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A simulation method
for finite non-stationary time series

aYuzhi Cai∗ , bJie Huang, bYu Tang and bGuixia Zhou
aSwansea University, UK

bSoochow University, China

Abstract

In this paper we propose a novel simulation method which enables us to obtain
a large number of simulated time series cheaply. The developed method can be ap-
plied to any non-stationary time series of finite length and it guarantees that not only
the marginal distributions but also the autocorrelation structures of observed and sim-
ulated time series are the same. Extensive simulation studies have been conducted
to check the performance of our method and to assess if the overall dynamics of the
observed time series is preserved by the simulated realizations. The developed sim-
ulation method has also been applied to the real size data of cocoon filament, which
can be reeled from a cocoon produced by a silkworm. Very good results have been
achieved in all the cases considered in the paper.

Key words: Autocorrelation structure, cocoon filament, marginal distribution, simulation,
non-stationary time series.

1 Introduction

Simulation of time series plays an important role in many areas such as coastal engineering
and raw reeling silk industry. In the statistical literature on time series, the focus has often
been given to the ability to generate correctly short Gaussian time series from a given vector
ARMA (VARMA) process. Several methods may be used to obtain a simulated time series
in practice. The simplest method is to fit a VARMA model to a time series, then to generate
a simulated time series from the fitted model. To do this, a Monte Carlo method or a
Quasi Monte Carlo method could be used (see, for example, Li and Winker, 2003). Barone
(1987) described a method for generating independent realizations of a VARMA process
which involves recasting the ARMA model in a state space form and allows for an exact
generation of the initial values of the simulation algorithm. Shea (1988) discussed a direct
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method of computing the initial state covariance matrix required by the simulation method.
However, these types of approaches usually suffer from the following problems, i.e. either
the marginal distributions of the time series will differ from the ones requested, or the
autocorrelation patterns will differ from the ones expected. In practice, we would like the
simulated time series to be as similar to the observed time series as possible. Hence it would
be of great interest and is very challenging to guarantee both the marginal distributions and
the autocorrelation structures of the simulated and the observed time series to be the same.

Recently, Cai et al. (2008) and Cai (2010) generalized Cario and Nelson (1998), Deler
and Nelson (2001) and Biller and Nelson’s (2003, 2008) work to obtain a simulated multi-
variate time series that has the required autocorrelation structure and marginal distribution.
However, their methods are suitable for stationary time series only.

In practice, we often have non-stationary time series. For example, in raw reeling silk
industry, it is important to study the size of cocoon filament, which can be reeled from a co-
coon produced by a silkworm. The size, measured by using the international standard unit
dtex (mass in grams per 10000 meters), represents the thickness of the filament. It is well
known that the size series of cocoon filament (SSCF) is a non-stationary stochastic series
with finite length (see, for example, Fei and Bay, 2005, 2009). A large number of SSCF
need to be studied by the researchers in raw silk reeling industry for manufacturing raw
silk with the required standards. However, it is very expensive to collect many size series.
Therefore, simulating size time series of good quality is of great importance, and it is also
an even more challenging task because of the non-stationarity of the size series. Current
approach to this challenging problem is to establish time varying parameter autoregressive
time series models and then to use the fitted model to obtain simulated time series. See, for
example, Fei and Bay (2005, 2009) and references therein. Although the simulated time
series obtained from these methods are non-stationary with the required autocorrelation
structure, there is no guarantee on the marginal distributions.

In this paper, we propose a simulation method for generating non-stationary time series
with the required autocorrelation structure and the required marginal distributions, so that
the quality of the simulated time series can be improved significantly.

The arrangements of the paper is as follows. The new simulation method is presented in
Section 2. We carried out extensive simulation studies on the performance of our method,
the results of which can be found in Section 3. An application to real size series of cocoon
filament is given in Section 4. Further comments and conclusions are given in Section 5.

2 The simulation method

Let y1, . . . , yT be a non-stationary time series of length T . Let yit (t = 1, . . . , T ) be the ith
(i = 1, . . . , I) realization of the time series in the time period [1, T ], which is independent
of all other realizations of the time series. We need to obtain simulated time series with
high quality based on the observed time series so that further analysis can be carried out.

