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FSPE: Visualization of Hyperspectral Imagery Using
Faithful Stochastic Proximity Embedding

Safa A. Najim, Student Member, IEEE, Ik Soo Lim, Peter Wittek, and Mark W. Jones

Abstract—Hyperspectral image visualization reduces color
bands to three, but prevailing linear methods fail to address
data characteristics, and nonlinear embeddings are computa-
tionally demanding. Qualitative evaluation of embedding is also
lacking. We propose faithful stochastic proximity embedding
(FSPE), which is a scalable and nonlinear dimensionality re-
duction method. FSPE considers the nonlinear characteristics of
spectral signatures, yet it avoids the costly computation of geodesic
distances that are often required by other nonlinear methods.
Furthermore, we employ a pixelwise metric that measures the
quality of hyperspectral image visualization at each pixel. FSPE
outperforms the state-of-art methods by at least 12% on average
and up to 25% in the qualitative measure. An implementation
on graphics processing units is two orders of magnitude faster
than the baseline. Our method opens the path to high-fidelity and
real-time analysis of hyperspectral images.

Index Terms—Dimension reduction methods, hyperspectral im-
agery sensing, visualization.

I. INTRODUCTION

HYPERSPECTRAL images are useful in examining the
compounds and elements on the surface of the Earth,

which are important for various geoscience-related applica-
tions. However, it is challenging to process and analyze hy-
perspectral images due to the high dimensionality of hundreds
of spectral bands (> 200) per pixel position. Thus, prior to
the classification or visualization of hyperspectral images, one
often needs to convert high-dimensional data to a lower dimen-
sion while preserving the main features of the original space.

For this dimensionality reduction, principal component anal-
ysis (PCA) is one of the most widely used methods [1], [2].
However, assuming the linearity of the underlying manifold,
PCA and similar linear projection methods fail to capture
the nonlinear characteristics of hyperspectral imagery. Thus,
these methods are prone to significant estimation errors [3]. To
avoid the pitfalls of linear methods, nonlinear dimensionality
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Fig. 1. Inevitable distortions in reducing the dimensionality to three or less.
The dimensionality of a hyperspectral image is reduced to 10, 9, . . . , 3, 2, or 1
using various methods of dimensionality reduction. The quality of the dimen-
sionality reduction is measured with a correlation metric between interpoint
distances in the input data space and the projected space [1], [9]; the higher
the correlation, the better. Regardless of the methods used for dimensionality
reduction, the correlation at dimension 3 is lower than that at 10, implying
inevitable distortions in the color display of hyperspectral images.

reduction methods have attracted much attention. Examples
include isometric feature mapping (ISOMAP, see [3] and [4]),
and locally linear embedding (LLE, see [5] and [6]), which
preserve the nonlinear features of the underlying manifold.

Dimensionality reduction for classification or segmentation
applications seeks a low and intrinsic dimensionality, for in-
stance, ten bands [5]. Dimensionality reduction for the color
display of hyperspectral images is even more constrained: the
reduced dimensionality cannot be more than three, i.e., the
number of color bands, regardless of the data characteristics
[1], [7]. By intrinsic dimensionality we mean the minimal
number of variables necessary to account for all the pairwise
distances in the data [8]. When the intrinsic dimensionality of
hyperspectral images is higher than three, the dimensionality
reduction for the color display inevitably leads to distortions
or loss of spectral information and, thus, to unfaithful colors.
For instance, distant points in the high-dimensional data space
might be projected to nearby points in the color space. In
other words, pixels of dissimilar spectral signatures will have
similar colors, making the visualization unfaithful or unreliable.
Fig. 1 shows that a reduction to three dimensions or less leads
to lower accuracy than a reduction to higher dimensions. The
resulting color display will contain inevitable distortions and
misleading colors.

By proposing faithful stochastic proximity embedding
(FSPE), we reduce misleading colors to make the color display
of hyperspectral images more reliable or faithful. FSPE is a
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novel dimensionality reduction method that leads to a more
faithful color display than other popular methods such as PCA,
ISOMAP, and LLE. Apart from a higher quality embedding,
FSPE also has a computational advantage: it is easy to paral-
lelize, and graphics processing unit (GPU)-based implemen-
tation enables interactive applications. Furthermore, we use a
pixelwise metric of good visualization. Unlike the other metrics
that only provide a global measure of the whole visualization
with a single number [1], [9], the pixelwise metric provides a
quantitative measure for each pixel of the hyperspectral images
and tells us how reliable the color is per pixel. This measure
is a more stringent criterion to estimate the quality of the
projection. FSPE outperforms competing methods by a large
margin using both the traditional correlation measure and the
qualitative measure.

