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Abstract

Distinguishing between clastogens and aneugens is vital in cancer risk assessment because the default assumption is that
clastogens and aneugens have linear and non-linear dose-response curves, respectively. Any observed non-linearity must be
supported by mode of action (MOA) analyses where biological mechanisms are linked with dose-response evaluations. For
aneugens, the MOA has been well characterised as disruptors of mitotic machinery where chromosome loss via micronuclei
(MN) formation is an accepted endpoint used in risk assessment. In this study we performed the cytokinesis-block
micronucleus assay and immunofluorescence mitotic machinery visualisation in human lymphoblastoid (AHH-1) and
Chinese Hamster fibroblast (V79) cell lines after treatment with the aneugen 17-b-oestradiol (E2). Results were compared to
previously published data on bisphenol-A (BPA) and Rotenone data. Two concentration-response approaches (the
threshold-[Td] and benchmark-dose [BMD] approaches) were applied to derive a point of departure (POD) for in vitro MN
induction. BMDs were also derived from the most sensitive carcinogenic endpoint. Ranking comparisons of the PODs from
the in vitro MN and the carcinogenicity studies demonstrated a link between these two endpoints for BPA, E2 and
Rotenone. This analysis was extended to include 5 additional aneugens, 5 clastogens and 3 mutagens and further
concentration and dose-response correlations were observed between PODs from the in vitro MN and carcinogenicity. This
approach is promising and may be further extended to other genotoxic carcinogens, where MOA and quantitative
information from the in vitro MN studies could be used in a quantitative manner to further inform cancer risk assessment.
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Introduction

Cancer risk assessment is based on low-dose extrapolation of the

risk of chemical carcinogens based on their mode of action

(MOA). Genotoxic carcinogens, which are clearly DNA reactive

and initiating, follow a linear approach for risk assessment, while

indirect and non-DNA reactive carcinogens such as aneugens, and

topoisomerase poisons follow a non-linear or threshold approach

[1,2]. Thus establishing the MOA of substances is important for

deciding which approach to use for risk characterization.

Aneugens are agents which affect cell division and the mitotic

spindle apparatus resulting in the loss or gain of whole

chromosomes, in comparison to clastogens which are agents that

induce breaks in chromosomes leading to sections of the

chromosomes being added, deleted or rearranged, or mutagens

which are agents which induce mutations. Aneugens were the first

class of genotoxic compounds to have well established non-linear

dose-responses [3,4] and the underlying mechanisms responsible

for these thresholds are important for hazard and risk assessment.

Therefore, distinguishing between aneugens and other genotoxic

compounds such as clastogens and mutagens has important

implications in cancer risk assessment.

Genotoxicity tests are often used to determine the mutagenic

potential of substances because the accumulation of mutations is

essential for tumour development, albeit in a qualitative manner.

Efforts are presently being made to compare data from in vitro and

in vivo genotoxicity tests and carcinogenicity studies to determine if

a quantitative relationship between these two endpoints exists. The

main goal here is to investigate whether in vitro or in vivo

genotoxicity tests can provide carcinogenic potency information

and whether the concentration-response curves can provide

information on genotoxic MOA (linear versus non-linear concen-

tration/dose-response curves observed for clastogens and aneu-

gens, respectively). A recent study showed a correlation between

the in vivo MN and carcinogenicity for numerous carcinogens with

different MOAs [5], and this approach was of interest for the

current work. This quantitative framework has gained interna-

tional interest, particularly with the International Life Science

Institute (ILSI) Health and Environmental Sciences Institutes

(HESI) in vitro genotoxicity testing (IVGT, renamed Genetic

Toxicology Technical Committee (GTTC) in 2012) quantitative

subgroup which has led to the implementation of different

concentration- and dose-response modelling approaches for

different compounds [6]. The main objective being to put more
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emphasis on genetic toxicity data to reduce follow up animal

testing and to see if the in vitro data can be used in a quantitative

fashion [7]. Most of the work to date has focused primarily on

DNA reactive genotoxic compounds. Our work is novel in that we

aim to apply the various concentration-response approaches on

the well-characterised aneugens 17-b-oestradiol (E2), bisphenol-A

(BPA) and Rotenone.