To understand the above settings, let us consider the SSCF. In this case, the underly-
ing time series corresponds to the size series of cocoon filament, i corresponds to the ith
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silkworm. So we have I measured size series using I silkworms. Furthermore, under cer-
tain conditions silkworms are assumed to perform independently (see Fei and Bay (2005,
2009)). Note that as it is very expensive to obtain a very large number of SSCF, the value
of I (i.e. the maximum number of SSCF that we can afford) is usually smaller than that
the researchers would need for a required analysis. So simulated SSCF with high quality
based on the data obtained from I silkworms can be very useful in such situations. This
real problem also motivated the work of this paper.

Let Ft(y) be the marginal distribution function of yt at time t, ρt τ = corr(yt, yτ ) the
correlation between yt and yτ with ρt t = 1 and ρt τ = ρτ t. As the time series is non-
stationary, we have Ft(y) 6= Fτ (y) and corr(yt, yt+h) 6= corr(yτ , yτ+h) if t 6= τ and
h 6= 0. The proposed simulation method consists of the following several steps.

Step 1. Estimate the marginal distributions and the sample autocorrelations.

Step 2. Define a base process zt.

Step 3. Estimate the autocorrelation structure of the base process.

Step 4. Estimate the coefficients of the base process.

Step 5. Use the base process to obtain a simulated time series and then transform it to
the required time series.

The details about each step of the simulation method are given below.

Step 1. Estimate the marginal distributions and the sample autocorrelations.

The marginal distribution function Ft(y) (t = 1, . . . , T ) may be approximated by the
empirical distribution or by fitting a proper probability model to the data yit (i = 1, . . . , I).

The autocorrelation ρt τ may be estimated by

ρ̂t τ =
1

(I − 1)ŝtŝτ

I∑
i=1

(yi t − µ̂t)(yi τ − µ̂τ ),

where

µ̂t =
1

I

I∑
i=1

yi t , ŝ2
t =

1

I − 1

I∑
i=1

(yi t − µ̂t)2, t = 1, . . . , T.

Step 2. Define a base process zt.

z1 = ε1,
zt = θ1 t−1zt−1 + θ2 t−1zt−2 + · · ·+ θt−1 t−1z1 + εt, t = 2, . . . , T,

(1)

where εt (t = 1, . . . , T ) are independently and normally distributed with

ε1 ∼ N(0, 1), εt ∼ N(0, σ2
t ),

where
σ2
t = 1− θ1 t−1rt−1 t − θ2 t−1rt−2 t − · · · − θt−1 t−1r1 t,

and rt τ is the correlation between zt and zτ . Furthermore, εt is independent of zτ for τ < t.
For the base process we have the following result.
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Theorem 1 The marginal distribution of the base process is standard normal, i.e. zt ∼
N(0, 1) (t = 1, . . . , T ).

The proof can be found in the Appendix. The following result is a standard one and we
present it as a Lemma.

Lemma 1 Let Z ∼ N(0, 1), and let Y = F−1(Φ(Z)), where F−1 is the inverse function of
a properly defined distribution function, and Φ is the standard normal distribution function.
Then Y is a random variable with a distribution function defined by F .

Therefore, if we can simulate a time series zt from the base process, then by letting
yt = F−1

t (Φ(zt)) we can obtain a simulated time series yt with the required marginal
distributions. That means, we only need to guarantee that the simulated yt process has the
required autocorrelation structure, which can be achieved by estimating rtτ in Step 3.

Step 3. Estimate the autocorrelation structure of the base process.

It is noticed that

ρt τ = corr(yt, yτ ) =
E(ytyτ )− E(yt)E(yτ )√

var(yt)
√
var(yτ )

=
E(ytyτ )− µtµτ

stsτ
. (2)

where
µt = E(yt), st =

√
var(yt), t = 1, . . . , T.

It is also noticed that

E(ytyτ ) = E
(
F−1
t (Φ(zt))F

−1
τ (Φ(zτ ))

)
=

∫ ∞
−∞

∫ ∞
−∞

F−1
t (Φ(zt))F

−1
τ (Φ(zτ ))φrt τ (zt, zτ )dztdzτ ,

where φrt τ (zt, zτ ) is the bivariate normal density function of zt and zτ with mean 0 and
correlation rt τ .