II. DIMENSIONALITY REDUCTION

For every data point xi ∈ R
h in a high-dimensional space

(e.g., pixels in a hyperspectral image with h bands), the dimen-
sionality reduction seeks its low-dimensional representation
yi ∈ R

l, where l < h (e.g., l = 3 for the color display of a
hyperspectral image). Dimensionality reduction is often cast as
a minimization problem with the following cost function:

f =
∑
i

∑
j �=i

(rij − dij)
2W (·) (1)

where rij is the distance between xi and xj in the input
data space, and dij is the Euclidean distance ‖yi − yj‖ in
the projection space of reduced dimensionality. For weighting
function W (·), various forms exist [10].

With W (·) = 1, PCA and classical multidimensional scaling
use the Euclidean distance for rij [11]. The Euclidean distance
underestimates the proximity of data points on a nonlinear man-
ifold and leads to erroneous dimensionality reduction. ISOMAP
addresses this problem by using the geodesic distance for rij ,
which better captures the nonlinear features of the data [4].

With W (dij) = 1 if dij ≤ dc and W (dij) = 0 if dij > dc
for a neighbor radius dc, curvilinear component analysis uses
Euclidean distances for rij but focuses on preserving the
distances between nearby low-dimensional representations yi

[12]. Curvilinear distance analysis (CDA) is similar, except that
it uses geodesic distances for rij [13].

III. FSPE

A. SPE

ISOMAP has to estimate the geodesic distances between data
points, which is then followed by the eigendecomposition of
the distance matrix. The distance computation and the eigende-
composition incur a substantial computing time. Although more
efficient versions of ISOMAP are available [3], [14], it is still
too slow, particularly for interactive visualization [1].

As the geodesic distance is always greater than or equal to
its corresponding Euclidean distance, stochastic proximity em-
bedding (SPE) takes the Euclidean distances between remote
points as the lower bounds of their true geodesic distances and

uses them as a means to impose global structure [15]. Avoiding
the computation of geodesic distances between remote points,
SPE merely requires that the distances between their low-
dimensional representations do not fall below their Euclidean
distances in the high-dimensional input data space.

Starting with a random initial configuration, the SPE algo-
rithm iteratively refines the embedding by repeatedly selecting
two points i and j at random and adjusting their coordinates in
a manner similar to a stochastic gradient descent as follows:

yi ← yi + λ(t)S(rij)
rij − dij
dij + ε

(yi − yj)

yj ← yj + λ(t)S(rij)
rij − dij
dij + ε

(yj − yi) (2)

S(rij) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if rij ≤ rc
or

if rij > rc and rij > dij ,

0, otherwise

(3)

where λ(t) is the learning rate that decreases over time t, ε is
a tiny number used to avoid division by zero, rij is Euclidean
distance ‖xi − xj‖, and rc is the neighborhood radius.

Preserving the nonlinear geometry of complex high-
dimensional data, SPE is a fast and scalable method for di-
mensionality reduction. SPE, however, suffers from distortions
when reducing dimensionality below the intrinsic dimensional-
ity. As with other methods of dimensionality reduction, remote
points in the input data space can end up as nearby points in the
projection space.

B. FSPE

To make SPE more faithful in visualization, we propose the
FSPE algorithm as follows:

yi ← yi + λ(t)T (dij)
rij − dij
dij + ε

(yi − yj)

yj ← yj + λ(t)T (dij)
rij − dij
dij + ε

(yj − yi) (4)

T (dij) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if dij ≤ dc(t)
or

if dij > dc(t) and dij < rij ,

0, otherwise

(5)

where dc(t) is a neighbor radius that decreases over time, and
rij is Euclidean distance ‖xi − xj‖. Starting with a random
initial configuration, the proposed FSPE algorithm iteratively
refines it by repeatedly selecting two points i and j at random
and adjusts their coordinates according to (4).

The key difference between SPE and FSPE is in S(rij) and
T (dij). Whereas the S(rij) of SPE is a function of distance rij
in the input data space with a fixed neighborhood radius rc, the
T (dij) of FSPE is a function of distance dij in the projection
space with a time-varying neighborhood radius dc(t). T (dij)
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Fig. 2. We use 12 image patches for the experiments, which contain various spectral signatures, covering Moffett Field, California at the southern end of
San Francisco Bay. The visualization was carried out using the proposed FSPE.

makes the projection of dimensionality reduction more faithful
in the following senses.