Several methods are currently available for testing the genotoxic

potential of chemicals in vitro. The cytokinesis-block micronucleus

(CBMN) assay is an accepted test for determining the genotoxic

potential of a substance [8–11]. Micronuclei (MN) can be formed

in dividing cells that either contain chromosome breaks lacking

centromeres or whole chromosomes that are unable to travel to

the spindle poles during mitosis [12,13]. The CBMN assay is a

convenient and reliable test for the measurement of both

chromosome breakage as induced by clastogens and chromosome

loss as induced by aneugens. The term aberrant mitotic machinery

is defined as the disruption of the microtubules and centrosomes.

This can occur by multiple centrosomes being induced by these

spindle poisons, resulting in tri, tetra and multi-polar cells,

compared to the normal bipolar mitotic cells. Therefore, by

visualising the mitotic machinery using immunofluorescence to

target a or b-tubulin (microtubules), c-tubulin (centrosomes) and

DNA by using 4’,6-diamidino-2-phenylindole (DAPI), possible

MOA for aneugens can be determined. This information can be

visualised at concentrations surrounding the no-observed effect

level (NOEL) for MN induction to obtain a possible MOA for

aneuploidy [14,15]. Here, we put forth an alternative method to

the commonly used fluorescence in situ hybridization (FISH) for

discriminating between aneugens and clastogens.

In this study we performed the CBMN assay and immunoflu-

orescence mitotic machinery visualisation (IMMV) in the human

lymphoblastoid cell line (AHH-1) and the Chinese Hamster

fibroblast cell line V79 (V79) exposed to various concentrations of

E2. Results from E2 were compared to previously published data

for BPA and Rotenone [14]. Different concentration-response

analyses were performed including the threshold-dose (Td) and the

benchmark-dose (BMD) approach to determine a POD for in vitro

MN induction alongside MOA analysis via IMMV. BMD analysis

was also performed for carcinogenicity studies to determine an

in vivo POD. The lowest in vitro MN POD was compared to the

lowest in vivo carcinogenicity POD to investigate whether compa-

rable rankings were observed. This analysis was extended to

include 5 additional aneugens (nocodazole, colchicine, mebenda-

zole, carbendazim, and diethylstilbestrol (DES)), 5 clastogens

(bleomycin, thiabendazole, chlorambucil, melphalan, and ure-

thane) and 3 mutagens (cytosine arabinoside, 5-fluorouracil and

methylmethane sulfonate (MMS)) to see if similar trends were

observed between the lowest POD and concentration-response

characteristics from the in vitro MN assay and in vivo carcinoge-

nicity studies.

Materials and Methods

Chemicals
All chemicals including cytochalasin-B (CAS number: 14930-

962) were purchased from Sigma-Aldrich (Poole, UK) unless

otherwise stated. DPX was purchased from Fisher Scientific

(Loughborough, UK). Phosphate Buffer Saline (PBS) was prepared

using tablets purchased from Sigma, which were dissolved in 1 litre

of deionised H20. PBT was prepared using PBS +0.1% Tween 20

(CAS number: 9005-66-7). 17-b-oestradiol (E2, CAS number: 50-

28-2) was dissolved in dimethylsulphoxide (CAS number: 67-68-5,

DMSO).

Cell Lines
The human lymphoblastoid cell line AHH-1 was obtained from

ATCC (CRL-8146, USA, http://www.lgcstandards-atcc.org/

Figure 1. Acridine orange stained AHH-1 cells. (a) Binucleate and
(b) binucleate cell with micronucleus, BN-MN.
doi:10.1371/journal.pone.0064532.g001
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Products/All/CRL-8146.aspx) while the Chinese Hamster fibro-

blast cell line V79 was obtained from European Collection of Cell

Cultures (ECACC, 86041102, HPA, UK) (http://www.

hpacultures.org.uk/products/celllines/generalcell/detail.

jsp?refId = 86041102&collection = ecacc_gc).

