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 MINI-RevIew MINI-RevIew

Although invisible to the naked eyes, bacteria are ubiquitous in 
all aquatic (including marine) ecosystems. The true diversity of 
aquatic bacteria is unknown and unknowable, but there are esti-
mated 2 x 106 bacterial species in the ocean,1 and new strains 
are still being discovered frequently.2 The vast variety of bacteria 
performs so many critical functions in aquatic biogeochemical 
cycles3,4 and trophic processes5 that the biosphere will surely col-
lapse without bacteria.

Aquatic microbial research has seen unprecedented pace of 
development in recent years thanks to the advances in molecular 
and biogeochemical techniques.6 It is therefore timely to revisit 
our concept of the aquatic microbial world.

The traditional view of aquatic microbial ecology presumes 
that “free living” bacteria contribute to the majority of bacte-
rial production within the water body.7 A basic textbook still 
tells us that there are on average 105–106 ml-1 of bacteria living 
freely in the water,8 so a few milliliters already contain more than 
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Despite recent advances and new applications of molecular 
and biogeochemical methodology in aquatic microbial 
ecology, our perception of the aquatic microbial world 
remains one dominated by “free-living” bacteria that account 
for most of the microbial activities in the pelagic zone. Recent 
research has, however, shown that there exist vast and hidden 
“microbial networks” within the water column, connected 
via various microhabitats such as aggregates, fecal pellets 
and higher organisms. Bacterial abundance within these 
networks may rival or exceed that of the “free-living” bacteria. 
Hence, what we have learned in traditional aquatic microbial 
ecology represents merely a fraction of the microbial world. 
within these networks a bacterium can travel long distances, 
communicate and closely interact with other bacteria and 
efficiently exchange genetic information with one another. 
The presence of microbial networks within the water column 
demands better sampling strategies and a new way to 
understand bacterial ecology, evolution and functions within 
the broader context of systems biology.
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enough material for microbiologists to work with. Indeed, on an 
oceanographic expedition microbiologists often draw just a few 
milliliters of water from a Niskin bottle for measuring bacterial 
abundance and production. Meanwhile, other scientists on board 
may be retrieving sediment traps with abundant aggregates and 
fecal pellets inside them or preserving zooplankton samples or 
hauling in a net-full of fish. These samples are categorized sepa-
rately (bacteria, aggregates, zooplankton, fish) and processed and 
understood within the confines of the respective disciplines that 
mimics the way we dissect an aquatic ecosystem.

Microhabitats in the Pelagic Environment

However, bacteria do not live in isolation from each other or 
other inhabitants. It is a common knowledge that in terrestrial 
systems most bacteria live on surfaces or inside a host. Research 
on benthic habitats and coral reefs has also focused on attached 
microbial consortia.9,10 Why should there be any difference in the 
pelagic aquatic environment? Bacteria within a water column can 
reach high abundances in microhabitats such as aggregates, fecal 
pellets, surface and gut of a zooplankter or a fish11,12 (Fig. 1). 
However, due to their patchy spatial and temporal distribution, 
they are often not sampled properly or largely ignored by aquatic 
microbiologists.

Albeit limited, existing literature data show that total bacte-
rial abundance associated with various microhabitats may rival or 
even exceed “free living” bacteria in the aquatic environment.11,12 
What microbiologists have learned based on traditional sampling 
methods therefore represents only a fraction of the aquatic micro-
bial world. These microhabitat communities of bacteria are not 
only important in terms of abundance and biomass, but their 
behavior, physiology and composition are also distinctly differ-
ent from their “free living” counterpart. For examples, they have 
elevated enzymatic activities,13 growth and production,13 and 
may also experience higher grazing mortality14,15 and viral infec-
tion.16 The equivalent bacterial concentrations associated with 
these microhabitats are orders of magnitude higher than ambient 
bacterial concentrations, indicating active bacterial colonization 
and growth in/on these organic-rich microhabitats.11,12

