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A Charged Active Contour based on
Electrostatics

Ronghua Yang, Majid Mirmehdi, Xianghua Xie

Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
{ronghua,majid,xie}@cs.bris.ac.uk

Abstract. We propose a novel active contour model by incorporating
particle based electrostatic interactions into the geometric active con-
tour framework. The proposed active contour, embedded in level sets,
propagates under the joint influence of a boundary attraction force and
a boundary competition force. Unlike other contour models, the pro-
posed vector field dynamically adapts by updating itself when a contour
reaches a boundary. The model is then more invariant to initialisation
and possesses better convergence abilities. Analytical and comparative
results are presented on synthetic and real images.

1 Introduction

Ever since the introduction of the parametric snake [1], deformable models
have received much attention for region segmentation and object detection. The
geodesic active contour [2] is a significant improvement over the parametric snake
in that it can naturally handle topological changes. However, it still suffers from
drawbacks such as edge leakage and sensitivity to initialisation. There have been
many efforts in improving both parametric and geometric snakes, for example
by introducing region-based features to make the model more robust to initial
conditions [3–5]. One significantly improved parametric model is the Gradient
Vector Flow (GVF) snake [6] which uses a bi-directional external force field that
provides long-range capture of object boundaries from either side. One of its
main drawbacks however is that the contour does not propagate where the vec-
tor flows are tangent to the contour or diverge within a neighbourhood. One
improvement of the geometric snake model is the GVF geodesic snake [7] which
integrates the GVF with a geometric contour formulation and introduces an
adaptive balloon force to help propagate the contour when the vector flows are
tangent to the contour. This allows it to outperform the GVF snake while also
benefitting from topological freedom. However, it is still unable to propagate
through the points where the GVF field has large divergence which form in ho-
mogeneous areas depending on object topology. Therefore, the contours must be
initialised with great care in order to avoid getting trapped at these points.

Recently, a new formulation for a “deformable model” based on charged
particle dynamics, founded on electrostatics and particle movements, and called
the Charged Particle Model (CPM), was introduced by Jalba et al. [8]. CPM



can capture object boundaries over the entire image with a set of free charged
particles. These are attracted by object boundaries via an image-based force field,
while at the same time being repelled from one another by a charged particle-
based force which constantly imposes on the particles to advance them along
object boundaries. While an initialization step is still required, it is certainly
less pivotal than in the contour model. However, this particle model a) can not
guarantee continuous and closed final contours, b) does not stabilise as there is
no effective stopping term, and c) is computationally intensive.

In order to overcome the common drawbacks in the traditional deformable
contour model and the deformable particle model, we propose a new framework
by introducing particle based electrostatics into active contour propagation that
incorporates the advantages of both contour and particle based models. We re-
fer to this as CACE, a Charged Active Contour based on Electrostatics. CACE
can detect object boundaries via contour propagation under the influence of a
bi-directional force field that simulates the electrostatic interaction between an
image-derived point charge field and a charged contour. In other words, the force
consists of boundary attraction and competition terms that lead the contour to-
wards object boundaries. CACE is much faster and more efficient in convergence
than CPM. More importantly, it eliminates CPM’s tendency to sometimes result
in open contours. CACE also has significant advantages over the geodesic and
GVF geodesic snakes in that it is more robust to initial placement and is able
to handle objects of more complicated topology, e.g. those with narrow parts.

As electrostatics is the starting point of our work, we will review its key
concepts in Section 2, along with a brief introduction to CPM and its short-
comings. In Section 3, the construction of our proposed model is discussed, with
experimental results shown in Section 4. Section 5 concludes our work.

2 Background

An electrostatic field E is defined as the electrostatic force upon a unit charge due
to other charges. Suppose there is a distribution of N point charges c1, c2, · · · , cN

fixed at locations r1, r2, · · · , rN respectively in a 2D space. According to Coulomb’s
Law, the electrostatic field at location x in this 2D domain is given as:

E(x) =
N∑

i=1

ci

4πε0

x− ri

|x− ri|3
, x ∈ X, (1)

where ε0 is the permittivity of free space and X is the set of all possible locations
in this 2D domain. Thus E is a vector field that has a force at every location in
X. If a test charge e is placed in the field at location x, the electrostatic force
put upon it can be obtained by:

F(x) = eE(x). (2)

It is important to note that the electrostatic force acting on the test charge
e is merely the superposition of separate electrostatic forces imposed by every



Fig. 1. Columnwise from left: synthetic circle image with highlighted weak edge area,
the normalized Coulomb1 force field in box area, initialized CPM, instance of particle
movements, and the final CPM result.

fixed charge ci. This implies that the force of charge ci upon test charge e is not
influenced by the presence of any other fixed charges in space. This principle
enables us to compute forces from different sources separately and control their
contribution to our charged contour model.

