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a b s t r a c t

A comprehensive heap leach model, developed within a computational fluid dynamics software
framework, provides a modeling tool to capture reactive dissolution in low grade ores of oxide and
sulfide minerals. These systems involve suites of very complex reactions, which are closely coupled
with thermal conditions and key microbial populations. One of the key challenges when modeling
heap leach scenarios is characterization of the ores and parameterization of the model in order to uti-
lize the model as an investigative tool. The calibration of the model can be a lengthy process requir-
ing many simulation runs. An optimization tool has been incorporated into the model to allow
automated searching for multiple ‘best fit’ parameter values and to determine sensitivity. Once the
model has been parameterized, large-scale forecasts can be simulated or a sensitivity analysis can
be performed to investigate a range of process variables, such as irrigation rate, lift, air injection, acid-
ity, head grade and dripper emitter spacing, amongst others. One such example is explored here for
the Zaldivar ore body.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stockpile or heap leaching for metal recovery from low-grade
ore deposits, such as copper, nickel, zinc, uranium, gold and silver
ores, increases in importance at a time when demand for metals is
continuing to rise. As available metal head values degrade, efficient
leaching of large quantities of low-grade metal deposits becomes
increasingly essential. In today’s operations, expanding heap leach
practices see the size of heaps grow larger, increasing lift heights to
reduce the amount of land impacted by mining, leaching of run-of-
mine ore and crushed ore and leach solution rates designed to opti-
mize metal recovery and chemical consumption. Recovery of the
target metal can range from approximately 30% for some difficult
to leach sulfide copper ores to over 90% for easier oxide gold ores.
Thus, a computational tool to support operational analysis by the
engineer to reduce operational costs and maximize recovery is
increasingly appealing.

Building a computational model that incorporates the physics
and chemistry involved in the heap leach process, with stockpiles
of width and depth of hundreds of meters and timescales that
may be months and years, offers a considerable challenge. The
basic process, applying a reactive solution to a stockpile of low-
grade ore and collecting the dissolved metal in the recovered

leach solution, is simple in concept. However, leach systems are
very complex physically and chemically, and the variability be-
tween different ores and between samples (i.e., mineral concen-
trations, local blockages, and impurities) makes it difficult to
accurately predict the behavior of a particular system unless the
model is calibrated against each specific ore. Once the model is
calibrated for a specific ore type, then it is possible to determine
trends and indicators towards improving leaching at the indus-
trial scale. Computational models have the advantage of being
repeatable and fast – simulations of hundreds of days of column
tests can take place in a few minutes, whilst years of whole heap
leach can be delivered within hours. A helpful general description
of leach modeling requirements has recently been given by Peter-
sen (2010).

Developing computational tools that allow different leach strat-
egies to be explored and optimized is a challenging task. There has
been an enduring interest for over 30 years in the development of
mathematical models of heap leach processes to provide effective
engineering management tools (Bartlett, 1998). In the past few
years, several models based on computational fluid dynamic
(CFD) platforms have been reported in the literature, including Lea-
hy et al. (2005, 2006 and 2007) and Leahy and Schwarz (2009).
Flow models have been developed by Cariaga et al. (2005, 2007)
and an analytical model developed by Mellado and Cisternas
(2008) and Mellado et al. (2011a,b). Heap bioleaching has been
considered by Bouffard (2008), Bouffard and Dixon (2009) and
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Petersen and Dixon (2007) amongst others. This paper builds upon
a CFD based model that combines true heap geometry with all as-
pects of the various physical, chemical and biological processes
present in a heap as a series of sub models to provide a comprehen-
sive solution (Bennett et al., 2006, 2008a,b, 2012b; Cross et al.,
2006; McBride et al., 2006, 2012a, b).

Over the past years there has been much interest in developing
models of all or part of a heap leaching system to enable the design
and optimization of the leaching process. Due to the highly non-
linear and complex suite of reactions occurring during the leach
process, the influence of small changes in operating parameters
can lead to high uncertainty in the effect on recovery. Many mod-
eling approaches have been applied to the heap leaching process
and process sensitivity analysis performed to investigate the effect
of changing operation variables. Dixon and Hendrix (1993), devel-
oped a mathematical model for use in the design and scale up of
heap leaching processes. Mellado et al. (2011a,b, 2012) presented
analytical models to investigated optimal flow rates and investi-
gates sensitivity of input parameters to the response of the process
in applications where scale-up is necessary.