Assuming an average free-living bacterial concentration of 106 
ml-1, the average distance between two neighboring cells is 100 
μm or approx. 100 cell lengths. This is a formidable distance for 
communication between two bacterial cells due to fast dissipa-
tion of chemical signals.17 In comparison, on a densely colonized 
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high diffusion coefficient;30 e.g., 3.8 x 10-5 cm2s-1, the population 
will disperse no more than 2.6 cm per day by swimming alone. 
In addition to limited motility, the water column of large lakes 
and oceans are often vertically stratified, permanently or season-
ally, such that the pycnocline further prevents mixing of bacteria 
between upper and lower water layers.31

Yet, bacteria seem to have an ingenious way to overcome this 
limitation—by hitch hiking on large particles and organisms. 
Aggregates and fecal pellets sink up to several hundred meters a 
day bringing attached bacteria with them,32 but this is primarily 
a one-way ride from the surface water to the deep water. Mobile 
organisms such as diurnally migrating zooplankton, on the other 
hand, move up and down across the pycnocline multiple times, 
working as a conveyor belt to transport bacteria in both direc-
tions.33 These long-range dispersal processes affect the distribu-
tion, resource access and genetic information exchange between 
different bacterial populations (see below).

Shelters for Bacteria

Death is a part of life and for bacteria there is no exception. The 
seemingly constant abundance of free-living bacteria in most 
aquatic environments, in contrast to their high growth rate, sug-
gests that there must be a high mortality rate among them.34 
Death could be due to predation,35 viral infection36 or environ-
mental stresses.37 The many folds and turns inside an aggregate 

aggregate surface, cells can be touching or even overlapping one 
another.18 Dense packing of cells on surfaces makes cell-cell 
interactions (both positive and negative) and communications 
(e.g., quorum sensing) much more feasible.19,20 The microhabitats 
themselves are often rich sources of organic substrates relative to 
the surrounding water. For example, an aggregate contains a high 
concentration of particulate and dissolved organic carbon.21,22 
Bacteria in zooplankton’s guts continuously receive organic mat-
ters ingested by the hosts.23 Some of these microhabitats also have 
physical-chemical characteristics different from the surrounding 
water. A very interesting observation is the anoxic or near anoxic 
condition inside an animal’s gut and fecal pellet (Glud RN and 
Tang KW, unpublished data) and an aggregate.24 Subsequently, 
the high abundance of bacteria present in close proximity to each 
other and to the source of organic matters under specific physi-
cal-chemical conditions may allow for biogeochemical reactions 
that are otherwise not favored in the water column.25,26

Hitching a Ride

Only relatively recently did researchers begin to appreciate the 
fact that many aquatic bacteria are motile, but this motility 
remains quite limited.27,28 The run-and-tumble motion of indi-
vidual bacteria leads to diffusion-like dispersal of a population,29 
and the dispersal distance (L) can be estimated as L2 = 2Dt  where 
D is diffusion coefficient and t is time. Even with a relatively 

Figure 1. Different conceptual views of the aquatic microbial ecosystem. In the traditional view (A), bacterial communities are mainly dominated by 
free-living bacteria and attached bacterial communities in microniches are rather isolated from each other. water column stratification also limits 
exchanges of bacteria between water layers. In our proposed microbial networks (B), free-living and attached bacteria are tightly linked with each 
other via a network of microhabitats represented here by aggregates, fecal pellets, plankton and higher organisms. Mobile organisms also effectively 
transport bacteria over long distances and across boundaries. within a microhabitat, such as a copepod, dense populations of diverse bacteria can 
closely communicate and exchange genetic information with each other, be protected from external hazards, exploit high concentration of organic 
matters and drive biogeochemical reactions that are otherwise not favored in the surrounding water.
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Microhabitats and the Global Carbon Cycle

