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Genetic toxicology data have traditionally been
employed for qualitative, rather than quantitative
evaluations of hazard. As a continuation of our
earlier report that analyzed ethyl methanesulfo-
nate (EMS) and methyl methanesulfonate (MMS)
dose-response data (Gollapudi et al., 2013),
here we present analyses of 1l-ethyl-1-
nitrosourea  (ENU) and  1-methyl-1-nitrosourea
(MNU) dose-response data and  additional
approaches for the determination of genetic tox-
icity pointof-departure (PoD) metrics. We previ-
ously described methods to determine the no-
observed-genotoxiceffectlevel ~ (NOGEL), the

breakpoint-dose (BPD; previously named Td),
and the benchmark dose (BMDjo) for genetic
toxicity endpoints. In this study we employed
those methods, along with a new approach, to
determine the non-inear slope-ransition-dose
(STD), and alternative methods to determine the
BPD and BMD, for the analyses of nine ENU
and 22 MNU datasets across a range of in
vito and in vivo endpoints. The NOGEL,
BMDL;o and BMDL;sp PoD metrics could be
readily calculated for most gene mutation and
chromosomal damage studies; however, BPDs
and STDs could not always be derived due to
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data limitations and constraints of the underly-
ing statistical methods. The BMDL;o values were
often lower than the other PoDs, and the distri-
bution of BMDL;o values produced the lowest
median PoD. Our observations indicate that,
among the methods investigated in this study,
the BMD approach is the preferred PoD for
quantitatively  describing  genetic  toxicology

data. Once genetic toxicology PoDs are calcu-
lated via this approach, they can be used to
derive reference doses and margin of exposure
values that may be useful for evaluating human
risk and regulatory decision making. Environ.
Mol. Mutagen. 55:609-623, 2014. © 2014
Wiley Periodicals, Inc.
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INTRODUCTION

Until quite recently genotoxicity test results were
employed almost exclusively for dichotomous qualitative
evaluations (i.e., results classified as either a positive or
negative), with studies routinely evaluating responses at
very high doses (i.e., near the maximum tolerated dose or
MTD). Interest in the manifestation of genotoxicity at low
doses, as well as quantitative analyses of the dose—response
data, has been limited (Pottenger and Gollapudi, 2009). In
contrast, quantitative dose—response analyses and deriva-
tion of point-of-departure (PoD) metrics are routinely
employed to assess other toxic effects that are not medi-
ated by genotoxic mechanisms (Piersma et al., 2011) as
well as carcinogenic risk (EFSA, 2009). Such PoD values
are routinely used for risk assessment in conjunction with
uncertainty factors to derive health-based guidance values
and regulatory limits to assess and manage risks. In the
case of genotoxic carcinogens, if the mode of action is not
established, then a conservative, linear approach (i.e., linear
low-dose extrapolation from the PoD to origin) is generally
taken. Thus, there is theoretically no level of exposure for
such a chemical that does not pose a small, but finite prob-
ability of generating a carcinogenic response. This assump-
tion may not always hold true, because there is increasing
recognition that non-linear dose responses are observed
with genotoxic endpoints for at least some substances, and
there is increasingly strong mechanistic evidence to support
the calculation and use of biologically meaningful PoDs to
inform regulatory decision making for genotoxic agents.
For example, several recent publications have demonstrated
that biologically meaningful, sub-linear dose—response
functions exist for both non-DNA-reactive genotoxicants
[mitotic spindle poisons (Johnson and Parry, 2008; Elha-
jouji et al., 2011)] and at least some DNA-reactive muta-
gens (Doak et al., 2007; Gocke and Wall, 2009; Johnson
et al., 2009; Pottenger et al., 2009; Bryce et al., 2010; Gol-
lapudi et al., 2013). This recognition has contributed to an
increasing appreciation of the utility of the quantitative
analysis of genetic toxicity dose-response relationships;
and moreover, to employ quantitative methods and PoD
determination for genotoxicity data to use in regulatory
decision making.

The Quantitative Analysis Workgroup (QAW) of the
Genetic Toxicology Technical Committee (GTTC) coordi-

nated by the Health and Environmental Sciences Institute
(HESI) of the International Life Sciences Institute (ILSI)
is involved in the development and critical examination
of methodologies for the quantitative analysis of in vitro
and in vivo genotoxicity dose-response data, and the
development of strategies for the use of PoD metrics to
support regulatory evaluations and decision making (Gol-
lapudi et al., 2011). In this report, the GTTC QAW
extends the analyses presented earlier (Gollapudi et al.,
2013) that addressed the applicability of several statistical
methods for the analyses of genetic toxicology dose—
response data. Collectively, this and our previous report
contribute to a rapidly growing body of knowledge
regarding the use of quantitative dose-response analyses
to derive PoD metrics, and moreover, to employ PoD val-
ues to assess the risk of adverse health effects in humans
and/or to determine exposure levels that would be associ-
ated with negligible risk.

Gollapudi et al. (2013) used data from studies of methyl
methanesulfonate (MMS) and ethyl methanesulfonate
(EMS) to investigate the utility of several metrics to
define a PoD for use in determining regulatory limits asso-
ciated with negligible risk of genotoxic effect. These met-
rics included (i) no-observed-genotoxic-effect-levels
(NOGELs), (ii) statistically defined break points, now
referred to as the breakpoint dose (BPD, previously termed
“threshold” dose, Td), and (iii) benchmark dose (BMD)
levels (Gollapudi et al., 2013). This report addresses the
need to extend this initial investigation to encompass addi-
tional agents, to critically examine additional modeling
techniques, to improve the biological understanding of the
mode(s)-of-action (MOAs) that determine(s) the shape(s)
of genotoxicity exposure-response curves, and to define
strategies to employ PoD metrics for regulatory evaluations
and decision making. Such work is essential, and will pre-
cede general acceptance regarding the determination and
use of meaningful PoD metrics in genetic toxicology. The
derivation of PoDs in genetic toxicology studies and their
routine use for risk assessment and regulatory decision
making will require the following:

1. Selection of appropriate mathematical models and sta-
tistical methods for reliable PoD determinations;

2. Determination of study design features that facilitate
quantitative dose—response analyses, and,



3. Development of standardized methods for the incorpo-
ration of PoD metrics into human health risk assess-
ment (e.g., application of uncertainty and/or safety
factors and/or margin of exposure analysis to define
exposures that are associated with negligible risk).