CPM [8] is a particle model built on the simulation of particle movements in
an electrostatic field. A set of positively charged free particles is placed in a field
distributed with negative fixed charges proportional to the input image edge
strength. As the particles have the same polarity to each other, and opposite
polarity to the fixed charges, an attracting image-based force is imposed on each
particle by the fixed charges, while a repelling particle-based force is imposed
by the particles upon each other1. These force are computed respectively using
(2). Their normalised weighted sum, reduced by a damping factor, plays the
role of acceleration for each particle. As the image-based force has larger weight
than the particle-based force, the particles primarily move towards the nearest
and strongest edges. The repelling forces then try to advance the particles along
the boundary until they have reached an equilibrium state, thus detecting the
entire boundary. A multiscale approach was used to partially alleviate the heavy
computational costs, and also to allow particles quickly spread across the image
domain at coarser levels to capture as many boundaries as possible.

The CPM model [8] benefits from initialisation that is largely insensitive to
placement. Nevertheless, it is computationally intensive as (a) particles have to
advance along boundaries in order to encompass the desired object, and (b) par-
ticles are added and deleted dynamically at each iteration. Although a damping
factor is used to reverse the direction of acceleration when a particle crosses an
edge, the particle will still move as long as its speed is not exactly zero, and there-
fore oscillations occur at the boundaries and particle convergence needs to be
flagged by some criterion. Above all, CPM can not guarantee closed contours,
inevitably resulting in gaps in the recovered object boundaries particularly if
the object is occluded or has weak edges. Furthermore, a final reconstruction of
points into curves for continuous representation of object boundaries is neces-
sary which may not encapsulate the true boundary of the object. Fig. 1 shows
a synthetic image of a circle with a blurred edge region indicated by a black

1 In [8], the attractive force is referred to as the Lorentz force in the absence of a
magnetic field, and the repellent force as the Coulomb force.



window. In such regions the image-based forces are significantly influenced by
the stronger edges nearby (see vector field in Fig. 1). As the image-based forces
always dominate the direction of movement, particles which have arrived at the
weak edges will continue moving to the stronger edges with the weak edges left
unmarked. This leads CPM to fail to close the border around the synthetic circle.

3 Proposed Model: Charged Active Contour Model
based on Electrostatics (CACE)

The aim of our work is to improve on the drawbacks of the CPM particle model
and the more traditional geometric contour models by integrating electrostatics
principles with active contour evolution. Our proposed charged active contour
model, CACE, detects objects starting with a positively charged active contour
that propagates in an electrostatic field distributed with negative fixed charges
proportional to image edge magnitudes.

The contour propagation in CACE results from the confluence of two com-
ponents: a boundary attraction force and a boundary competition force. The
attraction force acts as a bi-directional vector field which leads each point on
the contour towards the boundaries from both sides. The competition force ex-
erts most influence once any part of the snake reaches a boundary. It repels free
contours nearby from reaching the already occupied boundary. The stronger the
boundary, the larger the repelling force the contour exerts. This repelling force
is also designed in a way such that only contours in homogeneous regions are
most affected. In other words, contours that reach object boundaries will exert
repellent forces upon other contours while they themselves will be least affected
by others. At the same time, contours in homogeneous regions will continue to
deform according to both attraction and competition forces. This is significantly
different from the repelling force in the CPM model where the particles are con-
stantly pushing each other in opposite directions. The electrostatic force field in
the proposed CACE model is dynamically adapting as the contour evolves. This
brings flexibility in initialisation and better curve propagation towards object
boundaries. The CACE model is implemented in a geometric contour propaga-
tion framework using the Level Set representation to naturally handle topological
changes.