1) It detects those “unfaithful” points that are pairwise re-
mote in the input data space (i.e., large rij) but that are
nearby in the projection space (i.e., small dij), the latter
of which satisfies the condition dij ≤ dc(t) in (5).

2) It corrects the unfaithful points to make them more faith-
ful, i.e., the large discrepancy rij − dij adjusts them to be
further apart in the projection space according to (4).

C. Local Enhancement by FSPE

Even after the completion of the projection, the FSPE algo-
rithm is applied with a different purpose. After the projection, a
user interactively selects points of interest {i1, i2, . . . , ip} and
reruns the FSPE algorithm in (4). Taking the final configuration
as the new initial configuration, the update selects j at random
from the set of the whole data points, but it is limited in select-
ing i ∈ {i1, i2, . . . , ip}. This local enhancement will improve
the projection quality of the selected points, i.e., more reliable
colors will be assigned to them.

Local enhancement by FSPE applies to any dimensional-
ity reduction method. If one already has a configuration of
points of reduced dimensionality, for instance, by PCA, then
one carries out the local enhancement of selected points by
FSPE, starting with the PCA-based configuration as an initial
configuration.

IV. PIXELWISE QUALITY METRIC

A popular choice for estimating the quality of dimensionality
reduction is a metric based on the following correlation coeffi-
cient [1], [9]:

γ =
XTY/|X| − X̄Ȳ

std(X)std(Y )
(6)

where X is the vector of all pairwise distances of the data points
in the input data space, and Y is the vector of the corresponding
pairwise Euclidean distances in the projection space. However,
summarizing the quality of the dimensionality reduction for the
entire image with a single number, this global metric cannot

assess the quality of the dimensionality reduction at individual
pixels. This widely varies among different pixels in a single
image.

To remedy this issue, we use a pixelwise correlation metric
as follows:

γ(i) =
XT

i Yi/|Xi| − X̄iȲi

std(Xi)std(Yi)
(7)

where Xi is the vector of all pairwise distances involving the
ith pixel in the input data space, and Yi is the vector of the
corresponding pairwise Euclidean distances in the projection
space.

V. EXPERIMENTAL RESULTS

We implemented our method in Microsoft Visual Studio C++
2008 with CUDA 4.2 in Windows 7. The hardware included an
Intel i7-930 CPU clocked at 2.80 GHz, with 12 GB of main
memory. The graphics processor was an Nvidia GTX 280 with
a buffer size of 1 GB. We use 12 hyperspectral images that have
various spectral signatures (see Fig. 2).

A. Correlation Metric

We tested the performance of FSPE and compared it against
other projection methods using correlation metric γ. ISOMAP,
LLE, and SPE involve free parameters such as the number of
the neighbors k or neighbor radius rc. For a fair comparison,
we tried different values of k and rc and only included the best
result for each of these methods.

The proposed FSPE is competitive, frequently outperforming
the other methods. Among the 12 test images, FSPE outper-
forms all the other methods with five images and comes as
the second best performer with three images (see Table I). The
average performance is 12% better. Note that, since FSPE out-
performs PCA, we do not compare against other methods that
are known to be similar to or outperformed by PCA [16], [17].

For FSPE, we use ε = 1.0× 10−8. The initial configuration
is a random distribution of points in a 3-D cube [0, 1]× [0, 1]×
[0, 1]. To avoid oscillatory behavior, learning rate λ(t) linearly
decreases from λ0 = 1.0 to λ1 = 1.0× 10−3.
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TABLE I
PERFORMANCE OF DIMENSIONALITY REDUCTION PROJECTIONS

MEASURED ACCORDING TO CORRELATION COEFFICIENT γ.
THE HIGHER, THE BETTER

Fig. 3. Grayscale images of pixelwise correlation values γ(i). The top row
shows the color display of a hyperspectral image by PCA, ISOMAP, and FSPE.
The bottom row presents the corresponding grayscale display of the pixelwise
correlation values; the brighter, the better (i.e., higher). (a) PCA, γ = 0.691.
(b) ISOMAP, γ = 0.525. (c) FSPE, γ = 0.863.