The current work extends our earlier efforts to address
points 1, and 2 above, and to initiate discussions on point
3. This was carried out using the data on two potent
alkylating mutagens with large data bases, 1-methyl-1-
nitrosourea (MNU) and 1-ethyl-1-nitrosourea (ENU) and,
building on our earlier analyses of the related, but less
potent alkylating agents EMS and MMS, enabling further
development of our “toolbox” for the derivation and use
of PoD metrics in genetic toxicology.

MATERIALS AND METHODS

Data Selection

The database employed, referred to as the G4 database, was devel-
oped by the GTTC QAW, and details of the quality criteria used for
data screening are in Gollapudi et al. (2013). In addition to the EMS
and MMS datasets, the database contains a total of 45 datasets for ENU
and MNU, including endpoints for gene mutation and chromosomal
damage (measured as micronucleus formation) in vitro and in vivo.
Since the goal of this work was to analyze datasets from which four
PoD values could be derived (i.e., NOGEL, BMD, BPD, and STD), only
datasets with data supporting PoD derivation were evaluated. Based on
the recommendations of Lutz and Lutz (2009), we further restricted the
analyses to datasets with >5 doses (including the negative control) to
ensure that we could use the bilinear modeling approach (i.e., BPD
modeling).

Benchmark Dose Analysis

The benchmark dose (BMD) is defined in the U.S. Environmental
Protection Agency’s (EPA’s) risk assessment glossary as ‘A dose or con-
centration that produces a predetermined change in response rate of an
adverse effect (called the benchmark response or BMR) compared to
background’  (http://www.epa.gov/riskassessment/glossary.htm).  For
BMD determination, the latest versions of the PROAST BMD software
and EPA’s Benchmark Dose Software (BMDS) were employed (EPA,
2013).

RIVM-PROAST Benchmark Dose Analysis

BMD analysis was conducted using PROAST, the dose-response
modeling software developed at the National Institute for Public Health
and the Environment (RIVM) in The Netherlands [http://www.proast.nl;
version 36.9 (Slob, 2002)]. The nested set of models used included the
exponential and Hill models that are recommended by the European
Food Safety Authority (EFSA, 2009). Note that the bilinear models used
to define BPD metrics are not included, and thus are not assessed in
these BMD packages (Slob and Setzer, 2013). The BMR examined was
10%, which corresponds to an increase equal to 10% of the background
(negative control) level, as estimated by the fitted model used for contin-
uous endpoints such as genotoxicity. This is an arbitrary choice, but is
one that has been frequently employed in the literature and that provides
a conservative PoD that is close enough to the observable range of
dose—-response data to allow reliable estimates to be derived from fitted
curves without uncertain extrapolation. A BMR of 10% is also the
approach currently being used in standard toxicology dose—response
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analyses. This allows a better comparison of the genotoxicity data to the
other toxicity data when performing a risk characterization for human
health. This BMR that corresponds to an increase above the background,
differs from the 10% increase in incidence (e.g., the additional risk or
extra risk) used for quantal data such as carcinogenicity data. The lower
limit of the one-sided 90% confidence interval on the BMD is termed
the BMDL, and the BMDL,, refers to the estimate of the lower 90%
confidence limit of a dose that produces a 10% increase over the fitted
background level for continuous endpoints. The BMDU, is the upper
limit of this 90% confidence interval. Model selection was performed
based on a log-likelihood ratio test that assesses whether including addi-
tional parameters to the model results in a statistically significant
improvement in model fit (Hernandez et al., 2011a). The model with
additional parameters is accepted only if the difference in log-
likelihoods exceeds the critical value at P =0.05. In addition, the log-
likelihood is used to compare the “full” model (geometric means of the
observations at each dose) to the selected model, to provide an indica-
tion of the goodness-of-fit. The distribution of the residual errors in
PROAST is similar to that derived using the EPA’s BMDS (discussed
below). For continuous data, the residual errors are assumed to be log-
normally or normally distributed. There is an option in both software
packages to choose one or the other distribution. In PROAST, the
default assumption is that the standard deviation is proportional to the
mean, and thus a log-normal distribution is applied to the continuous
data, whereas in BMDS the default setting is the normal distribution.

U.S. EPA Benchmark Dose Software

BMD analysis also was conducted using the latest version of the
EPA’s Benchmark Dose Software [i.e., BMDS v2.4 (EPA, 2013)]. The
standard suite of continuous models (Hill, exponential, polynomial, lin-
ear, and power) was used along with constant and non-constant variance
model assumptions. As was the case for RIVM-PROAST, the bilinear
models used to define BPD metrics are not included, and thus are not
assessed in this BMD package. The BMR chosen for the BMDS soft-
ware was an increase equivalent to one standard deviation above the
spontaneous (control) value; this was used in the calculation of a one-
sided 95% lower confidence limit for this BMD value and designated
BMDL,sp. This BMR is recognized to be equivalent to ~10% excess
risk for individuals below and above the 2nd and 98th percentiles,
respectively (Crump, 1995). Model selection was primarily based upon
the P-value for goodness-of-fit to the data and the Akaike’s Information
Criterion (AIC). For this study, the best fitting model was selected
among the suite of continuous models (see above). Log-transformation
was used as a default for analysis of continuous data with PROAST
(Slob and Setzer, 2013). For BMDS, continuous data were transformed
in the same manner used for NOGEL, BPD, and smoothing regression
spline modeling (discussed in next section).

NOGEL, BPD, and Smoothing Regression Spline Analyses

NOGEL, BPD, and Smoothing Regression Spline analyses were used
to extend the previous effort (Gollapudi et al., 2013) to examine the util-
ity of open source methodologies and additional approaches.

