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Abstract: 
 

Genetic toxicology testing has a crucial role in the safety assessment of new and existing substances of societal 

value by reducing/eliminating human exposure to potential somatic and germ cell mutagens.  Genetic toxicology 

assays have historically been used in a qualitative manner to arrive at the binary decision of ‘yes’ or ‘no’ with 

regards to the mutagenic potential.   However, the field is currently at a crossroads, with new methods being 

developed and new proposals being made to use genetic toxicity data in a more quantitative manner. 

Technological advances have made it possible to perform high-content, high-throughput and high-precision 

analysis to increase the number of “scored” events leading to increased statistical precision of the endpoint under 

evaluation. Automated flow cytometry and image analysis are providing significant advantages for the evaluation 

of gene mutations as well as cytogenetic damage both in vitro and in vivo. In addition, statistical methods such as 

the benchmark dose (BMD) approach can be used to identify point of departure (PoD) metrics for use in human 

health risk assessments, including estimation of reference dose (RfD) and margins of exposure (MOE) from in 

vivo data. Here we provide new data to compare different in vitro micronucleus approaches, observing that the 

flow based assay performs very well in defining a PoD for methyl methanesulfonate. We also present reanalysis of 

published in vivo Pig-a gene mutation data, to show how covariate analysis increases precision and reduces the 

effects of outliers when defining BMD values. Furthermore, we show how in vivo BMD metrics can be used to 

define RfD values, and then provide comparisons to other human exposure limit values such as permitted daily 

exposure (PDE). Finally, the principles of empirical correlation using BMD metrics are presented, with methods 

for derivation of BMD values for endpoint B, when using data from only endpoint A. These developments are 

opening the possibility of genetic toxicity data being used as an apical endpoint to define negligible risk in human 

health risk assessments. Expert groups consisting of stakeholders representing academia, industry and the 

government are now developing guidance on transforming genetic toxicology testing from a qualitative to a 

quantitative science, keeping in mind the 3R principles of animal welfare. 

 
†The opinions and recommendations expressed in this publication are those of the authors, and do not necessarily 
reflect those of the institutions with which they may be affiliated. The information in these materials is not a 
formal dissemination of information by the U.S. Food and Drug Administration and does not represent agency 
position or policy. 
 



Introduction:  
 

Recent studies have highlighted the limitations of assays currently used in genetic toxicology, as well as 

opportunities for improvement1-5. Of particular concern has been the sensitivity and specificity of the assays, 

which reflect their ability to correctly identify substances that experimentally induce cancer and/or germ cell 

mutations. In addition, genetic toxicity data have traditionally been used for hazard identification, and thus only 

interpreted in a qualitative dichotomous manner, i.e., a ‘yes’ or ‘no’ response with respect to a compound’s 

potential to induce a genotoxic effect. However there is growing interest in the quantitative analysis and 

interpretation of genetic toxicity data, with a focus on the analysis of dose response functions and applications of 

the analyses in human health risk assessment 6-9. There is also a growing appreciation that cancer is not the only 

apical endpoint of concern for genetic damage and adverse effects such as cardiovascular and neurological 

disorders, birth defects, and mitochondrial diseases are linked to mutagenicity per se7.  Consequently, there is an 

increasing appreciation that genetic toxicity test results should be quantitatively scrutinized, and moreover, 

considered more widely for human health risk assessment (HHRA).  

 

There is precedence for the quantitative use of toxicological dose-response data and of point of departure (PoD) 

values to define human dose equivalents that pose negligible risk of an adverse outcome. However, genetic 

toxicologists often argued that effects resulting from genetic damage are based upon a stochastic process, and as 

such, the dose response for induced effects is linear to zero dose, with no response threshold.  For DNA reactive 

chemicals, some have argued that a single “hit” (e.g., adduct) in a single cell is adequate to increase the risk of the 

adverse outcome (i.e., cancer) in the exposed individual10.  This paradigm assumes low dose linearity for induced 

effects with the absence of a response threshold below which responses could be termed negligible (i.e., below the 

limit of detection). On the other hand, there has been a growing acceptance of the existence of response thresholds 

for genotoxic chemicals that act via non-DNA targets, e.g., disruption of the mitotic/meiotic spindle by interfering 

with the polymerization of tubulin molecules11, 12.   

