗
a +

1

16
3hγµϵ

∗
−a = 0 . (A.19)

Since no operators which affect the α,β, · · · indices appear in (A.12), these indices can be

omitted, with the understanding that there is a 2 × 4 = 8-fold multiplicity in each set of

solutions {ϵ+, ϵ−} we shall find of (A.16)–(A.19).

It is convenient to introduce a ‘tau-matrix’ notation for these equations, as follows:

(
τ Iϵ
)
a
≡ τ Iabϵb I = 0, 1, 2, 3 (A.20)

7We thank John Estes for pointing this out.
8It is impossible to impose b3η

∗ = η on our basis, since b∗3b3 = −1 (there are no Majorana spinors in

three Euclidean dimensions.) Furthermore we see that we cannot impose γS4χa = χ−a and b4χa = χ−a

simultaneously, since (γS4b4)
∗(γS4b4) = −1. However, we can impose a reality condition on the whole basis

(rather than each factor indivually), since (b3γS4b4)
∗(b3γS4b4) = 1.
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where τ1,2,3 are the usual Pauli matrices acting on the a, b indices, and τ0 ≡ 12×2
ab . Now

the BPS equations reduced to (2 + 1)D read

/P ϵ∗ − 1

4

(
e−3Ag − hτ1

)
ϵ = 0 (d)

/∂Aϵ− ie−4B /∂fτ1ϵ− 1

8

(
3e−3Ag + hτ1

)
ϵ∗ = 0 (i)

−e−Bτ2ϵ+ /∂Bϵ+ ie−4B /∂fτ1ϵ+
1

8

(
e−3Ag − hτ1

)
ϵ∗ = 0 (a)

∇µϵ−
i

2
Qµϵ+

i

2
e−4B /∂fγµτ

1ϵ+
1

16

(
e−3Ag + 3hτ1

)
γµϵ

∗ = 0 . (µ)

B Spinor bilinear analysis

We now solve the BPS system (d)–(µ) using the standard techniques of bilinear analysis.

First we introduce the real bilinears

f (I) ≡ ϵ†σ2τ Iϵ V (I)
µ ≡ i ϵ†σ2τ Iγµϵ . (B.1)

Likewise we have the complex bilinears

f̃ (I) ≡ ϵtσ2τ Iϵ Ṽ (I)
µ ≡ ϵtσ2τ Iγµϵ . (B.2)

Note that Ṽ(2) and f̃ (0,1,3) all vanish identically since they are of the form ϵtMϵ where M is

an antisymmetric matrix, and we have taken ϵ to be commuting. For typographical clarity,

we use the (I) symbols as both subscripts and superscripts, but we intend no difference in

meaning. The real bilinears have q = 0, and the complex ones have q = 1. We split the

analysis into two, as is typical:

• On the one hand we have algebraic equations among the bilinears implied by the BPS

equations. We will use these to define a preferred orthonormal basis for the tangent

space of M3, namely an identity structure, and we express the fluxes in terms of this.

• On the other hand there are differential equations which give the ‘torsion’ of the

identity structure, and which we use to define local coordinates and a metric.

At various points we will use the 3D Fierz identities, which express linear dependence

between the bilinears.

B.1 Algebraic constraints

The first step is to the reduce the BPS equations to conditions on the minimum number of

bilinears. We look at ϵ†σ2[(i)+(a)] and take real and imaginary parts to find that f (2) = 0

and V (0) · ∂B = 0. Now taking ϵ†τ0,1σ2 {(i), (d)*}, we find

V (0) ·X = 0 X = dA, dB, df, P . (B.3)

Next ϵ†σ2τ2γµ[(i)–(a)]+c.c. gives

−4 e−4Bdf f (3) = 0
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which is only solved for f (3) = 0, assuming df ̸= 0. Since df = 0 would lead to solutions

preserving more supersymmetry than the 8 SUSYs we are interested in (for example the

D1-brane solution), we ignore this possibility. Finally, using Fierz identities we can now

show that

f (0) = 0 V (1) = 0 (B.4)

V 2
(2,3) = −V 2

(0) = f2
(1) V (I) · V (J) = 0 ∀ I ̸= J . (B.5)

Now we have simplified things considerably. In particular we see that

{
1

f (1)
V(0),

1

f (1)
V(3),

1

f (1)
V(2)

}
≡
{
e0, e1, e2

}

form an orthonormal basis for the cotangent space (and by raising indices, for the tangent

space), and so we can take them as the vielbeine on M3. Thus the mininum set of bi-

linears to consider consists of one real scalar, one complex scalar, and three real vectors:{
f(1), f̃(2), V

(0), V (2), V (3)
}
. We next find expressions for the fluxes in terms of them.