One of the key challenges when modeling heap leach scenar-
ios is characterization of the ores and parameterization of the
model in order to utilize the model as an investigative tool.
Although a computational model can simulate days, months of
leaching in minutes, the calibration of the model can be a
lengthy process requiring many simulation runs. The focus of
this paper is to show how the model can be employed, with
characterized and calibrated ore data, to understand which pro-
cess parameters affect the recovery and to what extent. The pa-
per also details an optimization tool that has been incorporated
into the CFD model to allow automated searching for multiple
‘best fit’ parameter values, thus reducing the calibration times
and optimizing the ‘fit’ of the model. The optimizer tool is a
simple automated ‘best fit’ search, which makes small changes
to each parameter and determines if the change improves or
worsens the quality of fit of the variables under investigation.
The advantage of this type of optimizer is that it is extremely
robust for a highly non-linear system but the disadvantage is
that it requires many automated simulation runs.

Examples of model calibrated and predicted results are shown
for sulfide ore and for a multi-material oxide ore. In any practi-
cal investigation, there are really two essential components –
one concerns the calibration of the ore complex (for which the
above mentioned tools are devised) and the sensitivity analysis
of the target commercial heap – what influences the effective-
ness of its operation. In the final part of this paper, sensitivity
analysis on process operational parameters on a commercial cop-
per sulfide leach heap, for which adequate data is in the public
domain, is presented to show how the calibrated simulation
tools might be employed.

2. Heap leach model

The general heap leach model is implemented within a com-
putational fluid dynamics (CFD) multi-physics software frame-
work. A detailed description of the mathematical models and
algorithms is given by (Bennett et al., 2012b) for copper sulfide
ores and for oxide ore (McBride et al., 2012b). The host code,
PHYSICA, provides a three-dimensional finite volume unstruc-
tured mesh modular framework for multi-physics modeling
(Croft et al., 1995). The framework supplies generic routines
to discretise a general transport equation over a solution
domain using cell-centred approximations over an arbitrarily
complex three dimensional mesh comprised of a mix of tetrahe-
dral, wedge and hexahedral elements.

2.1. Liquid–gas-thermal transport

Flow through variably saturated porous media is typically char-
acterized by the Richards’ equation. Saturated and unsaturated li-
quid flow have individually been well described but modeling
systems containing both saturated and unsaturated regions offers
considerable challenges. A computational procedure for handling
both saturated and unsaturated conditions in the same environ-
ment has been developed (McBride et al., 2006). The procedure is
based on a transformation method and is fully integrated into
the unstructured context within the PHYSICA code. In addition to
the liquid solution flow, air may be circulated through the heap.
The model solves the gas phase transport and makes the assump-
tion that the liquid flow influences the gas flow but the gas flow
does not directly influence the fluid flow. Gas flow is primarily dri-
ven by boundary conditions such as gas injection through air lines
and wind pressure against the sides of heaps. Temperature gradi-
ents can also be very important in driving gas flow and buoyancy
forces are also accounted for in the model. In addition oxygen li-
quid–gas mass transfer can occur due to a number of factors, typ-
ically temperature, liquid and gas composition and liquid–gas
interfacial area. In the model, oxygen is transported between the
liquid and gas phases according to Henry’s law. The details of the
CFD flow module that is used to calculate the fluxes of chemical
species, gas and liquid flows, and heat balance are given by Bennett
et al. (2012b).

2.2. Mineral reaction chemistry

The reactions module solves the solid–liquid mineral reactions
by explicitly solving a shrinking core algorithm, tracking the resid-
ual grades and the production and consumption of species from so-
lid to liquid state. The solid fraction of ore is defined by a size
distribution of representative particle sizes, each with their own
mineral properties, replicating measured data for the properties
of a specific ore type. The overall chemistry balance is determined
by summing the reaction products for each particle size fraction
and scaling according to availability of reactants. Typically in min-
eral leaching, the chemical reactions occur between raffinate spe-
cies (commonly, ferric ions and/or acid for copper sulfides,
cyanide for gold oxides) and reactive minerals in the solid phase.