It is seen thatE(ytyτ ) is a function of rtτ only, which appears in the function φrt τ (zt, zτ ).
Thus, the problem of determining rt τ that gives the desired autocorrelations for the yt pro-
cess reduces to independently solving the equations given by (2). For a stationary process,
Cario and Nelson (1996) proved that E(ytyτ ) is a nondecreasing function of rtτ , and under
very mild conditions on the marginal distribution of yt, E(ytyτ ) is also continuous. For the
non-stationary time series considered in this paper, we have similar results:

Theorem 2 E(ytyτ ) is nondecreasing for−1 ≤ rtτ ≤ 1. Furthermore, if there exists ε > 0
such that E(|ytyτ |1+ε) <∞ for all values of −1 ≤ rtτ ≤ 1, then E(ytyτ ) is continuous for
−1 ≤ rtτ ≤ 1.

See the Appendix for the proof. Theorem 2 guarantees that our numerical procedure devel-
oped below will converge.

By rearranging (2) we have

ρt τstsτ + µtµτ =

∫ ∞
−∞

∫ ∞
−∞

F−1
t (Φ(zt))F

−1
τ (Φ(zτ ))φrt τ (zt, zτ )dztdzτ . (3)
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Replacing ρt τ , st, sτ , µt and µτ by the corresponding sample estimates, we can solve (3)
for rt τ numerically. We could use the method proposed by Cai et al. (2008) to estimate rt τ .
However, as now we are dealing with non-stationary time series, the number of equations
given by (3) can be very large if T is large. Therefore we propose the following new but
much more efficient method for estimating rt τ .

Note that −1 ≤ rt τ ≤ 1. Let N be a large positive integer and −1 < r1 < . . . < rN <
1, where rj (j = 1, . . . , N ) are equally spaced. Let vk and wk be independent samples from
N(0, 1), where k = 1, . . . ,M and M is also a large positive integer (in this paper, we take
M = 5000). Let ai = ri/

√
1− r2

i , u
i
k = (aivk + wk)/

√
a2
i + 1, where i = 1, . . . , N .

Finally, let

Ait τ =
1

M

M∑
k=1

F−1
t (Φ(vk))F

−1
τ (Φ(uik)), t = 2, . . . , T, τ = 1, . . . , t− 1.

Then
Ait τ ≈

∫ ∞
−∞

∫ ∞
−∞

F−1
t (Φ(zt))F

−1
τ (Φ(zτ ))φri(zt, zτ )dzt,

and the approximation can be very good if M is large enough. Hence this step of the
method includes the following several sub-steps.

• For fixed τ , simulate vk and uk as mentioned above. CalculateAit τ (t = τ+1, . . . , T ).
Note that the same values of F−1

τ (Φ(uik)) (i = 1, . . . , N) are required for all t. There-
fore they only need to be calculated once when t = τ + 1.

• Let A(1)
t τ < A

(2)
t τ < · · · < A

(N)
t τ be the ordered Ait τ (t = τ + 1, . . . , T ), and r(j) be the

corresponding value of ri required for calculating A(j)
t τ , where j = 1, . . . , N .

• If
A

(j)
t τ < ŝtŝτ ρ̂t τ + µ̂tµ̂τ < A

(j+1)
t τ

where j = 1, . . . , N − 1, then

rt τ = 0.5(r(j) + r(j+1))

can be taken as an approximated root of equation (3) if N is large enough.

Step 4. Estimate the coefficients of the base process.

In this step, we need to estimate θτ t for t = 1, . . . , T −1 and τ = 1, . . . , t. Specifically,
for t = 1, we have z1 = ε1, so no coefficient needs to be estimated.

For t = 2, since
z2 = θ11z1 + ε2,

we have
z2z1 = θ11z1z1 + ε2z1.

Therefore, by taking expectation on both sides, we get θ11 = r12.
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Similarly, for t = 3, . . . , T and τ = t− 1, . . . , 1, we have

ztzτ = θ1 t−1zt−1zτ + θ2 t−1zt−2zτ + · · ·+ θt−1 t−1z1zτ + εtετ .