 

The debate on the existence of response thresholds for DNA reactive chemicals is a long-standing one.  It is not 

possible to provide scientific evidence regarding the theoretical assertion that all DNA reactive molecules do not 

have response thresholds (i.e., are linear to zero dose). Similarly, no amount of experimentation will convince 

proponents of the linear-no threshold paradigm that response thresholds do indeed exist for at least some DNA 

reactive molecules. The challenge in both cases is the same, viz., collecting enough data to have adequate 

statistical precision at the low end of the dose-response curve. Expert groups such as the International Workgroup 

on Genotoxicity Testing (IWGT 2013) and the Genetic Toxicology Technical Committee of the Health and 

Environmental Science Institute of the International Life Science Institute (GTTC) are addressing the above issues 

and challenges with the aim of developing pragmatic approaches for establishing acceptable exposure limits for 

genotoxic agents (i.e., levels associated with negligible risk).  The debate is gradually shifting away from the 

existence of thresholds towards pragmatic methods for the analysis of dose-response data, identification of PoD 

values, and extrapolation to environmentally relevant doses that are associated with negligible risk. Recent work 

coordinated by the GTTC and IWGT have demonstrated that PoDs can be determined using a variety of different 

statistical methods 6-8, and once defined, used for the calculation of exposure limits and margins of exposure 

(MOE) 9.  

 

The aim of all toxicological screening for regulatory decision-making is to reduce the risk of harm to humans 

while minimizing the number of high value substances that are unnecessarily removed from the product 

development pipeline. In this work we argue that genetic toxicity should be regarded as a bona fide toxicological 



endpoint, and as such, genetic toxicity screening and quantitative dose-response analyses should be designed to 

permit an analogously pragmatic, yet protective approach to substance screening. Moreover, novel experimental 

and data analysis methods should strive to minimise the use of experimental animals. It is our contention that 

pragmatic effective and protective genetic toxicity screening can be achieved through a combination of new 

techniques in genetic toxicology, along with quantitative dose-response analyses and the attendant extrapolations 

for HHRA. 

 

New Developments in Experimental Approaches:  

 
Reliable determinations of PoD values require more data than that routinely generated during the screening of new 

and existing test articles. This can be a challenge since many mammalian genetic toxicity studies currently tend to 

include only 3 treatment groups because the generation and collection for mutation and cytogenetic damage data 

can be very labour intensive. The utility of high-throughput, high-content and high-precision approaches has begun 

to overcome some of these limitations, and several emerging methods are ideally suited to generating the data 

required to adequately define dose response relationships and determine PoD values. Some of the most promising 

methods employ flow cytometry to enumerate in vitro and in vivo cytogenetic damage and gene mutation events. 

Assays that employ flow cytometry methods have benefitted both from miniaturisation and high throughput 

automation; these permit rapid, effective scoring of large numbers of cells and concomitant improvements in the 

precision of the response metric (e.g., frequency of cytogenetic damage in red blood cells). The dramatic increase 

in the number of cells that can be readily scored, relative to older manual scoring methods, improves statistical 

precision and the ability to define PoD values. With respect to in vivo studies, improved flexibility and the ability 

to integrate numerous toxicological endpoints into a single study has been recognised as a significant advantage 

that can contribute to the 3R’s, i.e., replace, reduce and refine the use of experimental animals for toxicity 

assessment. For example, using different dyes, flow cytometry based methods now readily allow multiplexing of 

endpoints such as cell viability, gene mutation, and cytogenetic damage without the need for sacrifice of animals at 

each time point. Automated digital image analysis is also very promising, with systems such as Metafer™ 

(MetaSystems™, Zeiss™), In cell analyser™ (GE Healthcare™) and others providing platforms for automated or 

semi-automated slide-based cytogenetic analyses. These platforms enumerate the frequency of specific cellular 

characteristics that are identified based on software-specific cellular image classifiers.  