Initial Statistical Evaluation

All data sets were imported into R (R Development Core Team,
2011) and the following analyses conducted: Shapiro—Wilk Normality
Test, Bartlett Test of Homogeneity of Variances, Jonckheere—Terpstra
Test of Monotonic Trend (asymptotic version), and a Bonferroni test for
outlier identification. Data were transformed in order to achieve nor-
mally distributed data and homogeneity of the within dose variances. In
most cases where the original data were not normally distributed and/or
the variances were heterogeneous, one of the data transformation proc-
esses (square root or logarithmic) performed on the response data
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Fig. 1. Flow chart showing the workflow for determination of NOGELs,
BPDs and STDs. In cases where the data do not meet parametric screen-
ing requirements even following variable transformation, models such as
the segmented (see http://cran.r-project.org/web/packages/segmented/seg-
mented.pdf)* or mgev (Mixed GAM [generalized additive model] Com-
putation Vehicle, see http://cran.rproject.org/web/packages/mgcv/mgcev.
pdf) can be utilized since they are less influenced by distributional prob-
lems. *segmented can be used with T3, but requires special implementa-
tion not conducted in this study. All statistical approaches presented in
this flow chart are now available for download and use in R (versions
3.0.2 and above), the ILSI-HESI GTTC QAW developed and successfully
submitted the package called ‘drsmooth’ to CRAN in 2013 (Hixon and
Bichteler, 2013). NOGEL, no observed genotoxic effect level; BPD,
breakpoint dose; STD, slope transition dose; L&L, Lutz, and Lutz, 2009.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

resulted in datasets with satisfactory distributions and variances, and the
transformation essentially eliminated any significant outliers identified
by the Bonferroni test. If transformation of data was necessary for a
dataset, then all remaining analyses on that dataset were conducted on
similarly transformed data. Based on these preliminary statistical tests,
and using a criterion of P <0.05 to identify deviations from normality
and heterogeneous variances, different pathways of statistical analyses
and modeling approaches were used to derive NOGEL, BPD, and slope
transition dose (STD) values (Fig. 1).

No Observed Genotoxic Effect Level (NOGEL)

The NOGEL was defined as the highest tested dose at which there
was no statistically significant increase in genotoxic effect compared to
the control. Means from datasets that met the criteria for being normally
distributed with homogeneous variances across dose groups were com-
pared using a post-hoc Dunnett’s Test (alpha =0.05). Means for datasets
that were normally distributed but with heterogeneous variances were
compared using a post-hoc Dunnett’s T3 test (Field, 2009). Means from
datasets that were non-normally distributed and with heterogeneous var-
iances were compared using the non-parametric post-hoc Dunn’s Test
(Laws et al., 2000).

Breakpoint Dose (BPD) Modeling

Two similar bilinear methodologies were used to identify a disconti-
nuity or breakpoint (below which the slope was zero) in the dose—
response function: Lutz and Lutz (2009), and a package in the R system
called ‘segmented’ (Muggeo, 2008; Wood, 2011). The Lutz and Lutz

model, referred to here as the L&L model, is the bilinear approach dis-
cussed and applied by Gollapudi et al., (2013). The R segmented pack-
age (Muggeo, 2008) is similar to the L&L model—i.e., it determines the
best-fitting two segment linear function where the first segment from
zero dose to the breakpoint is horizontal (i.e., has zero slope) and the
second segment has a positive slope. However, the segmented approach
has several advantages: it is based on an open source, peer reviewed
package available in R, and, unlike the L&L model, it does not require
removal of top doses due to supra-linearity (saturation or high-dose tox-
icity). With ‘segmented’, the breakpoint where the slope changes is
called the BPD, with its standard error serving as the basis for the calcu-
lation of confidence bounds (i.e., 90% two-sided confidence bounds cor-
responding to the output of PROAST, BMDS, and the L&L models). In
both the L&L and segmented models, a BPDL <0 indicates that a
model with a single, linear segment with non-zero slope (i.e., a linear
dose response) provides a better fit for the data. The L&L model relies
on the assumption that the data are normally distributed and have homo-
geneous variances, and therefore was only used on data where the data
transformation was successful. Although ‘segmented’ can be used in
conjunction with weights to account for variance heterogeneity across
dose groups, this approach was not used for analyses reported here.
Therefore, ‘segmented’ was also only used on normally distributed data-
sets with homogeneous variances.

Smoothing Regression Spline

We also used penalized smoothing splines to analyze the dose—
response relationships. Penalized smoothing splines are a family of flexi-
ble techniques for estimating a continuous functional relationship with-
out the need to assume linearity or any specific non-linear functional
form. Wood (2006) has extensively developed the underlying theory.
The ‘mgev’ (Mixed GAM [generalized additive model] Computation
Vehicle) package in R (Wood, 2006, 2011) was used to estimate the
dose—response function using a default thin plate smoothing regression
spline with degrees of freedom determined by generalized cross valida-
tion. Unlike the bilinear model used with the ‘segmented’ algorithm,
‘mgev’ is commonly regarded as semi-parametric because it can be
applied to non-normally distributed data with heterogeneous variances,
and still provide an optimal solution from a cross-validation perspective.
Thus, smoothing spline regression was used for PoD determination irre-
spective of whether the data required a parametric or non-parametric test
(see Fig. 1).

The derived continuous non-linear dose—response function was sub-
jected to finite differencing to calculate its first derivative, or slope,
along the length of the function. The standard error for the slope also
was calculated and used to form confidence limits. These served as the
basis for the determination of the slope transition dose, or STD. The
STD given by the smoothing regression spline is the lowest dose at
which the dose-response function has a slope that is significantly above
zero with 95% confidence using a one-sided confidence limit. As above,
this particular limit was chosen to match the output of PROAST,
BMDS, and the L&L model. At all lower doses, the slope of the dose—
response function is not statistically distinguishable from zero, therefore
represents a flat line. When the lower bound CI on the STD (i.e., STDL)
is <0, the hypothesis that the slope is increasing significantly at dose =0
(i.e., slope is above zero) cannot be rejected. This is conceptually differ-
ent from the L&L and segmented bilinear models, where a BPDL <0
means that linearity cannot be rejected (regardless of the slope of that
linearity). The smoothing regression spline approach arrives at a PoD by
directly assessing the slope of the dose—response relationship throughout
the dose range to determine the dose where it initially becomes positive.