Taking expectation and letting τ = t− 1, . . . , 1, we get

rt−1 t = θ1 t−1 + θ2 t−1rt−2 t−1 + · · ·+ θt−1 t−1r1 t−1 ,

rt−2 t = θ1 t−1rt−2 t−1 + θ2 t−1 + · · ·+ θt−1 t−1r1 t−2 ,

...

r1 t = θ1 t−1r1 t−1 + θ2 t−1r2 t−1 + · · ·+ θt−1 t−1 .

In matrix form, we have
rt−1 t

rt−2 t
...
r1 t

 =


1 rt−2 t−1 rt−3 t−1 · · · r1 t−1

rt−2 t−1 1 rt−3 t−2 · · · r1 t−2
...

...
...

...
...

r1 t−1 r1 t−2 r1 t−3 · · · 1




θ1 t−1

θ2 t−1

θ3 t−1
...

θt−1 t−1

 . (4)

Therefore, θτ t can be obtained by solving the above sequence of linear system of equations,
where t = 3, . . . , T and τ = t− 1, . . . , 1.

However, due to the special structure of the sequence of the linear system of equations,
the values of θτt (t = 1, . . . , T −1 and τ = 1, . . . , t) can be obtained by using the following
method.

Let θ>t−1 = (θ1 t−1, . . . , θt−1 t−1), r>t−1 = (rt−2 t−1, . . . , r1 t−1), R1 = 1 and

Rt−1 =

[
1 r>t−1

rt−1 Rt−2

]
,

where t ≥ 3. Then the solution to the system of equations given by (4) is given by

θt−1 = R−1
t−1rt,

where R−1
t−1 can be calculated recursively with details given below. Let

R−1
t−1 =

[
at−1 b>t−1

bt−1 ct−1

]
,

then it follows from Bernstein (2005) that

at−1 = (1− r>t−1R
−1
t−2rt−1)−1,

b>t−1 = −at−1r
>
t−1R

−1
t−2, ct−1 = R−1

t−2 −R−1
t−2rt−1b

>
t−1.

It is easy to see thatR−1
1 = 1, henceR−1

t−1 can be easily calculated for any t ≥ 3. Therefore,
θτt can also be obtained easily.

Step 5. Use the base process to obtain a simulated time series and then transform it to
the required time series.
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In this step, we simulate zt (t = 1, . . . , T ) from the base process, and let yt = F−1
t (Φ(zt))

(t = 1, . . . , T ). Then yt is the simulated time series with the required marginal distributions
and the required autocorrelation structure.

We have implemented our method by using the Matlab program language and have used
the developed software for both simulation studies and applications, the results of which
are given below.

3 Simulation studies

3.1 Simulation study 1

In this simulation study we consider the following AR(3) model

yt = 0.5yt−1 − 0.3yt−2 − 0.2yt−3 + εt, (5)

where εt ∼ N(0, 0.12), which defines a stationary time series.

A time series of length 2000 was simulated from model (5). To remove the effect of
initial values we only saved the last 30 values. Hence we have an “observed” time series of
length T = 30. The above procedure was repeated 500 times. Therefore, we have I = 500
independent “observed” time series from model (5), each of length T = 30.

Once the sample autocorrelation ρ̂t τ and the marginal distributions of the observed
time series have been obtained, the autocorrelation structure and the coefficients of the
base process can then be estimated. Let r̂tτ and θ̂ij be the estimated values of rtτ and θij
respectively for all possible values of t, τ, i and j. Then the estimated base process zt is
given by:

z1 = ε1,
z2 = 0.488z1 + ε2,
z3 = 0.79z2 − 0.561z1 + ε3,
z4 = 0.57z3 − 0.35z2 − 0.235z1 + ε4,
z5 = 0.61z4 − 0.373z3 − 0.253z2 + 0.156z1 + ε5,
...
z29 = 0.63z28 − 0.119z27 − 0.408z26 + · · ·+ 0.088z2 − 0.078z1 + ε29,
z30 = 0.632z29 − 0.397z28 − 0.299z27 + · · ·+ 0.067z2 − 0.106z1 + ε30,

(6)

where εt (t = 1, . . . , 30) are independently and normally distributed with

ε1 ∼ N(0, 1), εt ∼ N(0, σ̂2
t ),

σ̂2
t = 1− θ̂1 t−1r̂t−1 t − θ̂2 t−1r̂t−2 t − · · · − θ̂t−1 t−1r̂1 t.