B. Faithful Visualization

For visualization of hyperspectral images, we use the CIE
L∗a∗b∗ color space that is perceptually uniform. Among the
three coordinates in the projection space, we choose the most
varying coordinate for the L∗ component and the remaining two
coordinates for the a∗ and b∗ components, followed by a simple
linear stretching such that L∗ ∈ [0, 100] and that both a∗ and b∗

have a zero mean.
Not only providing a quantitative measure of the projection

quality at each pixel, pixelwise correlation metric γ(i) is also
useful during the color display and visual examination of hyper-
spectral images. In addition to a hyperspectral image in color,
one may display a supplementary grayscale image. This image
indicates the reliability of the color at each pixel i by mapping
γ(i) to a grayscale intensity, i.e., the brighter, the higher (i.e.,
more reliable) (see Fig. 3). This provides extra information that
the overall correlation metric γ is unable to provide. Although
the overall correlation value γ by PCA is higher than that by
ISOMAP for example, the grayscale display shows that PCA
yields pixels with γ(i) values that are significantly lower (i.e.,
darker) than those of the corresponding pixels by ISOMAP (see
Fig. 3). At these pixels, the quality of dimensionality reduction
or the reliability of color by PCA is lower than that by ISOMAP.

Fig. 4. Visualization results of a large hyperspectral image of 1800 ×
600 pixels by PCA, SPE, and FSPE.

Fig. 4 shows the visualization results of a large hyperspectral
image (1800 × 600 pixels) by PCA, SPE, and FSPE; the
proposed FSPE outperforms the others.

C. Local Enhancement

To demonstrate the local enhancement by FSPE, we choose
the upper-right part of a hyperspectral image as a region of
interest; the dimensionality reduction of the image has been
initially carried out by CDA, which yields a low correlation
value for the region. Thus, the pixel colors of the region are
unreliable and even misleading. After the local enhancement
by FSPE, the correlation value significantly increases, and the
new colors of the corresponding pixels are more reliable and
faithful (see Fig. 5).

D. GPU Implementation

Nonlinear dimensionality reduction is often too slow to
compute for interactive visualization. Linear methods, such
as PCA, are used due to their fast computation [1]. FSPE is
competitive in computational time. For a hyperspectral image
of 300 × 300 pixels with 224 spectral bands, the computation
of FSPE only takes 12.416 s on a CPU; the total number of
pairwise refinement steps is 9× 107. Owing to its inherently
parallel nature, the computation time of FSPE is further reduced
when benefiting from the parallel computing power of low-
cost GPUs. The computation of FSPE takes 0.011 s on a GPU,
yielding a speed up of two orders of magnitude and making it
suitable for interactive visualization.
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Fig. 5. Local enhancement by FSPE. (a) Color display of a hyperspectral
image by CDA and its corresponding grayscale image of pixelwise correlation
γ(i). The upper-right part of it is chosen as a region of interest. Since the corre-
lation value of the region is low (γ = 0.036), its colors appearing (relatively)
homogeneous may not be reliable and misleadingly implies the homogeneity
of spectral signatures. (b) After the local enhancement by FSPE, the correlation
value of the region significantly increases to γ = 0.890; thus, its colors are now
more reliable, showing more heterogeneity of spectral signatures.

Fig. 6. Computation time of the FSPE algorithm for hyperspectral images
with different sizes. The GPU implementation maintains a speed up of two
orders of magnitude compared with the CPU implementation.

As other nonlinear projection methods often involve the
eigendecomposition or computation of geodesic distances, they
are more challenging to speed up their computation by GPUs.
Fig. 6 shows the running time of the GPU implementation
of FSPE compared with the CPU implementation for differ-
ent data sizes, i.e., 1× 300× 300, 2× 300× 300, . . . , 12×
300× 300 pixels; for a hyperspectral image of a million pixels,
the implementation of FSPE on a GPU takes less than 16 s.

VI. CONCLUSION

FSPE is a novel nonlinear dimensionality reduction method
for visualizing hyperspectral imagery. While considering the
nonlinear characteristics of data points in the high-dimensional
spectral space, FSPE avoids the costly computation of explicitly

estimating geodesic distances that are often required by other
nonlinear methods. The experimental results prove that FSPE is
competitive with or outperforms state-of-art methods in hyper-
spectral image visualization. We also demonstrate that, due to
its parallel nature, FSPE takes advantage of parallel computing
devices such as GPUs, leading to substantial speed ups and
interactive applications. We also utilize a pixelwise metric that
measures the quality of hyperspectral image visualization at
individual pixels. The future work includes an optimized GPU
implementation of FSPE aiming at processing a hyperspectral
image of a million pixels within a second or so and improving
the pixelwise metric with a weighted version. The source code
of FSPE is available [18].
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