 

Flow-based approaches have now become the preferred method for the in vivo micronucleus (MN) assay to assess 

cytogenetic damage in experimental animals.  There are also in vitro versions of the MN assay, such as the 

Microflow™ (Litron, USA), which differs from that used previously 12, mainly through the addition of a cell lysis 

step. The Microflow™ system was recently used to elegantly characterise dose response functions for MN 

induction for a variety of agents13. In addition, there is a new semi-automated method (Metafer™) recently 

developed for the enumeration of MN frequency in cultured cells (Figure 1). In Table 1 we summarise some of 

the advantages that the two aforementioned in vitro approaches have for dose response analysis, relative to 

traditional manual scoring, some preliminary data generated using the model chromosome breaking agent methyl 

methanesulfonate (MMS) (Table 1). 
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Figure 1: Overview of experimental protocols for two automated versions of the in vitro MN assay. The schematic 

on the right illustrates the use of the Metafer system for slide-based image analysis. The schematic on the left 

illustrates the use of Microflow™ kits available from Litron Laboratories (Rochester, NY, USA). Gating images 

from http://litronlabs.com/in_vitro_micronucleus.html). 
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Figure 2: Induction of micronucleus formation in TK6 cells following treatment with MMS. 10,000 events were 
scored using the MicroFlowTM method following 30hours treatment (crosses + Green line), 4000 mono nucleated 
cells were scored with the Metafer system following 30hours treatment (triangles + Red line), and 6,000 mono 
nucleated cells were scored manually following 4hours treatment and 26 hours recovery (circles + Black line). 
PROAST version 50.3 was used for BMD (benchmark dose) analysis, with BMD10 (CED), BMDL10 (CEDL) and 
BMDU10 metrics presented in the figure. The three dose responses were analysed together with MN scoring 
method as the covariate. These data are previously unpublished.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Table summarising the advantages and disadvantages of different in vitro micronucleus protocols for 

dose-response analysis and point of departure (PoD) determination.  

MN scoring 

approach 

Scoring 
platform 

Advantages1 
 

Disadvantages 
 

 

Microscopy - 

Image analysis 

 
Manual Scoring 

• Simple, economical 
and adaptable 

• Stained slides can be 
stored for re-analysis 

• Laborious and time 
consuming  

• 1,000 cells scored requires 
>15 minutes.  

 

Semi-automated 

Metafer Scoring 

• High-content, high-
throughput and high-
precision 

• Images of nuclei and 
MN can be stored for 
re-assessment by 
technician 

• 4,000 cells can be scored in 
10 minutes.  

• Automated binucleate 
frequency scoring for 
proliferation index requires 
an additional 20 minutes 
per slide. 

 
 

Flow cytometry 

 
Fully-automated  

MicroFlow™ 

Scoring 

• High-content, high-
throughput and high-
precision 

• Permits endpoint 
multiplexing 

• 10,000 events scored 
in 1-2 minutes.  

• Cell lysis step removes 
ability for re-assessment of 
stored samples  

• Over-scoring due to multi-
MN cells or multi-nucleated 
cells with MN. 

 
 
1High-content - many events can be scored in a short period of time from a single sample. High-throughput - many 

samples can be assessed in a short period of time. High-precision - highly precise measurements can be taken. 

Multiplexing - different endpoints can be combined and analysed simultaneously or in sequence. MN - 

micronucleus.  

 

Another high-throughput and high-precision genotoxicity assessment tool is the in vivo Pig-a assay, which in-

directly measures mutation frequency at the Pig-a locus via flow cytometric determination of the loss of a GPI-

anchored surface antigen. The X-linked phosphatidylinositol glycan-class A (i.e., Pig-a) gene has been used as a 

reporter for induction of somatic cell mutations using flow cytometric analysis to determine the frequency of cells 

that express glycosylphosphatidylinositol (GPI) anchored protein(s) on their surface 14. Flow cytometric analysis 

uses fluorescent antibodies against GPI-anchored cell surface markers, such as CD59, to discriminate between 

wild-type (i.e., anchor-proficient) and mutant phenotype (i.e., anchor deficient) cells 15-22. Although this assay is 

currently only carried out in blood to assess the mutagenic effects in haematopoietic tissue, it does provide an 

excellent means to defining PoDs for genotoxicants without the need to sacrifice the experimental animals. 