In vitro Cytokinesis Blocked Micronucleus (CBMN) Assay
for E2 (Figure 1)
The in vitro CBMN assay in human lymphoblastoid cell line

AHH-1 or the Chinese Hamster fibroblast cell line V79 was used

to detect both structural and numerical chromosome damage by

measuring the formation of MN in interphase cells that have been

through a mitotic division [12]. Examples of binucleate cells (BN)

with and without MN are shown in Figure 1. In order to

determine the effects of E2 upon MN induction and chromosome

segregation, actively growing cell cultures were exposed to graded

concentrations of E2 dissolved in DMSO. AHH-1 cells were grown

in RPMI 1640 medium (Gibco-Invitrogen, Paisley, UK), 10%

horse serum (Gibco-Invitrogen, Paisley, UK) and 1% L-glutamine

(Gibco-Invitrogen, Paisley, UK). Cultures were exposed for a

complete cell cycle (22 to 26 hours dependent upon any cell cycle

delay) in the presence of 3 mg/ml of the actin-inhibitor cytocha-

lasin-B. Cells were washed and centrifuged. Suspensions were then

deposited on slides using a cytocentrifuge. This treatment resulted

in the production of binucleate cells from those cells that have

undergone cell division in the presence of the test chemical and

cytochalasin-B. Slides were fixed with methanol and stained with

either Giemsa (CAS number: 51811-82-6) or acridine orange

(CAS number: 10127-02-3) to detect MN. MN for both control

and treated cultures were scored according to previously

established criteria [12,16].

Aberrant Mitosis Assay: Multiple Centrosomes Induced
by E2
Sterile glass microscope slides were placed in Petri dishes on

which V79 cells were seeded at approximately 7.56104 cells/ml

and grown overnight in fresh medium consisting of Dulbecco’s

Modified Eagles Medium (DMEM) without phenol red (Gibco-

Invitrogen, Paisley, UK), and supplemented with 10% foetal

bovine serum (FBS) (Gibco-Invitrogen, Paisley, UK).Cells were

then incubated for 20 hours in the presence of the E2 dissolved in

DMSO. Colchicine (COL) (CAS number: 64-86-8) was used as a

positive control. The highest concentration of E2 used did not

exceed 50% induced cell toxicity consistent with the OECD

guideline (2010) [11].

Conventional Spindle Staining for E2 (Figure 2)
The cells were washed in PBS and then fixed in 3:1 methanol:

acetic acid (CAS number: 64-19-7) (3614 minutes). Slides were

air-dried and then placed in 5% perchloric acid (7601-90-3) at 4uC
overnight. 0.5% Brilliant blue (CAS number: 6104-59-4, BB) and

0.5% safranin O (CAS number: 477-73-6, SO) in 15% v/v acetic

acid (CAS number: 64-19-7) was added to the slides after washing

106 in distilled water. Slides were air-dried and mounted using

DPX (Fisher, Loughborough, UK).

Immunofluorescence Mitotic Machinery Visualisation
(IMMV) for E2 (Figure 3)
Cells were washed once in ice-cold PBS, and then fixed for 30

minutes in 90% methanol (CAS number: 67-56-1). Slides were

then air dried and stored at 220uC. Frozen slides were placed in

90% methanol at 220uC for 20 minutes and then for 20 s in

acetone (CAS number: 67-64-1) at 220uC. Following PBT

Figure 2. Microtubule staining of normal V79 cells, (a)
metaphase and (b) interphase, and an example of a spindle
aberration induced by E2 in V79 cell, (c) tripolar metaphase. a-
Tubulin stains, green=microtubules; c-tubulin stains, orange= centro-
somes; DAPI, blue = chromosomes.
doi:10.1371/journal.pone.0064532.g002
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rinsing, cells were incubated for 2 hours in a humidified chamber

at 37uC with a diluted mouse anti c-tubulin antibody (diluted

1:200 with PBS) (Sigma, Poole, UK). Then slides were rinsed with

PBT and incubated for 2 h at 37uC in a humid chamber with

TRITC-conjugated secondary anti-mouse antibody (diluted 1:32

with PBS). After extensive washing in PBT, cells were kept for 1 h

in the presence of a mouse monoclonal anti-a-tubulin conjugate

clone (diluted 1:100 with PBS). DNA was counterstained with

DAPI [17,18].