The general equation employed to calculate the rate of dissolu-
tion of a given mineral is:

drm

dt
¼ � 3rm

4pr2
o

Mi

qorexi

Deff coAm

½3Deff roco þ 2ðro � rmÞr2
mð1� epÞAm�

ð1Þ

where ro is the initial particle radius, rm is the current mineral ra-
dius, Am comes from the kinetic rate equation for the current min-
eral. Deff is the effective rock diffusion coefficient, Co is the
concentration of reactant at the ore particle surface, ep is the rock
voidage, qore is the ore density, Mi is the molecular weight of the
mineral, xi is the mass fraction of the mineral.

The value of Am comes from the general expression for the ki-
netic rate equations, which takes the general form;

Am ¼
db
dt
¼ Ae

�B
RTð Þ ð2Þ

where b is the fraction of mineral reacted, A and B are functions of
the individual kinetic rate equation. R is the gas constant, T is the
temperature in degrees Kelvin

This approach allows minerals to react at different rates in an
individual particle size, and although it requires the assumption
that the minerals can be treated relatively independently, this is
not unreasonable given the low concentration of reactive minerals
present. Each mineral in each particle size fraction can be modeled
using a single characteristic radius, which indicates how much of
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the mineral has reacted. This allows the model to deal with multi-
ple particle sizes and multiple minerals over large meshes without
excessive memory usage in the overall CFD model framework.

The advantage of this approach is that it can easily be related to
experimental analysis of ore, which is commonly given as mineral
content by size classification, making validation easier. It also eas-
ily allows for different minerals to dominate the reactions at differ-
ent stages of the leach cycle. The general kinetic rate Eq. (2) can be
modified to incorporate a rate constant, RA, thus:

Am ¼
db
dt
¼ RAAe

�B
RTð Þ ð3Þ

This allows the model to be tuned to a given ore using experi-
mental column data. The rate constants in effect combine to cover
factors in the reactions that are not otherwise specified for in any
particular ore complex. These can include particular distributions
of mineral grains and interactions between different minerals that
can be difficult to quantify but may be characteristic of a particular
ore body. The rate constants are unrelated to particle size and
therefore allow the model to scale from small to large particle size
distributions (e.g., from experimental column to heap).

As well as the standard dissolution reactions for minerals, as de-
scribed previously for copper sulfides (Bennett et al., 2012b) and
oxide minerals (McBride et al., 2012b), tracking of gangue minerals
has been added to the model and reported in Gebhardt et al.
(2012). The dissolution of these gangue species was implemented
using simple first order reaction within the shrinking core model
for individual particle reactions.

2.3. Solution reaction chemistry

In addition to the solid–liquid mineral reactions, other liquid–li-
quid or liquid–solid reactions may take place, such as the oxidation
of ferrous ions to ferric and the precipitation of salts and other
compounds.

In the case of copper sulfide heap leaching, ferrous ion oxidation
is modeled using an algorithm based on a population of ferrous-
oxidizing bacteria. An equilibrium relationship is used to deter-
mine the ferric ion concentration, [Fe3+], based on the concentra-
tions of ferrous ions, [Fe2+], dissolved oxygen, [O2], and free acid,
[H+], and an equilibrium constant, K. Concentrations here are in
moles/litre.

The ratio of ferric ions to ferrous is therefore given by:

½Fe3þ�
½Fe2þ�

¼ K1=4 ½O2�1=4 ½Hþ� ð4Þ

Once in the solution phase, the solubility and precipitation of
several species can be affected by the local chemical environment.
For a copper sulfide material, some important precipitates are
hydronium and potassium jarosite, ferric hydroxide, alunite, and
gypsum. An equilibrium algorithm is included in the model based
on the solubility of several species where the solubility and equi-
librium constant can be adjusted. The precipitation equations ac-
counted for in the model, default solubilities and relationships
are detailed in Gebhardt et al. (2012).

3. Parameter optimization

The parameterisation of the reaction kinetics for a given set of
minerals for a particular ore type is achieved by calibration of
the reaction rate, RA in Eq. (3), for each species. The reaction rates
are essentially tuned to enable the best fit possible for the data on
small column tests. These reaction rates are material specific so
will require tuning for each ore type. These reaction parameters
can then be used to predict the bulk behavior, from large column

leach tests to multi-material large scale heaps. So the data from
the small scale column can be used to parameterize the model
for a specific ore and then the model used to predict the behavior
of a large-scale column leach thus providing a validation test for
the parameterized model. It is worth noting that it is not too diffi-
cult to ‘tune’ model parameters so that a reliable match can be ob-
tained for the overall extraction of a metal. It is, however, much
more challenging to enable the model to match the behavior of
both the species concentrations and pH within the pregnant leach
solution, and the dissolution in the column by particle size fraction.
This requires that the formation of the model capture all the key
details of the extraction process.