Therefore the endpoint can readily be multiplexed, and time course analyses can also be incorporated into 

genotoxicity assessments. The ability to apply the Pig-a mutant phenotype scoring principle to other tissues would 

constitute a major improvement to this assay; moreover, an in vitro version of the assay could offer high-content, 

high-throughput, high-precision multiplex capabilities for genetic toxicity screening in cultured mammalian cells. 

The latter could dramatically reduce time and cost relative to currently available assays (i.e., mutation induction at 

TK and HPRT loci) 23-26. 

 

 

 

 



New Developments in Data Analysis: 
 

The aforementioned in vitro approaches must have high sensitivity and specificity to accurately identify in vivo 

mutagens that would be highlighted for concern and control in an HHRA context27-29. This has already been 

realised in the cosmetics industry following EU directives that prohibit animal testing 30. A reduction in animal 

numbers can also be achieved through improved statistical analysis, such as benchmark dose (BMD) modelling for 

in vivo PoD assessment7, in this case leading to less than half the number of animals being needed to accurately 

define a PoD metric, as compared to other methods. A refinement of animal tests is also achievable since increased 

recognition of genetic toxicity as bona fide toxicological endpoints, and the use of BMD approaches to define 

genotoxicity PoD values, do not necessitate treatment at the maximum tolerated doses that are most likely to elicit 

animal suffering. Furthermore, the BMD can reduce the number of misleading results.  Slob and Setzer (2014) 

discuss a novel approach, in which data sets are combined. This reduces the impact of outliers and the chance of 

misleading results, while resulting in more statistical precision, in particular smaller confidence intervals for 

BMDs that are used as measures of genotoxic potency.  This methodology was successfully applied to data sets 

from the NTP-FDA database 31.  

 

The BMD is the dose that elicits a pre-specified change in response (i.e., the Benchmark Response or Critical 

Effect Size), and it is determined by fitting dose-response models to the data and subsequently interpolating for the 

desired response level7, 8. The pre-specified change may be in terms of percentage change in mean response 

relative to the mean background, or in terms of statistical distance beyond the background response (i.e., one 

standard deviation) 7. The BMD approach generally includes calculation of a confidence interval around the BMD 

value, with the BMDL being the lower bound of the confidence interval (CI). This value, when properly adjusted, 

can serve as the PoD in chemical risk assessment. BMD values based on fixed percentage increases (i.e., BMDL 

10% or BMDL10) are the most appropriate potency metrics for investigating empirical relationships across 

endpoints (e.g., in vivo clastogenicity versus carcinogenicity). Such relationships, which have recently been 

published and promoted by Hernandez and colleagues9, 31, permit more effective use of current and forthcoming 

genetic toxicity data for HHRA and regulatory decision-making, thus permitting the realisation of the assertions 

outlined in the introduction of this work.  

 

Among the most comprehensive genetic toxicity studies to date, which employed the aforementioned high-

throughput and high-precision techniques along with optimised study design and data analyses, is that of Cao et al 

(2014). This group enumerated Pig-a mutant frequency (MF) in haematopoietic tissue in the same EMS-treated 

animals analysed for transgene mutant frequency (i.e., gpt) and MN frequency. The work complements an earlier 

study on EMS in vivo genotoxicity 32-35, and confirms the similarity of manually-determined MN frequency values 

for haematopoietic tissue and transgene mutant frequency( i.e., lacZ) in selected tissues; and moreover, confirms 

the utility of the flow-derived Pig-a mutant frequency values presented by  Cao et al (2014). 

 

 

 

 

 

 

 

 



Table 2: BMDL10 metrics calculated from published in vivo genetic toxicology dose-responses for three potent 

alkylating agents 7, 36 with focus on high-throughput and high-precision approaches. The PoD metrics were used to 

define reference doses (RfDs) for the human population using allometric dose scaling factors of 0.081 for mouse to 

human, and 0.16 for rat, and an additional uncertainty factor of 100 for inter- and intraspecies differences in 

sensitivity 37 38. For example, for EMS gpt-delta MF in spleen, (0.35x0.081x60)/100 = mg/day. BMS, Bristol 

Myers Squibb data presented in Johnson et al (2014); citations for other data sets from which the BMDL10s were 

derived 34, 36, 39, 40; PCE - Polychromatic Erythrocytes. RET - Reticulotytes. RBC - Red Blood Cells. ; SI - Small 

intestine. NoDR - No significant dose response. MF - Mutant Frequency. MN - Micronucleus. 