In addition to deriving potential PoDs, the smoothing regression
spline model also was used to test the overall linearity of the dose
response of a given dataset. To this end, we tested whether the smooth-
ing regression spline model fit the overall dose response significantly
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TABLE Il. Point of Departure (PoD) Metrics for ENU (1-Ethyl-1-Nitrosurea)

BMDU,y/

PROAST BMDL,
BMDL,,

segmented

Linear<  NOGEL L&L mgev
NOGEL NOGEL BPDL

Slope<

Trend

Response
Transformation

Johnson et al.

Units

PROAST

BMDS BMDLsp,

BPDL

STDL

NOGEL

Test

Test

Endpoint

Type

Study

mg/kg
mg/kg
mg/kg

18.05

0.09
1.94
6.65

1.55
5.46
11.67

no BPD
no BPD
6.00

no STD
no STD
no STD

no BPD
no BPD
no BPD

NA
10
25

NA Dunnett’s

ID
1D

7.60E—07 NA

LogR
Raw

GM

vy

VanDelft (1998) DIb1_SI Mouse

5.20
1.38

Dunnett’s

0
0

1.20E—-06

GM
GM

VanDelft (1998) LacZ_SI Mouse
VanDelft (1998) LacZ_Spleen

Dunnett’s

3.80E—05

Raw

vy

Mouse
Bhalli (2011) Pig-a_PCE Mouse

Bhalli (2011) Pig-a_RBC Mouse
Bhalli (2011) PCE Mouse

mg/kg
mg/kg
mg/kg
pg/mL

6.30
5.28
7.39
1.10
1.30
2.13
14.10

0.33
0.12
1.36
0.08
0.84
5.02
0.02

1.46

no BPD

no STD
no STD
no STD
no STD

no BPD

Dunnett’s 10

ID
no

+
+

8.30E—12

SqrtR
LogR
LogR
Raw
LogRb
LogR"

GM
GM
MN

vy

95%
4.03*

NA
no BPD

NA
0.60

no BPD

Dunn’s

4.50E—12
0.0006

10
0.2
2.34

9.37

Dunnett’s

1D
ID
no
no

v
vt

0.18

0.57

NA
5.24
no BPD

Dunnett’s

0

GM 2.20E—15
0

MN

Doak (2007) AHH1_Human HPRT

pg/mL

1.38%

NA
5.95
no BPD

1.38
3.86
no STD

Dunn’s

9.50E—08
0.03

vt
vt
vt

Bryce (2010) TK6_Human Expt 1

pg/mL

8.07%
0.08

Dunnett’s

MN

Bryce (2010) TK6_Human Expt 2
Doak (2007) AHHI Human

pg/mL

Dunnett’s 0.4

yes

+

9.30E—08

Raw

MN

vv, in vivo; vt, in vitro; NA, not applicable; ID, insufficient doses; GM, gene mutation; MN, micronucleus; SI, small intestine; +, positive gradient; NOGEL, no observed genotoxic effect level;

BPD, breakpoint dose; BPDL, breakpoint dose lower confidence interval; STD, slope transition dose; STDL, slope transition dose lower confidence interval; BMDL,sp, benchmark dose 1 standard

deviation lower confidence interval; BMDL(, benchmark dose 10 lower confidence interval, BMDU,,, benchmark dose 10 upper confidence interval; L&L, Lutz and Lutz 2009.

*Poor fit for benchmark dose model, P < 0.05.

®Doses log transformed as well.

Response Transformation, same number added to ‘R’ to ensure all responses were above the value of 1 before transformation with Log or Sqrt.

‘Slope<NOGEL’ tests whether slope up to and including the NOGEL differs significantly from zero.

‘Linear<NOGEL’ tests whether slope up to and including the NOGEL is fit better by linear or nonlinear model (i.e., smoothing regression spline).

better than a linear model. Therefore, if the derived model indicated
nonlinearity, the shape of the dose response at the lower doses also was
assessed, specifically the experimental doses below the lowest-observed-
genotoxic-effect-level (LOGEL) (i.e., from zero dose, up to and includ-
ing the NOGEL). This approach builds on the previous study, in which
similar prerequisites were defined for the bilinear model (Gollapudi
et al., 2013). Two tests were conducted. First, a simple test was used to
determine whether the slope from zero dose to the NOGEL was signifi-
cantly different from zero. The second test, which requires more doses
than the first, determined whether the smoothing regression spline model
fits the data from zero dose to the NOGEL significantly better than a lin-
ear model. This approach has been developed into a package called
‘drsmooth’, which is available for free download and use with R ver-
sions 3.0.2 and above (Hixon and Bichteler, 2013).

RESULTS

Table I summarizes the individual study characteristics
for the various genotoxicity datasets analyzed. A wide
range of endpoints were analyzed, including in vivo and
in vitro measures of micronuclei (MN), in various cell
types and species. Similarly, gene mutations were
assessed in multiple target genes including transgenes
(e.g., LacZ) and endogenous genes (e.g., Hprt).

The PoD metrics for nine ENU genotoxicity datasets
are summarized in Table II. NOGEL values were
obtained for all datasets with the exception of the DI/bl
mutation analyses in the small intestine, where the lowest
study dose was significantly different from control.
BMDL,, values were determined using PROAST for rea-
sons stated in Gollapudi et al. (2013), whereas BMDLsp
values were determined using BMDS. The latter is the
default metric used by the EPA for continuous data (U.S.
EPA, 2012). In all cases, an exponential model provided
the best fit in PROAST. In BMDS, the best fitting model
was selected among the typical suite of continuous mod-
els. Overall, although not all PoD methods provided a
good fit of the data to a statistical model, the two BMD
modeling approaches provided estimates of the BMDL
values that were lower than the corresponding NOGELSs.