BPA and Rotenone
We have previously characterised the MOA of BPA by

employing kinetochore staining [15,18] which shows if the MN

contains a chromosome fragment (i.e. compound is clastogenic), or

a whole chromosome (i.e. compound is aneugenic) [11,18]. In

addition, a summary of NOELs and/or LOELs from genetic

toxicity tests after treatment with BPA is illustrated in Table 1.

In vitro MN Analysis of Other Genotoxic Compounds
An analysis was performed of the literature in search for in vitro

MN data from different human lymphocyte cell line studies, in

addition to the E2, BPA and Rotenone derived by Johnson and

Parry (2008) [14]. In vitro MN data on human lymphocytes

exposed to aneugens nocodazole, colchicine, mebendazole, and

carbendazim, and the alkylating agent MMS were derived from

Elhajouji et al. (1997) [3]. In vitro MN data on human lymphocytes

exposed to aneugens colchicine and DES, the nucleoside

analogues cytosine arabinoside and 5-fluorouracil, and the

clastogens bleomycin, urethane and thiabendazole were derived

from Clare et al. (2006) [19]. In vitro MN data on human

lymphocytes exposed to clastogens chlorambucil and melphalan

were derived from Efthimiou et al. (2007) [20].

Derivation of in vitro POD from MN Studies
Threshold dose approach. In vitro MN concentration-

response analysis was performed from the data generated in this

study for E2, and for BPA and Rotenone data derived from

Figure 3. Immunofluorescence mitotic machinery visualisation (IMMV) of normal bipolar V79 cells. (a) Metaphase, (b) telophase and (c)
interphase. Examples of spindle aberrations induced by E2 in V79 cell, (d) Tripolar metaphase and (e) multipolar metaphase. a-Tubulin stains,
green=microtubules; c-tubulin stains, orange= centrosomes; DAPI, blue = chromosomes.
doi:10.1371/journal.pone.0064532.g003
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Johnson and Parry (2008) [14]. Two methods were used for

concentration-response analysis: Td and BMD. Threshold mod-

elling used a similar approach to Gocke and Wall (2009) [21] and

Johnson et al., 2009 [22]. This was performed using a 4 step

approach. Briefly, Step 1 involved a one-way ANOVA for a dose-

related effect (SPSS version 16.0.1). Step 2 involved a comparison

of linear and quadratic models using the coefficient of determi-

nation (R2, SPSS version 16.0.1). The F distribution was then used

to calculate P values in Microsoft Excel 2007. Step 3 involved the

determination of no-observed-genotoxic-effect level (NOGEL) or

lowest-observed-genotoxic-effect-level (LOGEL) values using a

one-sided Dunnett’s test on either untransformed or log-trans-

formed data (SPSS version 16.0.1). Linear and quadratic models

were then compared at the NOGEL and below in the same way as

Table 1. Summary of NOELs and/or LOELs from genetic toxicity tests after treatment with BPA [28–34].