Substance Species Scoring 

method 

Tissue Study BMDL10 

mg/kg 

RfDs  

(µg/day) 

EMS Mouse Manual Most sensitive 

tissue, Spleen 

Gpt MF –  

Cao et al (2014) 

0.35 17.01 

EMS Mouse Manual Bone Marrow Gpt MF –  

Cao et al (2014) 

0.37 17.98 

EMS Mouse Flow Peripheral 

blood, RET 

Pig-a MF Day 29 –  

Cao et al (2014) 

1.18 57.35 

EMS Mouse Flow Peripheral 

blood 

MN Day 13 –  

Cao et al (2014) 

6.79 329.99 

EMS Mouse Flow Peripheral 

blood 

MN Day 29 –  

Cao et al (2014) 

8.26 401.44 

EMS Mouse Manual Bone Marrow LacZ MF – Gocke 

& Wall (2009) 

9.29 451.49 

       

ENU Mouse Manual Most sensitive 

tissue, SI 

Dlb MF –  

VanDelft (1998) 

0.09 4.37 

ENU Mouse Flow Peripheral 

blood, RBC 

Pig-a MF Day 29 – 

Bhalli (2011) 

0.12 5.83 

ENU Mouse Flow Peripheral 

blood, PCE 

MN –  

Bhalli (2011) 

1.36 66.10 

       

MNU Mouse Manual Most sensitive 

tissue, Spleen 

Hprt MF –  

Monroe (1998) 

2.06 100.12 

MNU Rat Flow 

cytometry 

Peripheral 

blood, RBC 

Pig-a MF Day 4 –  

BMS 

NoDR NoDR 

MNU Rat Flow 

cytometry 

Peripheral 

blood, RBC 

Pig-a MF Day 15 –  

BMS 

0.2 19.20 

MNU Rat Flow 

cytometry 

Peripheral 

blood, RBC 

Pig-a MF Day 29 –  

BMS 

0.015 1.44 

MNU Rat Flow 

cytometry 

Peripheral 

blood, RET 

Pig-a MF Day 4 –  

BMS 

NoDR NoDR 

MNU Rat Flow 

cytometry 

Peripheral 

blood, RET 

Pig-a MF Day 15 –  

BMS 

0.1 9.60 

MNU Rat Flow 
cytometry 

Peripheral 

blood, RET 

Pig-a MF Day 29 –  

BMS 

0.0007 0.07 



 

As illustrated in the recent work by Johnson et al (2014), suitably adjusted genetic toxicity PoD values can be used 

to establish exposure limits such as an RfD (Reference Dose). For example, allometric scaling can be employed to 

convert rodent (i.e., rat or mouse) PoD values to human equivalents, and these values can then be suitably adjusted 

using the appropriate uncertainty/safety factors (e.g., 10 for inter-individual human variability and 10 for animal-

to-human extrapolation). Table 2 shows PoD values for 3 potent alkylating agents (i.e., EMS, ENU and MNU), 

defined using non-linear dose response models and the BMD method, and the RfD values calculated from the in 

vivo genetic toxicity BMDL10 values7. These metrics are in the same order of magnitude as the 104µg/day 

permitted daily exposure (PDE) value for EMS derived by Roche following the Viracept contamination incident 41. 

We acknowledge that some jurisdictions may employ different methods and adjustment/safety factors to determine 

human exposure limit values (e.g., RfD, PDE, TDI, ADI, etc), particularly for different types of agents (i.e., 

substances in food versus therapeutic products versus industrial chemicals, etc.). Moreover, it is important to note 

that tissue restrictions for some of the assessment endpoints (e.g., Pig-a mutant frequency in haematopoietic 

tissue) may be problematic, for example, for ingested substances that are not systemically distributed 7, 36. 

Therefore, the PoD metrics and resulting RfDs shown may in fact be higher than those that would be obtained for 

target tissues collected from the same animals.  