The calibration and parameterization of the model can be a
lengthy process. Each mineral has its own characteristic reaction
rate for each material and there are inevitably other unknown
ore properties, such as particle effective diffusivity, that will re-
quire ‘fitting’ to experimental data. The calibration and parameter-
ization of the model is often the most time consuming part of the
modeling process, requiring study results from multiple sets of
simulations, many simulation runs and an experienced operational
modeler.

An optimization and sensitivity analysis tool has been incorpo-
rated into the model to allow automated searching for multiple
‘best fit’ parameter values and to determine sensitivity. The opti-
mizer determines how the parameters should change by using an
error function that compares data sets from simulation and exper-
iment. The error function determines the variance between
matched pairs of values. The optimizer tool finds the best values
for selected control parameters to fit the model to a set of experi-
mental results. Typically, it will be used to calibrate the model to
new column test data. A sensitivity analysis tool enables data to
be easily generated to show model behavior against variations in
selected parameter values.

3.1. Parameter optimization

Applying the heap leach model to a new mineral or ore body re-
quires control parameters, such as mineral reaction rates and par-
ticle diffusion, to be optimized. The optimization algorithm,
incorporated into the model, automates this process of generating
model control parameters (e.g., reaction rate parameters, particle
diffusion coefficients, bacteria growth parameters and others).

The optimization algorithm is designed for the case where there
are multiple dependant control parameters and it is difficult to
generate values from physical data. When the set of input data is
simple, it may be possible to do a more direct optimization to
determine the best values, but this becomes increasingly hard with
a large number of input parameters. The algorithm optimizes the
parameters to give a ‘best fit’ to experimental data by running
the same data set repeatedly and minimizing an error function.
The ‘best fit’ is determined by comparing model output data to a
given data set or sets that may contain multiple records. The user
can set the error function to a weighted combination of fits to mul-
tiple data, such as copper recovery, and PLS concentrations of acid
and ferric. The user can select and weight the most important data.
The data sets can be modified by time to allow features that are dif-
ficult to model precisely in the PLS recovery, such as start up and
rest periods, to be discounted. The algorithm also allows a fit to
individual point values and utilizes multiple experimental and
simulation data files to build the error function.

3.2. Error estimation

The error function is a weighted combination of fits of different
data sets and fixed points. A data set consists of a set of experimen-
tal and simulated values between a set of defined time ranges.
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Defining a set of time ranges allows features, such as start up and
rest periods, to be ignored for the purposes of fitting. Linear inter-
polation is applied to experimental data to achieve experimental
values that correspond in time.

For data set j the measure of fit is calculated according to the
formula

ej ¼

Xn

t¼1

Xsim
tj � �Xsim

j

� �
Xexp

tj � �Xexp
j

� �" #2

Xn

t¼1

Xsim
tj � �Xsim

j

� �2Xn

t¼1

Xexp
tj � �Xexp

j

� �2
1�

�Xsim
j � �Xexp

j

�Xsim
j þ �Xexp

j

�����
�����

 !
ð5Þ

In (5) the summation is over the defined time range, Xsim
tj and

Xexp
tj are the simulated and experimental values at a given time t

within data set j respectively and �X jsim and �X jexp are the mean
of the simulated and experimental of the data sets respectively.
Experience has shown that the individual data points contain a le-
vel of experimental noise that is damped when calculating the
mean values. In the measure of fit equation small errors in the esti-
mation of the individual data reduce the value of the measure by a
very small amount due to the squaring of the deviation. For the
mean values a linear function is used due to improved confidence
in the experimental value and therefore a greater need to penalize
even small variations between the simulated and experimental
values.

Fixed points are taken at a set time from an available data set.
An example of a fixed point that might be used is copper recovery
at the end of the simulation, or another example might be residual
particle grade. The quality of fit Ri for the named point i is calcu-
lated using the formula

Ri ¼ 1� Xsim
i � Xexp

i

Xsim
i þ Xexp

i

� �
������

������ ð6Þ

The total fit is calculated using the equation

ei ¼

Xn1

j¼1

wjej þ
Xn2

j¼n1þ1

wjRj

 !