We now describe in detail how these two forces are obtained and how they
interact to create the joint electrostatic force field for the propagation of CACE.

3.1 Boundary attraction force field

Let I denote an image and x the pixel position. We use the Gaussian-based edge
detector, with zero mean and variance σE , used in [7] as the boundary descriptor:

f(x) = 1− 1√
2πσE

exp(−|∇(Gσ ∗ I)(x)|2

2σE
), x ∈ X. (3)



where Gσ ∗I denotes the convolution of the input image and a Gaussian smooth-
ing kernel. The construction of the attraction force is based on the electrostatic
force interaction as given in (1) and (2). Here, we treat the boundary pixels,
defined in (3), as fixed negative charges with magnitude proportional to their
edge strength. Thus, given N as the number of negative charges at locations
r1, r2, · · · , rN across the edge map then the negative charge assigned to each
edge pixel ri, denoted as qri

and simplified to qi, is qi = −f(ri) < 0.
The electrostatic field EA(x) generated by these negative fixed charges can

then be computed according to (1) as:

EA(x) =
N∑

i=1

qi

4πε0

x− ri

|x− ri|3
, x ∈ X. (4)

This electrostatic vector field points towards the negative fixed charges, i.e.
the edges, resulting in a bi-directional force field. The snakes can be hypothe-
sised as positive charges moving in the image domain under the influence of the
negative boundary charges with the aim of converging towards them from both
sides. Let M be the number of positive charges at positions s1, s2, · · · , sM on the
contour, and psj

, simplified to pj , denote the positive charge assigned to point
sj . The attractive electrostatic force FA enforced upon the contour is then:

FA(sj) = pjEA(sj), sj ∈ X. (5)

As the contour and the fixed charges have opposite polarity, the electro-
static boundary attraction force continuously pushes the contour towards object
boundaries. In this study, a constant unit positive charge pj is assigned to all
snake points. However, pj can be treated as a variable for other applications.

3.2 Boundary competition force field

While the boundary attraction force is constantly pushing the snake towards
boundaries, the boundary competition force allows progress only towards unoc-
cupied object boundaries. It helps a snake already occupying an object boundary
to check the advance of free contours nearby.

The competition force results from an electrostatic field which continuously
adapts as the contour evolves and reaches boundaries. Two conditions charac-
terise this force: (a) Contours that are on the object boundaries endow most to
the electrostatic field with contributions proportional to the edge strength. (b)
The force upon a contour due to this electrostatic field is proportional to the
inverted strength of the edge covered by this contour. In other words, contours in
homogeneous regions are most enforced upon while those on top of strong edges
are least pushed. This ensures the snakes stay at their detected boundaries but
push away nearby snakes competing for the same boundaries.

Condition (a) above is realised by weighting the contour charges with the edge
function, i.e. p′j = f(sj)pj . The resulting electrostatic field comprises vectors



pointing away from the edges already occupied by contours. It is given as:

EC(x) =
M∑

j=1

p′j
4πε0

x− sj

|x− sj |3
=

M∑
j=1

f(sj)pj

4πε0

x− sj

|x− sj |3
, x ∈ X. (6)

Condition (b) is realised by weighting the contour charges with an edge stopping
function, i.e. g(.) = 1− f(.), to generate the boundary competition force FC :

FC(sj) = g(sj)pjEC(sj), sj ∈ X. (7)

Thus, FC can be considered as a boundary competition force that prevents
contours from approaching the same boundaries. For example, consider point
charges pa and pb on the active contour at positions sa and sb. If these two
points are both in homogenous regions, EC(sa) and EC(sb) are small, and they
exert little competition force upon each other (and on other snake points). How-
ever, both of them are repelled by any other points that have already reached
boundaries. When one of this pair, say pa, reaches a boundary, it (along with
all other snake points on object boundaries) will alter the electrostatic field ac-
cording to (6), with its contribution to the field being proportional to its edge
strength f(sa). The impact of this electrostatic field on pa itself is however min-
imised since the force FC(sa) is weighted by g(sa) (in (7)), i.e. the stopping
function prevents it from being pushed away from the boundary. The snake
point pb on the other hand provides little contribution to this field, but will be
most affected by the competition force FC(sb) due to the large value of g(sb) in
the homogeneous region. When both snake points reach a boundary, they both
contribute to the electrostatic field but have barely any influence on each other.