Complex 3-form. Since f̃ (2) is the only complex bilinear, we expect its phase to control

the phases of h, g and P . Taking ϵ†τ3,2σ2(d)* and solving for g and h, we find that

h =
4

f̃ (2)
V (3) · P (B.6)

e−3Ag =
4i

f̃ (2)
V (2) · P . (B.7)

Five-form. This can be obtained by taking ϵ†σ2γµ(i)+(i)†σ2γµϵ:

− 2i f (1) e−4B∂µf + 2∂νAϵ
†σ2γ ν

µ ϵ+
1

8

((
3e−3AgṼ (0)∗

µ + hṼ (1)∗
µ

)
− h.c.

)
= 0 . (B.8)

Completeness of the tangent space implies that the Ṽ (I) are linear combinations of the

other vector bilinears, and indeed a Fierzing gives Ṽ (0) = f̃ (2)

f (1)V
(3), Ṽ (1) = i f̃

(2)

f (1)V
(2). This

leads to

f2
(1) e

−4Bdf =

[
V (2) ·

(
dA+

3

2
e−2iθP

)]
V (3) −

[
V (3) ·

(
dA+

1

2
e−2iθP

)]
V (2) (B.9)

where we have defined eiθ to be the phase of f̃(2).

Axiodilaton. We take the three combinations ϵ†σ2τ2,3,0((i)+(a)). Plugging in the ex-

pressions for the fluxes obtained above we get

V (0) ·
[
∂(A+B) + e−2iθP

]
= 0

V (2) ·
[
∂(A+B) + e−2iθP

]
= 0

V (3) ·
[
∂(A+B) + e−2iθP

]
= e−Bf (1) .

(B.10)
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Using the orthonormality of our tangent space basis, the above equations imply that

e−2iθP =
e−B

f (1)
V (3) − d(A+B) . (B.11)

We can therefore see that e−2iθP is real (this is discussed in section B.3). This implies that

P = e2iθP̃ , where P̃ is a real one-form.

As a last piece of information to take from the algebraic conditions, we take ϵtσ2[(i)+

(a)] and use the expressions for the fluxes to find that |f̃(2)|2 = f2
(1), so we can write

f̃ (2) = eiθ f (1) . (B.12)

In summary, we have defined an identity structure, found the fluxes (B.6), (B.7), (B.9),

(B.11) in terms of it, and obtained the relation (B.12).

B.2 Torsion

In section B.1 we reduced the problem of solving the BPS equations to finding two scalars

{f(1), f̃(2)} and three vector bilinears {V (0), V (2), V (3)}. These satisfy a system of differen-

tial equations which is implied by the BPS equations:

d
(
eA+2Bf (1)

)
= 2 eA+BV (3) (B.13)

D
(
eA+2B f̃ (2)

)
= 2 eA+BṼ (0) (B.14)

d
(
e2A+4BV (0)

)
= −4 e2A+3B ∗ V (2) (B.15)

d
(
e2A+4BV (2)

)
= −2 e2Adf ∧ V (3) − 4 e2A+3B ∗ V (0) (B.16)

d
(
e2A+4BV (3)

)
= 2 e−4Bdf ∧ V (2) . (B.17)

We begin by showing that V (0) is a timelike Killing vector. It is timelike since V 2
(0) = −f2

(1)

is negative, and it satisfies

∇(µV
(0)
ν) = −gµνV

(0) · ∂(A+ 2B) = 0 , (B.18)

where the last equality follows from (B.3). Therefore V (0) satisfies the Killing equation on

M3, and together with (B.3) this implies it is a Killing vector of the whole 10D metric. We

define the coordinate t such that ∂/∂t = V #
(0), where the notation denotes V (0) as a vector.

We would like to find out about the phase eiθ, which as we have already seen governs

the phases of the complex fields (g, h, P ). First we Fierz Ṽ (0), and then equate the l.h.s.s

of (B.14) and (B.13). Together with (B.12) this gives Q = dθ, so that the phase is just the

U(1) holonomy.

Next we consider the df (1) equation (B.13). This implies that eA+BV (3) is a closed

form, and defining a local coordinate y2 ≡ eA+2Bf (1) we have that

V (3) = y e−(A+B)dy . (B.19)

– 18 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
4

Using (B.9) and (B.10), the dV (2) equation (B.16) becomes

dV (2) = 3

(
dy

y
− ∂y(A+B)dy

)
∧ V (2) (B.20)

so that we can write

V (2) = y3e−3(A+B)dx . (B.21)

We take x to be the final coordinate. We have automatically ∂/∂x · ∂/∂y = 0.

Lastly we turn to the equation for dV (0), which reads

dV (0) =

(
−2 d(A+ 2B) + 4

dy

y

)
∧ V (0) (B.22)

so that

V (0) = y4e−2A−4B(dt+ ω) (B.23)

for some closed form dω = 0.