Xn2

j¼1

wj

ð7Þ

3.3. Optimizer algorithm

The algorithm minimizes the error function for all parameters
on a stepwise basis. The step size for each increase or decrease in
a parameter is defined initially as a fixed value or as a multiplier
of the starting value. This reflects the fact that some parameters
may vary by orders of magnitude. At the start, the optimizer deter-
mines the ‘best strategy’ and starting search direction for each
parameter by measuring the quality of fit and ranking all parame-
ters by the degree of sensitivity of the quality of fit. When the opti-
mizer is required to change the search direction, it assumes that it
has gone past a local minima and the size of the step is reduced.

The parameters are evaluated during the optimization phase in
order of the largest effect on fit, positive or negative. The ordering
of parameters is redone at the end of each sweep, allowing param-
eters that become insensitive to be ignored in subsequent sweeps.
Sensitivity analysis can be performed with selected parameters
varying over a defined range to determine sensitivity to key
parameters without having to set up and run large numbers of sep-
arate simulations thus reducing the user input required and man-
aging the simulation data. A schematic of the algorithm is shown in
Fig. 1.

The optimizer algorithm makes small changes to each parame-
ter and determines if the change improves or worsens the quality
of fit of the variables under investigation. Initially, the optimizer
ranks the parameters in order of sensitivity. An initial learning
stage determines the degree of sensitivity of the quality of fit to
a small change in the parameter value. The algorithm then loops
through all the parameters in order of rank. Each parameter is ad-
justed by its present step size and a new simulation is run. A new
error is calculated for each variable under investigation. The
parameter error function is a weighted combination of the error
in each variable, where weights have been defined by the user, else
equal weighting is applied. If the error function of the parameter
under investigation is below 10�4 or a user defined tolerance, the
algorithm loops to the next parameter. When all the parameters
have been investigated, the global error is calculated to determine
the quality of fit for the new set of parameter values. If the global
error is more than 10�4 or a user defined tolerance, the algorithm
loops through all the parameters again.

4. Calibration and forecast results

The optimizer tool has been employed to calibrate the model to
a varying range of ore types. The leach tests reported here utilize
the optimization tool to obtain reactivity parameters for both oxide
and sulfide minerals.

4.1. Calibration result

An example of a weighted combination of fits of different data
sets and fixed point calibration is the optimization of reaction
parameters, which are mineral dependent, and diffusivities, which
are particle dependent, to fit PLS concentration over time and par-
ticle residual grades at the simulation end. Fig. 2, shows the cali-
brated fits for a chalcocite-type ore, 0.32% copper mass fraction
and 2.8% pyrite mass fraction, for copper recovery and residual par-
ticle grades.

Large-scale leach forecasts illustrate the model’s ability to pre-
dict large-scale leaching scenarios once the model has been cali-
brated to a particular ore type and parameters have been
optimized. In the following column leach test, the model is cali-
brated against a small column leach test and the parameters are
used to predict a large column leach test of the same copper sulfide
material. In the multiple-material case, the model is calibrated

Fig. 1. Schematic for optimization algorithm.
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against multiple column oxide leach tests to obtain a range of opti-
mum parameters for different ore types, and the model is used to
predict the gold recovery in a full-scale heap leach comprised of
these different materials.

4.2. Column leach tests

The model was calibrated against a chalcocite-type ore, 0.59%
copper mass fraction and 2.15% pyrite mass fraction, small scale,
1.8-m tall, ½-inch crush, column leach test. The reaction rates,
RA, for the chalcocite and pyrite reactions were optimized together
with particle diffusivities and the ferrous to ferric equilibrium ratio
in the ferrous oxidation reaction. The column was leached with a
raffinate solution containing 4.08 gpl ferric at an application rate
of 3.6 � 10�7 m/s. The column temperature was approximately
25 �C and air was injected into the column at 8.64 � 10�5 m/s.