3.3 Joint electrostatic force

The joint electrostatic force J on the active contour is obtained by combining
(5) and (7) as such:

J(sj) = pj [λEA(sj) + (1− λ)g(sj)EC(sj)] (8)
= λFA(sj) + (1− λ)FC(sj).

The real positive constant λ balances the contribution between the boundary
attraction force and the boundary competition force. As shown in sections 3.1
and 3.2, the first term attracts the contours to object boundaries, while the
second term prevents the contours from approaching the boundaries that are
already covered by other contours. The ever-changing force field causes the free
contours to change direction and search for other boundaries.

It is important to further emphasise that the joint force field is dynamically
adapting to the evolution of the snake and in turn defining its advance. The elec-
trostatic attraction force field described in Section 3.1 is a static bi-directional
vector field that attracts contours to object boundaries. A deformable contour
model solely based on this static force field inevitably suffers from similar dif-
ficulties as the GVF snake model and its variations. Instead of attempting to



(a) (b)
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Fig. 2. Change of force fields during contour propagation. (a) Test image with letters
‘V’ and ‘S’; (b) Initial snake; (c) Initial CACE vector field with marked region; (d)
Closeup view of the vectors in the marked region in the valley between ‘V’ and ‘S’;
(e)-(f) Adapting vector field as snake progresses. Snake positions are indicated in thick
dark red, and critical points are shown in thin blue circles.

overcome the saddle or divergent points in a vector field as proposed in [7], the
CACE model adapts the vector field through the boundary competition force so
that such critical points change as the snake approaches.

Fig. 2 illustrates adaptive changes of the joint electrostatic force field during
contour propagation. The test image and the initial CACE snake are shown in
2(a) and 2(b) respectively. Fig. 2(c) shows the initial vector force field and Fig.
2(d) is a closeup of the square region marked in 2(c) in the valley between the
letters ‘V’ and ‘S’. There are four critical points, indicated by thin blue circles,
that can stop the snake from further propagation. A, C, and D are saddle points,
while B is a divergent point. The thick red contours in Figs. 2(e)-2(h) are the



progressing positions of the CACE snake. In 2(e), as the snake evolves in the
valley, the saddle points A and C disappear. Notably, the divergent point B
becomes a saddle point. Saddle point D stays approximately the same, as the
snake is still far away from it. In 2(f), the snake has just passed the valley and
is going to enter the deep concave in the letter ‘S’. In 2(g) the saddle point D is
clearly moving away from the entrance of the concavity as the snake approaches.
Finally in 2(h), the snake reaches the boundaries and the vector field takes a
similar form as the initial state. The saddle points A and C re-emerge, saddle
point D is back to the entrance of the concave, and B changes back into a
divergent point. The corresponding CACE evolutions are shown in the last row
of Fig. 4.

3.4 Geometric active contour formulation for CACE

Let C be the active contour. The contour evolution formulation for the CACE
model is defined as:

Ct = αgκN + (1− α)(J · N )N , (9)

where α is a real constant, κ denotes the curvature, and N is the unit inward
normal. The first term regulates the contour, and the second term attracts the
snake towards the object boundaries. To ensure efficient contour propagation,
we normalize the force field along the contour normal by replacing the term
(J · N )N with (J·N )N

|(J·N )N| .
To achieve topological flexibility, we use level sets [9] to represent the contour,

implicitly evolving it by deforming the level set function, u. This involves two
extensions. The first is to embed the 2D contour into a 3D level set function u,
which is achieved by using the signed distance transform such that the embedded
snake is given by the zero level set at any time. The second is to extend the force
field defined on the 2D contour to the 3D level sets. The Fast Marching Method
can be used to accomplish this as proposed in [10]. However, in this study, we
can simply compute the extended force field by treating each level set as a
deforming contour at each time step. Thus, the joint force field J(si) as given
in (9) is extended to J(x) across the image domain. Thus, given the fact that
N = − ∇u

|∇u| , the level set representation of our CACE snake is given as:

ut = αgκ|∇u| − (1− α)J · ∇u. (10)

4 Experimental Results

In this section we present results for our CACE model and compare its perfor-
mance against the CPM, the geodesic contour, and the GVF geodesic contour
models. The software for all the methods we compare against was developed
in-house based on the relevant literature, i.e. [8, 7, 11].