 

Other factors such as rodent strain, route of administration and sampling time can also affect the PoD value. For 

example, the EMS data presented in Table 2 shows a BMDL10 for gpt MF in bone marrow of 0.37 mg/kg/day (i.e., 

gpt delta mouse model) and a BMDL10 for LacZ MF in bone marrow of 9.29 mg/kg/day (i.e., MutaMouse model). 

In addition, the data from 7,which investigated Pig-a MF in rat RBCs and RETs following MNU exposures for 4, 

15 or 29 days,  suggest that the PoD value shifts to lower doses with increased exposure duration, presumably due 

to mutation fixation and cell transit and turnover in peripheral blood 7. However, when these data were reanalysed 

together with time as the covariate, the statistical precision was increased and this trend was no longer observed 

(Figure 3). This type of covariate analysis has the advantage of utilising dose-response information from related 

experiments to provide increased statistical precision by maximising the degrees of freedom and minimizing dose-

response aberrations. Moreover, the main advantage of the analyses used for generating Figure 3 was that in Day 

15 for RETs in particular, there were outliers that caused a sudden stepped increase in dose response, which was 

smoothed out when using the covariate approach. Using a BMD approach, a BMDL10 metric could be defined for 

Day 4 along with an infinite upper bound (BMDU10, or CEDU10), and this is much more useful information than 

that of ‘no effect’, as resulting from pairwise testing. After all, effects cannot be excluded had higher doses been 

applied, and this is reflected by the BMDL: below that dose the effect will be smaller than 10%, but it remains 

uncertain what would happen at higher doses. Covariate analysis was also used in generating Figure 2, where it 

provided extra information showing that the Microflow™ dose response had a greater gradient and maximum fold-

change compared to the other 2 approaches, which was possibly due to over-scoring of cells. Moreover, the BMD 

metrics were derived using the same model for each, which therefore provides a more accurate comparison 

between systems with less variables (parameters) being changed42.  
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Figure 3: Pig-a mutant frequency dose responses from (a) RBC and (b) RET cells derived from rats following 

exposure to MNU, with sampling times at Day 4 (circles, Black line), 15 (triangles, Red line) and 29 (crosses, 

Green line). PROAST	  version	  50.3	  was	  used	  for	  the	  benchmark	  dose	  analysis,	  with	  BMD10	  (CED),	  BMDL10	  

(CEDL)	  and	  BMDU10	  metrics	  presented	  in	  the	  figure.	  The	  three	  dose	  responses	  were	  analysed	  together	  with	  

Pig-‐a	  scoring	  method	  as	  the	  covariate.	  	  These	  data	  were	  analysed	  previously	  using	  other	  PoD	  approaches	  38.	   

 

 

This covariate approach was also used by researchers at the RIVM (National Institute for Public Health and the 

Environment, Utrecht) to examine empirical relationships between genotoxic potency and carcinogenic potency 31, 

43-46 (Figure 4). Two proof-of–principle analyses have been performed: in the first, a positive correlation was 

observed between the lowest BMD from in vivo genotoxicity tests (MN and transgenic gene mutation) and the 

tissue-matched carcinogenicity BMD for 18 compounds; in the second, a positive correlation was observed 

between the BMDs from the in vivo MN and BMDs from malignant tumors in 26 compounds. The later 

correlation was recently used by the RIVM in a risk assessment of an impurity in animal feed, for which an in vivo 

MN test had been carried out but no cancer study was available. This case illustrates the potential of using the 

potency correlation between in vivo MN BMDs and cancer BMDs. Based on the MN test for the impurity, the 

BMD10 for cancer was predicted to lie in a range of 11-2000 mg/kg bw/day, and the lower bound of this range 

could be considered as a BMDL10 for cancer, which in this case may be considered as quite conservative given the 

large uncertainty. Even then, it was found that the MOE for the calculated exposure was very high, and, together 

with the fact that exposure was only expected to occur for a short period of time, it could be concluded that cancer 

risk was negligible. Along with this novel way of deriving a predicted cancer BMDL, and its associated MOE, 

from in vivo MN data, MOE-type metrics can also be defined directly from the genetic toxicity PoDs themselves 7-