The optimized model was employed to predict species concen-
tration and pH in the recovered pregnant solution on a large scale,
6.1-m tall, 1 ½-inch crush, column leach test of the same material.
The raffinate solution contained 3.5 gpl ferric at an application rate
of 1.58 � 10�6 m/s. All other properties were the same. The graphs
in Figs. 3 and 4 show the calibrated model results on the small col-
umn leach and the model predicted results, employing the opti-
mized parameters obtained from the small column, against
measured data on the large scale column leach test. Fig. 3 shows

the copper recovered during the leach period, and as can be seen,
the model calibrated and predicted results are in good agreement
with measured data. Fig. 4 shows the pH of the recovered solution
during the leach period, the model predicted pH is slightly lower
than measured but the general pH trend is captured.

4.3. Multiple-material heap leach

The same parameter optimization strategy can be applied with-
in the context of a multi-material ore body as well, such as that
characterized by a gold oxide system, where the ore body consists
of a gold–copper–silver oxide complex. Here the model was cali-
brated against several 2-m high column leach tests to obtain reac-
tion and diffusivity parameters for three base ore types. The oxide
ores contained a mixture of gold, silver, copper and a gangue-type
mineral, which acted as a cyanide consumer. Fig. 5 shows the par-
ticle size distribution and gold grade for each ore type. A leach
solution of 50 ppm cyanide was applied to the ore at a rate of
10 l/h/m2. The gold recovered over the leach period is shown for
the different ore types in Fig. 6. The calibrated model predicted re-
sults give a good match with measured data.

The different ore types were stockpiled and leached with a
50 ppm cyanide leach solution. The heap was built up over a year
with new ore being added on a monthly basis. The composition of
material added each month is shown in Fig. 7. The reaction param-

Fig. 2. Calibrated results of copper recovery and copper residual in particle distribution.

Fig. 3. Copper recovered in pregnant leach solution. Fig. 4. pH of pregnant leach solution.
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eters for each ore type were obtained from the column test model
calibration study, shown in Fig. 6. The ore specific rate parameters
were applied to the stockpile material, but it is also worth noting
that the mineral recovery from the ore is also influenced by the
solution flow path and available cyanide. As the leaching solution
travels through the heap, the available reactant is consumed hence
limiting the mineral reactions. Fig. 8 compares the fraction of ac-
tual total gold recovered against the model predicted recovery.

The model predicted 98% of the total gold recovered over a period
of a year.

5. Process sensitivity analysis

Once the model has been parameterized for an ore body, the
next natural stage in any simulation based investigation is to set
up a model of the commercial heap operation and then to perform
a process sensitivity analysis to enable a detailed understanding of
which and to what extent operating parameters can affect the rate
of as well as the ultimate recovery from a heap. A process sensitiv-
ity analysis was performed on a copper sulfide ore from published
operating data (Bouffard and Flores Godoy, 2007) in order to ex-
plore the possible impact of operational changes at the Zaldivar
mine in Chile. Bouffard’s paper details a number of strategies that
have been used to optimize leaching from copper sulfide ores on a
dynamic leach pad. There is sufficient information in the paper
combined with existing knowledge of similar ores to build a com-
putational model that should respond to the different strategies
appropriately and to investigate the extent to which the model
supports the analysis and its conclusions. The model utilized in this
paper has been calibrated to published data on the ore body and a
detailed analysis of the effect of changing a wide range of process
parameters and model assumptions is given in the paper by Ben-
nett et al. (2012a).

The basic material investigated is a mixture of chalcocite, 1%
copper, pyrite content of 2% and no acid consuming gangue. The
ore is a p80 0.5-inch crush, agglomerated and treated to reduce

Fig. 5. Particle size distribution and gold grade.

Fig. 6. Percent gold recovered over leach period.

Fig. 7. Composition of material added to heap each month.

Fig. 8. Comparison of model predicted and measured gold recovery.
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fines. The dominant reactions are therefore the oxidation of the
copper and iron minerals with ferric iron and the subsequent oxi-
dation of ferrous iron with gaseous oxygen to regenerate the ferric.
The base heap is modeled as a one dimensional column with a
height of 10 m. The leach cycle is 375 days with a constant flow
rate of 8 l/h/m2. Total iron in the raffinate is 1 g/l, which is almost
entirely ferric. The pH is 1.6 and the copper content is 0.24 g/l. A
gas flow rate of 1 � 10�5 m/s/m2 from the base is assumed.
Although temperature is allowed to vary, the ambient temperature
is set to 25 �C and there is little thermal variation in the PLS.
Healthy populations of bacteria are assumed to exist in the heap
and therefore do not limit the ferrous oxidation process. Precipita-
tion of iron (III) hydroxide is relatively high. Generally copper
recovery to the PLS is about 50%.