By using the estimated base process (6) we obtained 500 simulated base time series
zi t (i = 1, 2, . . . , 500, t = 1, 2, . . . , 30) and transformed them into 500 time series using
ŷi t = F−1

t (Φ(zi t)) (i = 1, 2, . . . , 500, t = 1, 2, . . . , 30). Note that there are no restrictions
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on the number of simulated time series that can be obtained from this method. In fact we
can simulate as many time series as we like.

If the simulation method performs well, then we would expect that the marginal distri-
butions and the autocorrelation structure of the simulated time series should be similar to
those of the observed time series. As the length of each time series is 30 for this simulation
study, we obtained 30 marginal density functions corresponding to each time point for both
observed and simulated time series. For illustration purposes, Figure 1 (a)-(d) show four
plots of the estimated marginal density functions at times t = 2, 10, 19 and 27 respectively,
where the continuous curves correspond to those obtained from the observed time series,
while the dotted curves from the simulated time series. All other plots are very similar. It
is clear that the simulation method reproduced the marginal distributions of the observed
data with a very high quality.

Figure 1 (e) shows the plot of ρ̂t τ = corr(yt, yτ ) against ρ̄t τ = corr(ŷt, ŷτ ) for t, τ =
1, . . . , T , where yt is the observed series and ŷt the simulated series. It is seen that the
points on the plot are very close to the straight line y = x, suggesting that the estimated
autocorrelation structure of the simulated time series is very similar to that of the observed
time series. To further quantify the difference between the two autocorrelation functions,
we let

d =
1

T

√√√√ T∑
t=1

T∑
τ=1

(ρ̂t τ − ρ̄t τ )2 .

Then d provides an average measure of the differences between two autocorrelation struc-
tures. For this simulation, we have d =

√
2.1071/30 = 0.0484, indicating that the differ-

ence between the two autocorrelation structures is indeed very small.

To further assess if the overall dynamics of the observed time series is preserved by the
simulated realizations, we fitted an AR(3) model

yt = αyt−1 + βyt−2 + γyt−3 + εt, (7)

to each observed and simulated time series, where εt are iid N(0, σ2). In this simulation
study, the true values of the model parameters are α = 0.5, β = −0.3, γ = −0.2 and
σ = 0.1. If the simulated time series can preserve the overall dynamics of the observed
time series, then we would expect that the distribution of the estimated parameter values
for the observed time series should be similar to that for the simulated time series.

By fitting an AR(3) model to each observed time series, we have estimated parameter
values α̂i, β̂i, γ̂i and σ̂i for i = 1, . . . , 500. Figure 2 shows the corresponding probability
density function plots (continuous curves) of these estimated parameter values.

Similarly, by fitting an AR(3) to each simulated time series, we have α̃i, β̃i, γ̃i and σ̃i
for i = 1, . . . , 500. Figure 2 also shows the corresponding histograms of the estimated
parameters. Note that the vertical lines correspond to the true parameter values. It is clear
that the distributions of estimated the model parameter values obtained from the observed
and simulated time series respectively are very similar, suggesting that the overall dynamics
of the observed time series is preserved by the simulated realizations.
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(a) t = 2 (b) t = 10

(c) t = 19 (d) t = 27

(e)

Figure 1: (a)-(d): Marginal probability density function plots of the observed (continuous
curves) and the simulated (dotted curves) time series. (e) Plot of the autocorrelation coef-
ficients of the observed time series against that of the simulated time series in Simulation
study 1.

3.2 Simulation study 2

Consider a non-stationary time series defined by

yt = 0.5yt−1 − 0.3yt−2 − 0.2yt−3 + εt, (8)

where εt ∼ N(0, σ2
t ). and σt ∼ U(0.1, 0.4).

Similar to Simulation study 1, we generated 500 independent time series each of length
30 from model (8). By applying our method to these time series, we obtained the base
process zt given by

9



Figure 2: Distributions of the estimated model parameters in Simulation Study 1. Continu-
ous curves: for estimated parameter values from observed series; histograms: for estimated
parameter values from simulated series; vertical lines: for true parameter values.

z1 = ε1,
z2 = 0.396z1 + ε2,
z3 = 0.481z2 − 0.416z1 + ε3,
z4 = 0.448z3 − 0.247z2 − 0.242z1 + ε4,
z5 = 0.504z4 − 0.305z3 − 0.247z2 + 0.026z1 + ε5,
...
z29 = 0.5z28 − 0.326z27 − 0.184z26 + . . .− 0.008z3 + 0.036z1 + ε29,
z30 = 0.482z29 − 0.333z28 − 0.289z27 + . . .− 0.04z2 − 0.017z1 + ε30.