Photosynthesis and respiration are the yin and yang of the 
carbon cycle. Bacteria account for most of the respiration in 
the aquatic environment returning photosynthetically fixed 
carbon to the atmosphere as carbon dioxide.52 Sinking detri-
tus is a major component of the so-called biological pump for 
exporting fixed carbon from the euphotic zone to the deep sea, 
hence removing it from sea-air exchange.53 Questions, however, 
remain concerning bacterial turnover of particulate organic 
carbon within the mesopelagic zone (100–1,000 m).54 A recent 
modeling study suggests that free-living bacteria and attached 
bacteria are each responsible for turning over 38% of the detri-
tal carbon in the mesopelagic zone and together they respire 
~85% of the exported carbon.55 Critical unknowns in the model 
are POC solubilization and subsequent DOC leakage due to 
attached bacteria and growth efficiency of particularly attached 
bacteria in the deep sea.56,57 That study highlights the need for 
proper sampling and measuring bacteria attaching to detrital 
particles and other microhabitats in understanding the global 
carbon cycle.

Conclusion

Here, we show that the traditional view of aquatic microbial 
ecologists is largely biased by not taking into account the true 
spatial and temporal dynamics of aquatic systems. Recent stud-
ies imply that bacteria associated to particles and organisms 
come in close contact to each other and are dispersed via mul-
tiple vectors between microhabitats—even over large distances. 
Hence, within the expansive and seemingly homogeneous water 
column there exist vast and hidden networks that bring bac-
teria together allowing for interactions and efficient exchange 
of genetic information. To better understand the adaptation, 
evolution and functions of distinct microbial populations, 
we therefore need to know their distribution and behavior 
in time and space and their interactions with other microbes 
and higher organisms within these networks. The complexity 
of these networks will require better sampling strategies and 
interpretation of bacterial data within the broader context of  
systems biology.58
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or a zooplankter could effectively shelter bacteria from external 
hazardous elements. Vibrio cholerae, the bacterium that causes 
the disease cholera, finds its ‘partner in crime’ in small crustacean 
zooplankton.38,39 This bacterium turns virulent when attached to 
chitin surfaces40 and becomes more resistant to disinfection.41 
Many other bacteria attached to aggregates and zooplankton 
have also been found to survive harmful UV radiation, heat and 
chemicals.59 These findings have important implications for the 
spread of aquatic pathogens and water treatment strategies.

There is, however, not a strict separation between “attached” 
and “free” bacteria in the pelagic environment. A bacterium may 
attach and detach from a microhabitat, the likelihood of which 
depends on the bacterium’s physiological conditions,42 surface 
grazing mortality,43,44 substrate characteristics,45 pre-existing 
microbial community20 and chemical cues,30 among other factors. 
Attached bacterial communities may also release progeny into the 
surrounding water.46 Consequently, there is a dynamic exchange 
between attached and free bacteria, and thanks to the high pro-
duction rate of attached bacteria, microhabitats may be an impor-
tant source of bacteria to even the free living populations.45

Because different microhabitats may emerge or disappear in a 
random manner, and because different bacteria may enter or exit 
a microhabitat at different times, there could be countless ways 
for bacteria to establish both short-term and long-term microbial 
networks. In this sense, a microhabitat in the pelagic environment 
is unlike the relatively more stable bacterial consortia in soil.47

Gene Exchange Market

Compared to higher organisms, the bacterial genome is very 
malleable and gene exchanges between bacterial cells would 
allow them to change and adapt to environmental conditions 
much more rapidly than mutation alone may allow.48 This can 
be achieved only when the genetic information is passed along 
by a mediator such as a plasmid or a virus or when two bac-
teria come close enough for conjugation.49 However, in the free 
water column the long distances between randomly moving bac-
teria makes gene exchanges more difficult. In contrast, when a 
large number of bacteria are confined within a microhabitat, this 
microenvironment turns into an exchange market where rapid 
lateral gene transfer can occur between bacteria.50 By hitchhiking 
on mobile organisms bacteria may even travel long distances and 
trade genetic information with remote populations.33

We may therefore envision that various particles and organ-
isms within the water column constitute a hidden microbial net-
work through which bacterial genetic information busily flows 
and be redistributed, leading to rapid changes in bacterial com-
munity structure and functions over ecological as well as evolu-
tionary time scales.51
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