The model was used to simulate raffinate flow rate varying from
5 to 8 l/h/m2. Overall recovery varies only slightly with the differ-
ent levels of solution applied. Generally the lower flow rates slow
the initial recovery but the long leach period allows for only a
slight reduction in the final copper recovery, as shown in Fig. 9.
Generally there are low iron levels in all the simulations, any iron
in the raffinate is rapidly consumed and ferrous oxidation tends to
consume the available acid. Measurable levels of ferric do not ap-
pear until after 100 days, see Fig. 10.

The acidity in the raffinate was varied between a pH of
2–0.5, equivalent to varying sulphuric acid content from 0.49 to
15.5 g/l. Generally there is little impact on recovery. The overall
pH levels drop with increased raffinate acidity. However, there is
a considerable increase in recovery in the early part of the leach
period with higher acidity, see Fig. 11. This is due to higher avail-
ability of ferric ions, Fig. 12, for reaction due to reduced precipita-
tion. The main acid consumer in this system is the reaction for
oxidation of ferrous to ferric ions. Low levels of acidity reduce
ferrous oxidation, the most obvious result being the absence of fer-
ric in the PLS until 100 days or later at a pH of 1 or higher.

The head grade can be varied per particle size in the model, but
in this simulation was assumed constant over all particle sizes. The
copper head grades investigated were 0.3%, 0.8%, 1.0%, 1.5% and 2%
chalcocite. The different grades gave considerable variation in
recovery rates. This is driven by the availability of the ferric reagent
inside the heap, which in turn is driven by regeneration of ferrous
that depends on bacteria and acidity. It takes considerably longer
for significant acidity to appear in the PLS, see Fig. 13, while
leaching higher grades of copper due to its consumption by the
oxidation of ferrous. Fig. 14 shows that there is some general
improvement in leach behavior with poorer copper grades.

Fig. 9. Copper recovery for various application rates.

Fig. 10. Ferric in PLS for various application rates.

Fig. 11. Copper recovery for different acidity of raffinate.

Fig. 12. Ferric in PLS for different acidity of raffinate.

Fig. 13. Acidity of PLS for a range of ore grades.
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The key result of all the simulations is that there is very little
overall variation in copper recovery between the different leaching
scenarios for the same mineralogy over the time span. What differ-
ences there are, tend to occur during the initial leach period. The
simulations are all consistent with the analysis of (Bouffard and
Flores Godoy, 2007) except that Bouffard and Flores Godoy
(2007) recommended that the irrigation rate should be increased
to 8 l/m2/h whilst the simulation here indicates that overall the
recovery is insensitive to the flow rate. However, the available cop-
per will be recovered faster at higher irrigation rates. High flow
rates also tend to lead to lower average PLS grades.

6. Conclusion

The comprehensive heap leach model has been shown to cap-
ture the reactive dissolution kinetics of oxide and sulfide minerals
in low grade ores once the model has been parameterized for a par-
ticular ore type. The calibration and parameterization of the model
is often the most time consuming part of the modeling process,
requiring study results from multiple sets of simulations, many
simulation runs and an experienced operational modeler. The opti-
mization tool, incorporated into the model, reduces user input en-
abling automated searching for multiple ‘best fit’ parameter values.
Thus, ore parameter data can be easily generated to allow large
scale recovery predictions of multiple materials.

One of the key activities in the simulation based analysis of
commercial heaps is a sensitivity analysis to understand which
process parameters affect the recovery and to what extent. Such
a sensitivity study on characterized and calibrated data can give in-
sight into the effect of operational process changes and, therefore,
provide a useful tool for heap operation optimization. The example
provided demonstrated a sensitivity analysis investigation per-
formed by the heap leach model and compared the results to a sub-
stantial operational analysis by Bouffard and Flores Godoy (2007)
for the Zaldivar mine in Chile. The laudable efforts of Bouffard
and Flores Godoy demonstrate how challenging such sensitivity
analysis is on industrial scale operations. The work reported here
may allow ultimately more insightful conclusions to be reached
through suitably parameterized and comprehensive simulation
studies with heap leach models.
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