In summary, we can now write down the full form of the metric in terms of the warp

factors eA, eB:

ds23 = −y4e−2A−4B(dt+ ω)2 +
e2B

y2
dy2 + y2 e−4A−2Bdx2 (B.24)

and the fluxes are

P = e2iθd(log y −A−B) (B.25a)

g = −4i eiθe5A+By−1∂x(A+B) (B.25b)

h = 4 eiθe−By ∂y(log y −A−B) (B.25c)

df =
y4

4

[
∂x
(
y−6e2A+6B

)
dy + ∂y

(
y−2e−2A+2B

)
dx
]
. (B.25d)

B.3 Reality condition and SL(2,R)

We now address the reality condition implied by (B.11):

Im
(
e−2iθP

)
= 0 . (B.26)

This implies that P = e2iθP̃ , where P̃ is a real one-form. Then (A.2) and (A.3) imply

dQ = 0 andQ = dθ, so thatQ is pure gauge (these relations are actually implied by the BPS

equations, as shown in (B.2)). Therefore by a local U(1) gauge transformation U = e−iθ,

we can map to real P , i.e. vanishing axion. We know this must be the accompanying

gauge transformation to an SL(2,R) action, so the BPS equations give just the solution

with C(0) = 0 and its orbit under S-duality, parametrized by θ. This situation is familiar

from e.g. [31].
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C Equations of motion

In this appendix, we verify that our solution to the fermionic variations is also a solution

to the equations of motion up to a unique Poisson type equation for the dilaton that has

to be solved separately. Furthermore, our system is naturally equipped to include explicit

sources in the form of fundamental strings and D3-branes smeared appropriately.

Since we have found that our configurations have C(0) = 0 up to a duality transforma-

tion, we set θ = 0 in this section, so that now P = 1
2dφ. We also set ω = 0. In this case, it

is easy to write the solution to the BPS equations in terms of A and φ instead of A and B:

ds2 = −e2(A+φ)dt2 + e2Adxidxi + e−2A
(
e−φ

(
dy2 + y2dΩ2

4

)
+ eφdx2

)

F5 =
y4

4
(1 + ∗)

(
−∂x

(
e−4A−3φ

)
dy + ∂y

(
e−4A−φ

)
dx
)
∧ volS4 (C.1)

H3 = ∂y
(
e2φ
)
dt ∧ dy ∧ dx F3 = 2 e4A−φ∂xφ dx

1 ∧ dx2 ∧ dx3 .

We will now show in detail that all the equations of motion and Bianchi identities are

satisfied provided we have QB = −2 e4A∂xe−φ, where QB is a (non-zero) real constant, and

the following equation, which we will refer to as the ‘Poisson equation’, is satisfied:

1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ = 0 . (C.2)

The equations of motion deriving from Type IIB supergravity, with a vanishing axion,

together with the Bianchi identities, read

d(e−φ ∗H3) + 4F5 ∧ F3 = 0 , dF5 −
1

4
H3 ∧ F3 = 0 ,

d(eφ ∗ F3) + 4H3 ∧ F5 = 0 , dF3 = 0 , (C.3)

d ∗ dφ+
1

2
G3 ∧ ∗G3 = 0 .

On top of that we have the Einstein equations

RMN =
1

2
∂Mφ∂Nφ +

1

6
(F5)MP1P2P3P4 (F5)

P1P2P3P4
N

+
1

4
Re
[
(G3)MP1P2(G

∗
3)

P1P2
N

]
− 1

48
gMN (G3)P1P2P3(G

∗
3)

P1P2P3 . (C.4)

F3 Bianchi identity. This states that F3 = QB dx1 ∧ dx2 ∧ dx3 for some constant QB

related to the number of D5-branes, and thus to the number of baryon vertices. Using the

BPS expression for F3, we obtain QB = −2 e4A∂xe−φ, which is the advertised relationship

between A and φ.

F5 Bianchi identity. Substituting in the solutions of the BPS equations we obtain

explicit expressions for F5

df =
y4

4

[
∂y
(
e−4A−φ

)
dx− ∂x

(
e−4A−3φ

)
dy
]

⇒ F2 = e3A−4B ∗3 df = −1

4
e8A+2φ

(
∂y
(
e−4A−φ

)
dy + e2φ∂x

(
e−4A−3φ

)
dx
)
∧ dt (C.5)

=

(
1

4
d
(
e4A+φ

)
− 1

2
e4A+2φ∂x(e

−φ) dx

)
∧ dt .
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The Bianchi identity comes in two pieces: a piece proportional to volS4 and another pro-

portional to volR3 . We deal with the second part first. Using the F3 Bianchi, we can

express the two sides as follows:

F2 =
1

4

(
d
(
e4A+φ

)
+QB e2φ dx

)
∧ dt

⇒ dF5 = · · ·+ QB

4
∂ye

2φdy ∧ dx ∧ dt ∧ volR3 (C.6)

i

8
G ∧G∗ =

1

4
H3 ∧ F3 =

1

4
∂ye

2φdt ∧ dy ∧ dx ∧ (QB volR3) = −dF5

so we see that this part is automatically satisfied. Now we turn to the first term. Setting

this to zero amounts to saying we can locally find a function f(x, y) whose derivative equals

df . Again using the F3 Bianchi we have

df = − y4

4QB

(
∂y∂xe

−2φdx− 1

2
∂2xe

−4φdy

)
∧ volS4 . (C.7)

The integrability condition d2f = 0 gives

∂x

(
1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ

)
= 0 , (C.8)

which is verified if the Poisson equation is satisfied. Moreover, we can integrate (C.7) to

obtain f . This equation states that

∂xf = ∂x

(
− y4

4QB
∂ye

−2φ

)
⇒ f = − y4

4QB
∂ye

−2φ + g(y) (C.9)

for some function g(y). Using again (C.7) we have the compatibility condition

∂yf = − 1

4QB
∂y
(
y4∂ye

−2φ
)
+ g′(y) =

1

4QB

1

2
y4∂2xe

−4φ . (C.10)

Poisson’s equation then states that g(y) is at most a constant that we fix to zero, so we have

f = − y4

4QB
∂ye

−2φ , (C.11)

which is the expression used to find the brane charges.

H3 equation of motion. For the first term, we can write

e−φ ∗H3 = y4 ∂y(e
−2φ) volR3 ∧ volS4

⇒ d(e−φ ∗H3) =
[
∂y
(
y4∂y(e

−2φ)
)
dy + y4∂x∂y(e

−2φ)dx
]
∧ volR3 ∧ volS4 . (C.12)

Analogously, for the the second term, using (C.7) we immediately have

− 4F5 ∧ F3 = y4
(
∂x∂ye

−2φdx− 1

2
∂2xe

−4φdy

)
∧ volR3 ∧ volS4 . (C.13)

Finally we obtain

d(e−φ ∗H3) + 4F5 ∧ F3 =

[
∂y
(
y4∂ye

−2φ
)
+

y4

2
∂2xe

−4φ

]
dy ∧ volR3 ∧ volS4 , (C.14)

which is proportional to our Poisson equation. The equation of motion for F3 works in a

similar manner.
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Dilaton equation of motion. This is

d ∗ dφ+
1

2
G3 ∧ ∗G3 =

e2A+3φ

2

(
1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ

)
∗ 1 (C.15)

recognizable again as (C.2).

Einstein equations. The different components of the Einstein equations (C.4), in flat

indices, read

Eî̂i = −e2φ+6A

QBy
∂x

(
1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ

)
,

Eââ = 0 , (C.16)

E0̂0̂ = −e3φ+2A

2

(
1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ

)
.

We conclude that, once the Poisson equation (C.2) is verified, not only (C.1) is a super-

symmetric configuration of Type IIB supergravity preserving 1/4 of the supercharges, but

is additionally a solution to the equations of motion.

C.1 Sourcing

In this setup it is straightforward to include an explicit source on the r.h.s. of the Poisson

equation
1

y4
∂y
(
y4∂ye

−2φ
)
+

1

2
∂2xe

−4φ = ρ(x, y) . (C.17)

In order to do so one needs to carefully smear distributions of both fundamental strings

and D3-branes and let them backreact on the geometry. Of course, this changes the form of

the equations of motion, including the appearance of new terms in the energy momentum

tensor. The details as well as the conditions required to preserve supersymmetry in the pro-

cess can be found in the appendix of [13]. In that case we studied distributions depending

only on the coordinate y, but it is straightforward to incorporate the x-dependence.

In the notation of [13], we have now the smearing forms

Ω8 = −y4ρ(x, y) dy ∧ volR3 ∧ volS4 ,

Ω6 = y4ρD3(x, y) dy ∧ dx ∧ volS4 . (C.18)

From these we can read the directions along which the strings and the branes are dis-

tributed. They are supplemented by the calibration forms

K2 = −e
3
2φ dt ∧ dx ,

K4 = e4A+φ dt ∧ volR3 , (C.19)

that verify the calibration conditions stated in [13], ensuring the supersymmetry of the

configuration. It can be checked that all the equations of motion, modified by the presence

of the sources, are verified given the sourced Poisson equation (C.17) and the condition

QB ρD3 = ∂xρ . (C.20)

This connection between the distribution of D3-branes and strings is also responsible for

the preservation of the relation among the charges, and is natural given that every string

has to end on a D3-brane.
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