End Point Cell Line NOEL LOEL Reference

In vitro

Chromosome aberrations SHE 200 mM/46 mg/ml Tsutsui 1998

DNA adducts SHE 50 mM/11.5 mg/ml Tsutsui 1998

DNA adducts Rat liver 100 mM/23 mg/ml Atkinson and Roy 1995

Chromosome aberrations CHO 350 mM/80.5 mg/ml 400 mM/92 mg/ml Hilliard 1998

Chromosome aberrations CHO 220 mM/50 mg/ml Ivett 1989

SCE CHO 130 mM/30 mg/ml Ivett 1989

Aberrant spindles V79 100 mM/23 mg/ml Ochi 1999

c-tubulin V79 100 mM/23 mg/ml Ochi 1999

Multipolar division V79 100 mM/23 mg/ml Ochi 1999

Microtubule Bovine-MT 50 mM/11.5 mg/ml 100 mM/23 mg/ml Pfeiffer 1997

CMTC V79 200 mM/46 mg/ml Pfeiffer 1997

Metaphase arrest V79 50 mM/11.5 mg/ml 100 mM/23 mg/ml Pfeiffer 1997

Micronuclei V79 100 mM/23 mg/ml Pfeiffer 1997

In vivo

DNA adducts Rat 200 mg/kg Atkinson and Roy 1995

NOEL, No-observed effect level; LOEL, lowest-observed effect level; SHE = Syrian Hamster Embryo; SCE, sister chromatid exchange; CHO=Chinese Hamster Ovary;
V79 = Chinese Hamster fibroblast cell line; CMTC, cytoplasmic microtubule complex.
doi:10.1371/journal.pone.0064532.t001

Table 2. Analysis of carcinogenicity data from the National Toxicology Program (http://ntp.niehs.nih.gov/).

Compound Sex Tissue BMD10 (mg/kg/day) BMDL10 (mg/kg/day) BMDU10 (mg/kg/day)

DES F Pituitary gland adenoma 0.001 0.0005 0.0024

DES F Cervix squamous cell carcinoma 0.07 0.05 0.12

DES M Testes interstitial cell tumor 0.017 0.014 0.02

DES M Pituitary gland adenoma 0.003 0.002 0.005

DES F Pituitary gland adenoma 0.039 0.03 0.06

DES F Cervix squamous cell carcinoma 0.029 0.02 0.04

DES F Mammary gland adenocarcinoma, Type B 0.032 0.011 0.091

DES F Cervix adenoacanthoma 0.086 0.06 0.13

DES M Testis interstitial cell tumor 0.0066 0.004 0.008

DES F Mammary gland carcinoma 0.0003 0.00003 0.0014

DES F Pituitary gland adenoma 0.0009 0.0004 0.0019

DES M Testis interstitial cell tumor 0.0094 0.007 0.012

DES F Pituitary gland adenoma 0.0007 0.0004 0.0014

E2 F Mammary gland adenocarcinoma 0.56 0.28 2.02

BPA F+M Leukemia 42.8 25.99 114.9

BPA M Leukemia 38.5 20.94 201.7

BPA F Leukemia 56.5 N/A N/A

Rotenone M Parathyroid glad adenoma N/A N/A N/A

doi:10.1371/journal.pone.0064532.t002

Mode of Action Approach for Carcinogens

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e64532



described in Step 2. Data that had a flat or zero dose-response

slope at the NOGEL and below were then suitable for bilinear or

hockey stick analysis. Step 4 involved a comparison of linear versus

hockey stick models using the R software package (version 12.2)

recommended by Lutz and Lutz (2009) [23]. Parameters, y-

intercept, Td, and slope above Td were estimated for best fit of a

hockey stick model by minimizing the residual sum of squares.

Confidence intervals (CI) were estimated for all parameters using

an F distribution [23]. If the 95% CI of the derived Td value does

not encompass zero, the model is considered a good fit to the data.

Benchmark dose approach. The BMD approach was
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Figure 4. Using the CBMN to assess % binucleate cells with MN
(%BN-MN) and cell cytotoxicity and/or cytostasis (% Cell
Viability) in AHH-1 cells after E2 treatment at super-physio-
logical concentrations. 361,000 binucleate cells were examined for
the presence of BN-MN. Cell viability (%) was calculated from the
cytokinesis-block proliferation index (CBPI) measure (OECD, 2010) by
scoring approximately 8,000 cells per dose. 0.8 mM E2 and above were
significant to p,0.05 for BN-MN, by comparison to the control using
Dunnett’s.
doi:10.1371/journal.pone.0064532.g004