PoD values were derived for four of the ENU datasets
using at least one of the three models; L&L, segmented,
and smoothing regression spline. In all four cases, the
slope below the LOGEL was not significantly different
from zero, suggesting a bilinear dose response. Two of the
datasets for which BPD values were derived were not pre-
dicted to have an STD by mgcv (van Delft et al., 1998;
Doak et al., 2007). Examination of the mgcv plots of these
datasets reveals an apparent lack of bi-linearity, consistent
with the model results failing to identify an STD (Table
ID). In contrast, the two datasets from Bryce et al. (2010)
were predicted to have STD values generated by smooth-
ing regression spline analyses (i.e. exhibited non-linear
dose responses with estimated STDL values).

The PoD metrics for 22 MNU genotoxicity datasets are
summarized in Table III. As with ENU, the two BMD
modeling approaches yielded lower PoD values than the
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Fig. 2. Example of BPD, STD and BMD modeling results for two L&L, Lutz, and Lutz hockey stick/bilinear approach for defining a break-

MNU gene mutation datasets (see results in Table III). The various soft-
ware packages employed have only limited ability to adjust X- and Y-
axes, and all plots shown are the default outputs of these programs. By
default, PROAST provides plots with untransformed data. For both the
Monroe and Pottenger datasets, log transformed responses provided the
closest distribution to normal with homogeneous variance (see Table III).

NOGEL. There were two MNU datasets for which both
the bilinear and smoothing regression spline methods pro-
vided BPDLs and STDLs, respectively (Monroe et al.,
1998; Pottenger et al., 2009). The PoDs associated with
these data, calculated by the different aforementioned
methods, were in remarkably close agreement for a given
dataset, and the slopes up to and including the NOGEL
were not significantly different from zero, demonstrating
a good fit for the bilinear models (Fig. 2). There were
eight datasets that required analysis with non-parametric
methods, and the application of the smoothing regression
spline methodology yielded STD values for five of these
datasets, with the slopes from the negative control up to
and including the NOGEL not being consistent with a
zero slope. Therefore, these STD values should be inter-
preted with caution (see below).

Eighteen in vivo MNU datasets are summarized in
Table III. Although the studies examined different end-
points in different species under different exposure sce-
narios, a quantitative comparison of the PoDs can still be
conducted (Fig. 3). The medians (2.5 mg/kg/day) and dis-
tributions of NOGEL and LOGEL values were very simi-
lar (Fig. 3A). The BPD, STDL, and BMDL,gp were also
in close agreement, ranging from 0.8 to 1.2 mg/kg/day.
The median BPDL, BMD,,, and BMDL,;, were 0.3, 0.2
and 0.1 mg/kg/day, respectively. To get a sense of how
these PoD metrics compare to one another within each in
vivo MNU dataset, each PoD was ‘normalized’ to the
LOGEL of that dataset (if available). As expected, the
ratio of the NOGEL to the LOGEL was less than unity
(i.e., approximately 0.5; Fig. 3B). The ratios of the

point dose (BPD); Segmented, bilinear model for defining a BPD; mgcv,
smoothing regression spline for defining a slope transition dose (STD)
using ‘drsmooth’ in R version 3.0.2; BMD;sp (BMDS), Benchmark dose
1 standard deviation using BMDS; BMD;, (PROAST), Benchmark dose
10 using PROAST. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

BMDL,sp and BPD to LOGELs were similar, as were
the ratios of STDL and BPDL to LOGELSs. The ratio of
the BMD;sp to the LOGEL was generally higher than the
BPD and STD ratios, consistent with benchmark dose val-
ues being associated with a pre-defined increase in toxico-
logical response. A similar pattern was observed for the
BMDL sp relative to the BPDL and STDL. The median
ratios of the BMDL,;, values to the LOGELs were the
lowest of all PoDs, and the BMDL,, values were often
lower than the BPDL and STDL ratios (Figs. 3A-B).

DISCUSSION

The current work, which follows that of Gollapudi
et al. (2013), is focused on advancing the development
and application of statistical approaches to define PoDs
for genotoxicity dose-response data. This is a necessary
step in the path forward for the use of genotoxicity PoD
metrics to inform regulatory decision making and/or risk
assessment. The earlier work focused on the following
PoD metrics: Dunnett’s approach for calculating
NOGELSs; a multi-step approach to define BPD values
(Gocke and Wall, 2009); and the BMD approach (i.e.,
using PROAST and BMDS software). Here we present
the next phase in these analyses, which involved a series
of approaches (Table IV) to determine PoDs for the
potent genotoxicants ENU and MNU. The data from the
examined publications, in most cases, suggest that PoD
values are generally lower and more difficult to define for
ENU and MNU in comparison with EMS and MMS. This
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Fig. 3. Comparison of PoD values for in vivo MNU genotoxicity data-
sets. (A) Box and whisker plots for PoDs listed in Table III (highest and
lowest median values are at the top and bottom, respectively). (B) For
each dataset, the PoD values (if available) were divided by the LOGEL
for that dataset to provide the relative position of each PoD metric rela-
tive to the LOGEL (highest and lowest median ratios are at the top and
bottom, respectively). The whiskers extend to min and max values, and
the red dots represent individual values. There are fewer data points for
certain PoD metrics, and the BPD values for segmented and L&L models

is likely because ENU and MNU are more potent muta-
gens, probably related to the higher proportion of O°-
alkylG and other pro-mutagenic adducts these Sy1 alkyla-
tors form (Jenkins et al., 2005).

Evaluation and Comparison of Different Approaches for
Determination of Point of Departure Values

Table IV presents a comparative assessment of the
advantages and disadvantages associated with each PoD
metric. The NOGEL value is the highest experimental
exposure level at which there is no statistically significant
increase above the concurrent experimental control value
(background level). NOGELs are, by definition, depend-
ent on study design features such as dose selection and
the statistical power to detect an increase at each dose.
Furthermore, this approach does not permit calculation of
PoD confidence intervals. When comparing NOGELSs to
the other PoD metrics, one can see that NOGELs are
almost always higher than either BMDLs or BPDLs
(Tables II and III; Fig. 3), and therefore may provide less
conservative estimates than the other PoD values. They
may also be less preferred because of their dependence
on the specific doses tested.