Hence, simulated time series can be obtained by transforming the time series generated
from the base process. Again 500 simulated time series each of length 30 were obtained.
Figure 3 (a)-(d) show the marginal density function plots at times t = 2, 9, 18 and 27
for illustration purposes, where the continuous curves correspond to those obtained from
the observed time series, while the dotted curves obtained from the simulated time series.
Figure 3 (e) shows the plot of ρ̂t τ against ρ̄t τ for this simulation study, indicating good
performance of the developed method for this simulation study. Furthermore, the difference
between the two autocorrelation functions is d =

√
1.3934/30 = 0.0393, which is also very

small.

Different from model (5), the variance of εt in model (8) is not a constant. However,
to assess if the overall dynamics of the observed time series is preserved by the simulated
realizations, we may still fit model (7) to the observed and simulated time series in this
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(a) t = 2 (b) t = 9

(c) t = 18 (d) t = 27

(e)

Figure 3: (a)-(d): Marginal probability density function plots of the observed (continuous
curves) and the simulated (dotted curves) time series. (e) Plot of the autocorrelation coef-
ficients of the observed time series against that of the simulated time series in Simulation
study 2.

simulation study. This is because model (7) should perform similar for both observed and
simulated time series if our simulation method works well. Figure 4 confirms that indeed
the overall dynamics of both observed and simulated time series is also very similar in this
simulation study.
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Figure 4: Distributions of the estimated model parameters in Simulation Study 2. Continu-
ous curves: for estimated parameter values from observed series; histograms: for estimated
parameter values from simulated series; vertical lines: for true parameter values.

3.3 Simulation study 3

Now consider another non-stationary process defined by

yt = sin(yt−1) + εt (9)

where εt ∼ N(0, 0.62).

In this simulation study, 300 independent time series each of size 20 were generated
from model (9). By applying our simulation method, we obtained the estimated base pro-
cess zt given by

z1 = ε1,
z2 = 0.704z1 + ε2,
z3 = 0.736z2 + 0.011z1 + ε3,
z4 = 0.746z3 + 0.004z2 − 0.012z1 + ε4,
z5 = 0.737z4 + 0.071z3 − 0.098z2 + 0.08z1 + ε5,
...
z19 = 0.572z18 + 0.223z17 − 0.151z16 + . . .− 0.046z2 − 0.05z1 + ε19,
z20 = 0.777z19 − 0.021z18 − 0.111z17 + . . .+ 0.069z2 − 0.068z1 + ε20.

Figure 5 (a)-(d) show the marginal density function plots corresponding to times t =
1, 5, 9 and 17 respectively, where the continuous curves correspond to those obtained
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from the observed time series, while the dotted curves from the simulated time series.
Figure 5 (e) compares the difference between autocorrelation structures of the simulated
and observed time series, which also suggests that a very good agreement between them
has been achieved. Indeed, in this case we have d =

√
0.896/20 = 0.0473, which further

confirms that the method also works well in this simulation study.

(a) t = 1 (b) t = 5

(c) t = 9 (d) t = 17

(e)

Figure 5: (a)-(d): Marginal probability density function plots of the observed (continuous
curves) and the simulated (dotted curves) time series. (e) Plot of the autocorrelation coef-
ficients of the observed time series against that of the simulated time series in Simulation
study 3.

To assess if the overall dynamics of the observed time series is preserved by the sim-
ulated realizations, we may fit the following model to both observed and simulated time
series from this simulation study:

yt = α sin(yt−1) + εt,
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where εt are iid with zero mean and constant variance σ2. The true α value is 1 and the true
σ value is 0.6. The results are shown in Figure 6, which again suggests that the simulated
time series can preserve the overall dynamics of the observed time series.

Figure 6: Distributions of the estimated model parameters in Simulation Study 3. Continu-
ous curves: for estimated parameter values from observed series; histograms: for estimated
parameter values from simulated series; vertical lines: for true parameter values.