9. This latter approach constitutes a significant departure from the “cancer-centric” approach that currently forms 

the basis of most HHRAs, and concomitant regulatory decisions, of genotoxic agents. As already noted, once a “no 

reason for concern” MOE has been defined, chemical evaluators can use genetic toxicity BMD-derived exposure 

limits (e.g., RfD) for HHRA. For the approach based solely genetic toxicity endpoints, there is still a need to 

identify and justify the appropriate tissue, endpoint, study design and PoD metric8, and moreover, the MOE that 

indicates “no reason for concern”. Nevertheless, the aforementioned studies and the approaches described herein 

provide the foundation to start defining these factors.  
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Figure 4: Representation of a hypothetical potency correlation between BMDL10 metrics for Endpoint A and 

BMDL10 metrics for Endpoint B across a range of different substances. The grey arrows show how a conservative 

BMDL10 dose for Endpoint B can be predicted from an experimentally derived BMDL10 from Endpoint A. The 

vertical distance between the dotted lines capturing the data points (x) reflect the hypothetical confidence interval 

as a function of the BMDL in endpoint A. Data points that would be far outside the dotted lines, i.e., in the upper 

left or lower right areas, may be considered as false positives or false negatives, respectively.   

 

As part of recent collaborations involving the RIVM, Astra Zeneca and the US Food and Drug Administration 

(USFDA), we have also shown that BMD values from in vitro dose-response data correlate to in vivo MN BMD 

values in a similar manner to that illustrated in Figure 4, and these preliminary empirical correlations add to the 

growing body of in vitro to in vivo extrapolations (IVIVE) that are a cornerstone of in vitro only MOE values for 

HHRA 47 48. In this proof-of-principle study, the applicability of using the in vitro micronucleus data from 

lymphoblastoid TK6 cells to derive cancer potency information was investigated with nineteen chemicals covering 

a very broad spectrum of modes of action and potencies. A clear correlation was observed between the BMDs 

from in vitro MN and BMDs for malignant tumours; as well as between BMDs from in vitro MN and in vivo MN. 

Although these results are very promising, some significant work remains to be completed before in vitro dose-

response data can reliably be used for HHRA, and risk assessments based on carcinogenicity will remain an 

important part of regulatory decision-making. For instance, extending the number of compounds, and further 

investigating issues with regards to metabolic activation. 

 

As noted in our recent work, when defining a PoD for HHRA, the BMD permits greater accuracy while using less 

data than other approaches7. In addition, deviations from the ideal data requirements have less of an impact on the 

BMD metric relative to PoD values determined via pairwise comparisons of control groups and treated group (i.e., 

the NOGEL or No Observed Genotoxic Effect Level). Therefore, we support the use of the BMD approach for 

defining a permitted daily exposure (PDE) for drug impurities and residual solvents (i.e., ICH M7). The preference 

for BMD metrics is likely to be scrutinised by governmental regulatory authorities, particularly following of the 

recent publication by the quantitative analyses workgroups operating under the auspices of the GTTC and IWGT 



2013 6-9. It should also be noted that current efforts of the GTTC Quantitative Analysis Workgroup (QAW) are 

endeavouring to make the aforementioned statistical approaches more accessible through conference workshops, 

peer-reviewed articles, and user-friendly online versions of statistical tools used to define PoDs (i.e., http:// 

www.MutAIT.org).  

 

 

Conclusions: 
PoDs derived from in vivo genetic toxicity tests can now be used on a case-by-case basis for HHRA, with 

significant implications for reducing the reliance on cancer bioassays. Once quantitative analysis of in vivo 

endpoints definitely demonstrates the utility of genetic toxicity for HHRA and regulatory decision-making, the 

regulatory community will be poised to genuinely consider the utility of in vitro data. The future holds promise for 

high-content, high-throughput, high-precision automated genetic toxicity testing both in vitro and in vivo, and data 

generated using novel approaches could be used in conjunction with other molecular indicators of chemically-

induced events to identify PoDs for HHRA, and moreover, to employ suitable PoDs for the determination of 

exposure limits (e.g., PDEs for pharmaceutical impurities)47. Adoption of such approaches will permit more timely 

and cost-effective generation of the data required for regulatory decision-making while concomitantly permitting 

reductions in animal usage. Although many challenges remain, the experimental and analytical approaches 

discussed in this work offer a multitude of advantages for regulatory authorities as well as stakeholders.  
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