As part of this effort to expand the number of data
analysis tools for determination of PoDs, other
approaches beyond the L&L and BMD approaches were
examined and evaluated. The L&L and segmented models
provided similar results (Tables II and III). However, the
segmented PoD may be viewed as a more reliable metric
since it does not require dataset censoring at the highest
doses to address saturation or high-dose toxicity, and
moreover, it is a well-documented R procedure. The seg-

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Derivation and Use of Genetic Toxicity PoDs 617
B
LOGEL+ t
NOGELH T+
BMD,5p1
BPD- 31
BMDLgpp——F T - o }——
stpd  ——
BPOLY H - F—
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were combined for simplicity. NOGEL, no observed genotoxic effect
level; LOGEL, lowest observed genotoxic effect level; BPD, breakpoint
dose; BPDL, breakpoint dose lower confidence interval; STD, slope tran-
sition dose; STDL, slope transition dose lower confidence interval;
BMDISD, benchmark dose 1 standard deviation, BMDLI1SD, benchmark
dose 1 standard deviation lower confidence interval; BMDI10, benchmark
dose 10; BMDL10, benchmark dose 10 lower confidence interval. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

mented package also contains functions that directly
account for variance heterogeneity and non-normality of
residuals via weights, and conducts these analyses within
the framework of generalized linear models (GLMs).
GLMs can directly model data sets such as cell or colony
counts, incidence frequencies, and other types of data that
do not generally adhere to the normality and variance
constancy assumptions. Therefore, we propose that the
segmented package supersede the L&L package as the
preferred bilinear modeling approach for assessing genetic
toxicology data. The STD method, which uses a smooth-
ing regression spline approach also within a GLM frame-
work, directly assesses the slope of the dose-response
relationship for a continuous non-linear dose-response
function rather than for two linear segments (bilinear
model); it provided PoD estimates that were consistent
with those derived by other methods (Fig. 3). A potential
advantage of the smoothing regression spline approach
compared to bilinear modeling, is that it can be compared
directly to different non-linear models such as the expo-
nential, Hill and quadratic models. Thus we recommend
the smoothing regression spline method applied here in
preference to the segmented and L&L models. However,
this method shares a major disadvantage similar to the
BPD approaches, in that it is frequently not possible to
derive a PoD with this method. For example, a PoD was
determined for only 15/34 using smoothing regression
spline and segmented methods (Table 1V), whereas PoDs
were determined for 30/34, 31/34, and 34/34 datasets
when using NOGEL, BMD,,, and BMD,gp, respectively
(Tables II and III).

Similar to observations in the previous evaluations of
EMS and MMS data (Gollapudi et al., 2013), the BMD
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was readily determined for almost all of the ENU and
MNU datasets. Moreover, the BMD approach provides a
number of advantages when compared to the NOGEL,
BPD and STD methods. For example, the BMD method-
ology generally requires fewer doses in comparison to the
BPD methods, BMDLs are readily defined [i.e., Tables II
and III, and (Gollapudi et al., 2013)], and BMDL,, val-
ues, although generally lower and thus more conservative,
are comparable to other PoDs for the datasets analyzed
here. It is worth noting that the BMDL,, value, which
represents a lower confidence limit of a 10% increase
above the estimated background, is often below the
BPDL, which represents a 0% change above background
[Tables II and III and also in (Gollapudi et al., 2013)].
This is a consequence of these two PoD metrics being
defined using different statistical models and approaches
(Crump, 2011; Slob and Setzer, 2013).

An essential feature of a PoD approach that can be
broadly applied with ease and success is its ability to
determine whether, and at what dose, there is a detectable
increase in genotoxic effect above the spontaneous back-
ground level in a particular system. It has been stated that
a BPD cannot be accurately defined unless the sample size
is infinite (Crump, 2011; Slob and Setzer, 2013); therefore,
when examining the low dose region, a PoD metric that is
based on a specified increase above a selected background
(e.g., the BMD) may be the more relevant approach (Slob
and Setzer, 2013). Based on the analyses conducted here,
the previous work of Gollapudi et al. (2013), and the work
conducted at the RIVM (Hernandez et al., 2010, 2011a, b,
2012, 2013; Slob and Setzer, 2013) we support a recom-
mendation to use the BMD approach for assessing dose
responses for continuous genetic toxicology data unless
otherwise justified. This approach has the added advantage
of unifying analyses of genetic toxicology data with analy-
ses of other types of toxicology data.

As part of a related exercise, we employed Monte
Carlo simulation to empirically assess the effect of data-
set censoring (i.e., varying number of doses and dose
spacing) on the probabilistic distribution of PoD values
for a given dataset. The results obtained to date, which
will be published separately, indicate that BPD determina-
tions (e.g., the L&L BPD) are far more sensitive to data-
set censoring than are the BMD determinations. For
example, analyses of in vitro HPRT gene mutation dose—
response data for ENU (Doak et al., 2007) indicated that
BPD determination is optimized when the dataset con-
tains responses for three or more doses below the PoD
and three or more doses above the PoD. No such require-
ment was noted for the same dataset with respect to the
determination of a BMD;o Moreover, although not typi-
cally applied, censoring of data near the point of inflec-
tion can prevent successful determination of a BPD value.
A priori assessment of the number of doses most suitable
for BMD analysis indicates that three or more doses and

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Derivation and Use of Genetic Toxicity PoDs 619

a control are a reasonable starting point, although addi-
tional doses will typically improve the precision of the
estimated PoD. The precision of the BMD can be indi-
cated by the BMDL to BMDU ratio.