4 Applications

We now apply our method to a real data set, which consists of I = 258 size series of cocoon
filament, each of length T = 12. The first two rows of Figure 7 show randomly selected
four observed series (others are very similar). It is seen that the time series plots do suggest
that they are non-stationary.

By applying our method to the data we obtained the base process given below:

z1 = ε1,
z2 = 0.81z1 + ε2,
z3 = 1.101z2 − 0.34z1 + ε3,
z4 = 1.128z3 − 0.338z2 + 0.009z1 + ε4,
z5 = 0.937z4 − 0.004z3 − 0.076z2 − 0.084z1 + ε5,
z6 = 0.9z5 + 0.11z4 − 0.133z3 − 0.16z2 + 0.085z1 + ε6,
z7 = 0.809z6 + 0.161z5 − 0.073z4 − 0.033z3 − 0.142z2 + 0.096z1 + ε7,
z8 = 0.883z7 + 0.174z6 − 0.125z5 − 0.195z4 − 0.003z3 + 0.092z2 − 0.065z1 + ε8,
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Figure 7: First two rows: Time series plots of four randomly selected size series of cocoon
filament. Last row: Distributions of the estimated parameters of model (10) for size series
of cocoon filament.

z9 = 0.899z8 + 0.203z7 − 0.291z6 + 0.056z5 − 0.17z4 − 0.115z3 + 0.122z2

−0.129z1 + ε9,
z10 = 0.868z9 − 0.018z8 − 0.028z7 − 0.016z6 − 0.101z5 − 0.002z4 − 0.082z3

+0.04z2 − 0.091z1 + ε10,
z11 = 0.82z10 + 0.052z9 + 0.095z8 − 0.263z7 − 0.14z6 + 0.065z5 + 0.086z4

−0.067z3 − 0.109z2 − 0.014z1 + ε11,
z12 = 0.956z11 − 0.2z10 + 0.067z9 − 0.274z8 + 0.119z7 − 0.026z6 − 0.016z5

−0.091z4 + 0.014z3 − 0.023z2 − 0.068z1 + ε12.

Hence, we generated 258 simulated size series, based on which, marginal probability
density functions at different time points can be obtained. For illustration purposes, Fig-
ure 8 (a)-(d) show the marginal probability density function plots at times t = 1, 4, 7 and
11 respectively, where the continuous curves correspond to those obtained from the ob-
served time series, while the dotted curves from the simulated time series. Figure 8 (a)-(d)
also clearly show the non-stationarity of the size series. Figure 8 (e) further compared the
autocorrelation structures of the simulated and the observed time series. The differences
between them is measured by d =

√
0.349/12 = 0.0492. All the results show that the

simulated time series are in a very good agreement with the observed size series of cocoon
filament.

It is worth mentioning that the value of N controls the accuracy of the estimated value
of rtτ . For example, in this application, we simply let N = I = 258, leading to r(j+1) −
r(j) = 2/(258 + 1) = 0.00772. Hence the difference between rtτ and its estimated value
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0.5∗ (r(j+1) +r(j)) is less than 0.5∗0.00772 ≈ 0.00386. We have found that an accuracy at
this level leads to good simulated time series. However, the optimal choice of N requires
further investigation in the future.

(a) t = 1 (b) t = 4

(c) t = 7 (d) t = 11

(e)

Figure 8: (a)-(d): Marginal probability density function plots of the observed (continuous
curves) and the simulated (dotted curves) time series. (e) Plot of the autocorrelation coeffi-
cients of the observed time series against that of the simulated time series for the real data
set.

Although we are unable to carry out further analysis that could be done by the re-
searchers in the raw reeling silk industry, we could assess if the overall dynamics of the
observed size series of cocoon filament is preserved by the simulated realizations as we did
in the simulation studies. For this application, we used the ARIMA(1, 2, 0) model

ut = αut−1 + εt, ut = (1−B)2yt, (10)

where yt is the value of a size series at time t, B is the backward shift operator such that
Byt = yt−1, and εt are iid with zero mean and constant variance σ2. We have found that a
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second order differencing of the size series is necessary in order to fit an ARIMA(1, 2, 0)
model to each of the observed and simulated size series. The last row of Figure 7 shows
that the distribution of the estimated α values from both observed and simulated size series
are very similar, which is also true for σ. These results suggest that the simulated size series
have the same autocorrelation structure and the same marginal distribution as those of the
observed size series. Furthermore, the simulated size series can also preserve the overall
dynamics of the observed size series from a statistical modelling point of view.