CACE copes much better than CPM when faced with weak edges (cf. Fig.
3 with Fig. 1). As CPM particles arrive at weak edges, they carry on moving



towards stronger edges along the boundaries, hence fail to correctly recover the
object boundaries. CACE stabilizes around the boundaries, successfully detect-
ing the whole object, due to the bi-directional nature of its force field and the
characteristics of the contour itself. The vectors pointing towards the edges,
although weak, prevent leakage from both sides.

Fig. 3. Propagation of CACE on disc object with weak edges (cf. with Fig. 1).

CACE possesses significant advantages over other contour models, e.g. it is
more robust to initial placement than the geodesic snake, and better capable
of handling object topology than the GVF geodesic snake, as shown in Fig. 4.
While the geodesic snake fails to detect the objects under initialization that
crosses boundaries, the GVF geodesic snake is less constrained, but nonetheless,
still unable to reach some of the boundaries when it gets trapped by divergent
vectors in homogeneous areas. CACE improves on these limitations and succeeds
in detecting both objects in Fig. 4.

Fig. 5 shows the evolution process in CPM, geodesic snake, GVF geodesic
snake, and CACE, on a corpus callosum detection task in an MRI brain im-
age. Although the coarse-to-fine multi-scale setting is used, CPM still fails to
recover the corpus callosum, as particles can not advance from stronger bound-
aries towards weaker ones and are thus blocked in the area where strong edges
occur. The geodesic snake also fails in the detection task due to initialization
across boundaries, as does the GVF geodesic snake which gets trapped by saddle
points formed within the corpus callosum. In comparison, CACE benefits from
the self-adaptive nature of the force field and manages to propagate through the
elongated part of the object and capture the entire boundary.

Figs. 6 and 7 show more examples where CACE again performs more accu-
rately than the other snake models under highly noisy and textured conditions.

The CACE model performs well on a range of parameter settings. Two main
parameters are involved: (λ, α). The parameter λ in (9) balances the contribution
between the attraction and the competition forces. We set λ = 0.3 throughout
our experiments determined empirically for the set of images shown. The pa-
rameter α controls the smoothness of the contour and has minor impact on the
model performance and was kept constant at α = 0.1 throughout our work.

It is worth noting that the computation of the electrostatic force field in (4)
or (6) is simple but inefficient, requiring O(N2) computational complexity and
increases drastically as the image size increases. Therefore, as with CPM in [8],
we use the Particle-Particle Particle-Mesh method, originally proposed in [12],



for fast and accurate evaluation of the electrostatic field. Details of the method
can be found in [12]. In terms of comparative computational performance, we
used a 200×200 image in which all models successfully found the object. Using
a 2.8 GHz Linux PC running uncompiled Matlab code, the computational times
for the different particle and contour models were as follows: 281s for CPM, 26s
for the geodesic snake, 20s for the GVF geodesic snake, and 29s for CACE.

5 Conclusion

In this paper, we presented a novel active contour model, namely the Charged
Active Contour, CACE. It incorporates electrostatics principles from the CPM
particle model [8] into the deformable contour model. The CACE snake deforms
under the confluence of an external boundary attraction force and an external
boundary competition force. Driven by this combined electrostatic force, con-
tours move towards object boundaries, and will end up there if the boundaries
are not covered by other contours, or change direction and search for other
boundaries otherwise.

Experimental results have demonstrated that by introducing particle dynam-
ics into the contour model, the snake can be more initialisation independent,
exhibit better ability in reaching concavities, and ensure closed contours.

Fig. 4. Contour propagation for boundary detection. Top row: iterations of the CPM,
2nd row: geodesic snake, 3rd row: GVF geodesic snake, final row: CACE



Fig. 5. From left to right, top: input image and initialisation for all the models, iteration
of the CPM, final CPM result, 2nd row: evolution of the geodesic snake, 3rd row:
evolution of the GVF geodesic snake, final row: evolution of CACE

.
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