The importance of being able to define a usable PoD
metric for all datasets is underscored by the subsequent
comparisons of BMDL values across the endpoints inves-
tigated. For example, the results presented in Table II
suggest that significant increases in D/b/ mutations in the
small intestine occur at lower ENU doses than that
required to elicit significant increases in LacZ transgene
mutations (Table II). For MNU, significant increases in
Hprt gene mutations in spleen tissue occur at lower doses
in comparison with that required to elicit a significant
increase in Lacl transgene mutations (Table III). These
lower PoDs for DIb]l and Hprt mutation may reflect dif-
ferences in assay sensitivity, and/or gene target differen-
ces (i.e., the ability to discriminate responses in treated
from control), and/or differences in repair capacity in the
different tissues. However, when focusing on genotoxicity
potency ranking across the compounds investigated in
this and the earlier Gollapudi et al study (i.e., lowest to
highest BMDL () (Table V), these differences have less
impact than one might expect; the order of potency in
vitro and in vivo for both gene mutation and MN end-
points are consistent despite variations in strains and end-
points. The ranking of substances from most potent to
least potent is MNU > ENU > MMS > EMS for each end-
point based on the BMDL,, value derived using
PROAST. There are very limited carcinogenicity data for
these compounds; these include the following: a 54-week
MNU mouse study, a 104-week MNU rat study with one
dose, a 113-week ENU rat study, and a MMS mouse
study with one dose. There are no carcinogenicity studies
for EMS (Carcinogenic Potency Database); therefore, it is
difficult to compare carcinogenicity rankings. Neverthe-
less, the lowest genotoxicity BMDL;, values for ENU
and MNU, 0.001 and 0.85 mg/kg/day, respectively, are
within two orders of magnitude as the reported TD5(, val-
ues for MNU (i.e., 0.0927 and 1.23 mg/kg/day for rats
and mice, respectively). Moreover, the TDs, values
reported in the Carcinogenic Potency Database (Table V)
yield a ranking from most potent to least potent of
MNU > ENU > MMS. This corresponds to the aforemen-
tioned ranking based on genetic toxicity BMDs, and pro-
vides additional support for the use of genetic toxicology
PoDs in human health risk assessment.

Incorporating Genetic Toxicity PoD Values into Human
Health Risk Assessment

The main focus of this effort was evaluation of several
methods for determining genetic toxicity PoDs. However,
it is also important to highlight how genetic toxicology
PoD metrics can be employed in human health risk
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TABLE V. Table of Lowest BMDL Values Defined Using PROAST
rics from Gollapudi et al. (2013)

for MNU and ENU, Along with Previously Defined PoD Met-

MNU ENU MMS EMS
Gene mutation in vitro (UM) 0.006* 0.68" 4.72° 8.70%
in vivo (mg/kg) 0.0007° 0.09¢ 1.34° 9.29f
Micronucleus in vitro (UM) 0.03* 0.17% 1.008 4.35%
in vivo (mg/kg) 0.02" 1.36° 1.741 56.68

Cancer bioassay in vivo (mg/kg/day) 0.093 0.95 31.8f Not available

Order of potency is MNU>ENU>MMS>EMS for genetic toxicology BMDL,,, and is MNU>ENU>MMS for cancer bioassay TDs,. Most potent to

least potent PoDs are shown from left to right.

“Doak et al. (2007), Gene Mutation: HPRT gene, AHH-1 cells, 24 hr treatment. Micronucleus: AHH-1 cells, 18 hr treatment.

bPottenger et al. (2009), Tk gene, L5178Y cells, 4 hr treatment.

“BMS (unpublished data), Rat, Pig-a gene, RET and RET cells, 28 days gavage.

dyan Delft et al. (1998), Mouse, DIbl gene, small intestine, 1 day i.p.
“Roche (unpublished data); Rat, Pig-a gene, RBC cells, 28 days gavage.

fGocke and Wall (2009), Gene Mutation: LacZ gene, MutaMouse, bone marrow cells, 28 days gavage. Micronucleus: bone marrow cells, 7 days

gavage.
€Bryce et al. (2010), TK6 cells, 24-30 hr treatment.
"LeBaron (2009), Rat, Blood, 4 days gavage.
iLeBaron et al. (2008), Rat, Blood, 4 days gavage.

iLowest TDs, from the Carcinogenic Potency Database (http://toxnet.nlm.nih.gov/cpdb/). Values adjusted for differences in treatment duration.

assessment, e.g., to support determination of regulatory
limits to reduce or to quantify the risk of adverse geno-
toxic effects in humans. We introduce the potential role
of such PoDs in risk assessment briefly, while acknowl-
edging that comprehensive recommendations on quantita-
tive approaches for the use of genetic toxicity data in
regulatory decision making will require additional analy-
ses and discussion. In this regard, we note that the analy-
ses and recommendations reported herein and by
Gollapudi et al. (2013) have been considered by the
recent Working Group on Quantitative Approaches to
Genetic Toxicology Risk Assessment that met as part of
the International Working Groups on Genotoxicity Test-
ing IWGT) in Brazil in November 2013 (IWGT, 2013).
This group is preparing two publications that endorse
many of our recommendations and provide additional rec-
ommendations for the use of PoD metrics in human
health risk assessment.

Mode of Action (MOA) Data to Support Extrapolation Below
the PoD

It is necessary to have chemical-specific MOA informa-
tion to justify the assumption of different slopes in the
dose—response curve below the PoD as compared to
above the PoD. Conversely, the dose-response analyses
can also be used to support the MOA information. For
example, recent work by Johnson and colleagues has
shown that DNA repair capabilities below the PoDs serve
to counteract specific gene mutation and chromosomal
damage induced by the alkylating agents MMS, EMS,
MNU and ENU (Zair et al., 2011; Johnson et al., 2012;
Thomas et al., 2013). The data reported by Zair et al.,
(2011) support a role for the DNA repair enzyme methyl-

purine DNA glycosylase (MPG) in repair of clastogenic
lesions below the PoD; when MPG levels were reduced
by RNA interference, the EMS PoD shifted to a sevenfold
lower concentration (i.e., BMDL,, decreased from 1.19
pg/mL to 0.17 pg/mL). A similar decrease in PoD was
shown with the methyl-guanine methyl-transferase
(MGMT) DNA repair activity and the mutagenic lesion
0%-alkylG, where prior MGMT inactivation using the
nucleotide analogue O°-benzyl guanine reduced the MNU
PoD for HPRT mutant frequency to an approximately 50-
fold lower concentration (Thomas et al., 2013). Moreover,
over-expression of MGMT was shown to significantly
protect against, but not completely nullify, the effect of
MNU in tumor initiation (Becker et al., 2013). Such data
provide support for a biological mechanism underlying a
non-linear dose response in the region around the PoD.
Those studies focused on EMS and MNU, respectively,
for clastogenicity and mutagenicity, but the similarity in
the types of DNA adducts and mutation spectra for EMS,
MMS, ENU, and MNU (Beranek, 1990; Jenkins et al.,
2005; Jenkins et al., 2010; Sharm et al., 2014) suggests
that this group of mono-functional alkylating agents have
efficient DNA repair mechanisms operating below the
PoD that dramatically diminish their genotoxic effects.
These cellular processes provide a mechanism for differ-
ences in the dose-response slope below and above the
PoD.