5 Further comments and conclusions

We have developed a simulation method for non-stationary time series of finite length. The
developed simulation method guarantees that the simulated time series are in a very good
agreement with the observed time series with respect to the marginal distributions and the
autocorrelation structure. We have demonstrated that our method can provide high quality
simulated time series for researchers in raw reeling silk industry. We also expect that the
developed method is of great importance in many other areas. For example, in medical
research it can be very expensive to follow a large number of patients for a period of time,
and in coastal engineering it can also be very expensive to collect sea condition data at many
locations. Our method enables the researchers to carry out further analysis based both on
the simulated and on the observed time series, leading to significant financial savings.

We assessed if the overall dynamics of the observed time series is preserved by the
simulated time series by fitting a statistical model to both observed and simulated time
series. For the cases considered in this paper good results have been obtained. However, it
is worth mentioning that the developed methodology does not guarantee the joint marginal
distributions. Therefore, some dynamic features of an observed non-stationary time series
may not be preserved.

For example, let us consider a self-exciting threshold autoregressive time series defined
by

yt =
K∑
k=1

(
ak0 +

p∑
j=1

akjyt−j + εkt

)
I[yt−d∈Ωk],

where Ωk = [rk−1, rk), and −∞ < r0 < r1 < · · · < rK < ∞ are threshold values. As
the joint marginal distributions of the process can be very complicated due to the unknown
threshold values involved, we would expect that some important dynamic features in high
dimensions may not be preserved by the developed method.

We feel that it can be very difficult to cover all dynamic features of an observed non-
stationary time series within the framework developed in this paper. Further research is
certainly required in the future.

It is of great interest to investigate the effects of the simulated time series on the further
analysis required by the researchers in the raw reeling silk industry or other areas, but this
is beyond the scope of this paper.
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Appendix

Proof of Theorem 1: We use the induction rule to prove the theorem. It is true for t = 1.
Suppose it is also true up to time t− 1, that is, zτ ∼ N(0, 1) (τ = 1, . . . , t− 1), we need to
show that zt ∼ N(0, 1).

It follows from (1) that zt is a linear combination of normal random variables, hence zt
is normally distributed. Furthermore,

E(zt) = θ1 t−1E(zt−1) + θ2 t−1E(zt−2) + · · ·+ θt−1 t−1E(z1) + E(εt) = 0,

and
var(zt) = E(ztzt)
= θ1 t−1E(zt−1zt) + θ2 t−1E(zt−2zt) + · · ·+ θt−1 t−1E(z1zt) + E(εtzt)
= θ1 t−1rt−1 t + θ2 t−1rt−2 t + · · ·+ θt−1 t−1r1 t + var(εt)
= θ1 t−1rt−1 t + θ2 t−1rt−2 t + · · ·+ θt−1 t−1r1 t

+(1− θ1 t−1rt−1 t − θ2 t−1rt−2 t − · · · − θt−1 t−1r1 t)
= 1.

It follows from the induction rule that zt ∼ N(0, 1) for any t.

2

Proof of Theorem 2: First note that by following the lines of their work, the Propositions
1 and 2 of Cario and Nelson (1996) also hold in our case.

Then note that the Lemma A.1. of Cario and Nelson (1996) holds when replacing one
nondecreasing function g by two non-decreasing function g1 and g2. This is because the
Proposition 1 of Rubinstein et al. (1985) holds for any two non-decreasing functions. So
by taking g1 = F−1

t (Φ(·)) and g2 = F−1
τ (Φ(·)), we have that E(ytyτ ) is nondecreasing.

Finally, replacing Y1 = F−1
Y (Φ(Z1)) by yt = F−1

t (Φ(zt)) and Y2 = F−1
Y (Φ(Z2)) by

yτ = F−1
τ (Φ(zτ )) respectively in the proof of Lemma A.2. of Cario and Nelson (1996), we

have that E(ytyτ ) is also continuous on −1 ≤ rtτ ≤ 1. 2
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