Using BMDL,, to Support Regulatory Evaluation

PoD metrics from toxicology endpoints are frequently
used to support the determination of regulatory limits that
can be employed to manage the risk of adverse health
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effects. We suggest the use of PoDs from in vivo genetic
toxicology endpoints, in conjunction with, or in some cir-
cumstances in place of, PoDs estimated for other
observed adverse effects. For example, the BMDL,, PoD
values for ENU and MNU defined in this study (Tables II
and III), revealed lowest in vivo BMDL,q values for ENU
and MNU of 0.09 (male mice, DIb-I"® gene mutation)
(van Delft et al., 1998) and 0.0007 mg/kg/day (male rat
Charles River Crl:CD (SD), RET Pig-a gene mutation)
(BMS Pig-a RET Day 29), respectively. If the BMDL,
doses from the in vivo assays are converted to human
equivalent doses by using the respective scaling factors of
0.081 for mouse to human, and 0.16 from rat to human
(FDA, 2005), 7.3 and 0.11 ng/kg/day, or 438 and 6.6 pg/
day for a 60 kg human, are obtained as the human equiv-
alent doses associated with the aforementioned rodent
BMDL,, values. These PoDs can be used in a similar
manner to PoDs from other toxicity endpoints, e.g., to
determine a regulatory limit such as a reference dose
(RfD) after application of suitable uncertainty/safety fac-
tors. If, for example, a conservative safety factor of 100
(i.e., 10X for animal to human extrapolation and 10X for
variability in human populations) is applied to the above
PoDs, a calculated tolerable daily intake based on this
endpoint would be 4.37 and 0.07 pg/person/day for ENU
and MNU, respectively. If circumstances warranted, there
could be a reason for the uncertainty factor related to
human variability to be reduced (e.g., from 10 to 3) or
even removed, based on the ability of the BMD approach
to account for variability in the data as compared to, for
example, the NOGEL. For example, a study with lower
statistical power and greater variance would produce a
lower BMD (and BPD/STD), but a higher NOGEL. If
chemical-specific adjustment factors (CSAFs) are avail-
able for interspecies differences and human variability,
their use also would be considered in the selection of
uncertainty/safety factors (WHO/IPCS, 2005). Therefore,
when considering methods for incorporation of PoD met-
rics into human health risk assessments, it is important to
remember that some PoD metrics are more conservative
than others. Moreover, the same uncertainty/safety factors
would not necessarily be applicable when using the BMD
compared to the NOGEL, and thus should not necessarily
be applied in all instances.

A related approach that also uses the genetic toxicol-
ogy PoDs estimated above involves the calculation of the
increasingly used margin of exposure (MOE) metric. This
approach is becoming preferable, as it incorporates esti-
mated or actual human exposure information in the over-
all assessment. It is a straightforward method that
involves comparison of the PoD and the current or pre-
dicted human exposure (i.e., a simple ratio of the PoD to
human exposure). Regulatory decision making, and the
requirement for risk management interventions, are based
on the magnitude of the ratio; a larger MOE is less of a
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concern (e.g., MOE > 10,000 may be considered to pres-
ent minimal risk), while a smaller MOE may be less
acceptable (e.g., MOE < 100). Other considerations that
help determine the “acceptability” of the MOE approach
include the severity of the effect, the MOA, the number
of adverse effects observed, whether the observed
effect(s) are from animal or human studies, the number of
assumptions used in MOE estimations, the size of the
affected population, and whether any susceptible sub-
groups have been identified.

Whether one uses the RfD approach or an MOE
approach for genetic toxicity endpoints, the results can be
evaluated with all the other available toxicity data to pro-
vide an improved and informed human health risk assess-
ment. If determination of the PoD, and the subsequent
comparative assessment indicates that genetic toxicity is
the driving concern for human health considerations, then
genetic toxicity data could become the basis for regula-
tory decision making.

CONCLUSIONS

1. MNU and ENU both elicit sub-linear dose responses
that yield PoD metrics for gene mutation and chromo-
somal damage endpoints in vitro and in vivo.

2. Among the methods/approaches investigated here, the
BMD approach yields the most conservative PoDs
(i.e., BMDL).

3. The BMD;, is comparable to, and recommended
alongside, the BMD;gp, as the most suitable metrics
for defining PoDs for continuous genetic toxicology
data.

4. The BMD method is the preferred PoD determination
method, followed by the NOGEL method, the smooth-
ing regression spline to determine the STD, and then
the segmented methods to determine the BPD (now
supersedes the L&L for BPD determination).

5. PoD metrics from genetic toxicology dose—response
data, via the derivation of regulatory limits such as the
RfD or risk management metrics such as the MOE,
can be used for evaluations of human risk and regula-
tory decision making.

Routine determination of PoD metrics for genetic tox-
icity dose-response data, and routine use of genotoxicity
PoD values for regulatory evaluations of new and existing
substances will require application of the preferred meth-
odology (i.e., the BMD approach) to a wider range of
compounds with a diverse array of MOAs. We have
already begun collecting and analyzing detailed dose—
response data for other recognized genetic toxicants.
Comparative analyses of the PoD values across a variety
of endpoints, including carcinogenicity, as well as esti-
mates of regulatory limits analogous to RfDs where
appropriate, will enhance the foundation for the routine
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interpretation of genetic toxicity dose-response data in a
human health context.
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