Figure 5. Using the Aberrant Mitosis Assay to show the activity
of 17-b-oestradiol (E2) as a spindle poison, and to give the
concentration-response relationship at super-physiological
concentrations. Tripolar (Tri) was calculated using number of tripolar
cells compared to number of mitotic cells (36100 in total) using IMMV.
Mitotic Index (MI) was calculated using number of mitotic cells
compared to number of interphase cells (361,000 cells in total) using
conventional spindle staining. 0.8 mM E2 and above were significant to
p,0.05 for both MI and Tri, by comparing to the control using
Dunnett’s.
doi:10.1371/journal.pone.0064532.g005

Mode of Action Approach for Carcinogens

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e64532



performed using the statistical package PROAST [24] to derive

BMC10 (in vitro) and BMD10 (in vivo) values for each data set with a

benchmark response of 10% as previously done for in vivo and

in vitro genotoxicity data [25]. The BMD approach estimates a

dose (i.e., the BMD or BMC) that produces some predetermined,

and presumably biologically relevant, increase in the response over

control (i.e., the benchmark response). The approach employs

mathematical dose–response modeling that takes factors such as

sample size and shape of the curve into account [26]. BMC10 and

BMD10 values were derived using the dose-response modeling

software package PROAST, developed at the National Institute

for Public Health and the Environment (RIVM) in the Nether-

lands (www.proast.nl). The models used were the exponential

models recommended by the European Food Safety Authority

[27]. Model selection was performed using the log-likelihood ratio

test that assesses whether a statistically significant improvement in

the fit is achieved by adding additional parameters. The model

with additional parameters is only accepted if the difference in log-

likelihoods exceeds the critical value at P=0.05. This is

automatically performed in PROAST by selecting the ‘‘automatic

selection of optimal model from nested family’’ option. A log-

likelihood value is also provided for the ‘‘full’’ model, which is

simply the set of the geometric means of the observations at each

dose (together with the residual variance). The log-likelihood ratio

test can be used to compare the selected model with the full model

using a goodness-of-fit test. The model is accepted when the log-

likelihood value of the fitted model is significantly better than that

of the full model. The BMC10 and BMD10 with their associated

lower (BMDL) confidence limits were then derived from the

selected model. Therefore, a BMDL10 refers to the estimate of

lower 95% CI of a dose that produces a 10% increase over the

fitted background level for continuous endpoints, and 10% extra

risk for quantal endpoints.

Derivation of in vivo POD for Carcinogenicity
Carcinogenicity data were taken from the National Toxicology

Program (NTP) and Carcinogenic Potency Databases (CPD). The

BMD approach was used to derive a dose that increases the tumor

response by 10% over the modelled control (BMD10), with its

respective upper (BMDU10) and lower (BMDL10) confidence limit

(Table 2). The lowest confidence limit of the BMD10 (BMDL10)

from the most sensitive tumor endpoint was selected as the POD

for carcinogenicity data.

Results

17-b-oestradiol (E2)
Aneugenicity, cytotoxicity and cytostasis testing of E2 was

conducted in AHH-1 cells using the CBMN assay and the

aberrant mitosis assay. These endpoints were chosen to observe

the genotoxic effects of E2 and give a greater understanding of the

MOA. E2 was found to induce MN at super-physiological levels of

E2 (0.8–1.0 mM) with a significant decrease in cell viability

(p,0.05) at the same concentrations (Figure 4). The td-L-CI for

MN induction was observed at 0.74 mM and for effects on spindle

formation (Tripolar) at 0.45 mM (Table 3). The first significant

(p,0.05) increase (LOEL) for MN induction and for effects on

Figure 6. Mammalian cells treated with 17-b-oestradiol (E2)
treated mammalian cells with the following endpoints. (a) MN
(AHH-1), (b) MI (V79) and (c) Tripolar (V79). Graphs shown are from the
Lutz and Lutz (2009, [23]) hockey stick model for R, with the dotted line
being the lower 95% confidence interval. The x-axis ‘dose’ is in mM, and
y-axis ‘response’ is % cells.
doi:10.1371/journal.pone.0064532.g006
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spindle formation (Tripolar) was observed at 0.8 mM. The BMD

approach showed a BMCL10 of 0.40 and 0.02 mM for MN and

spindle formation induction, respectively (Table 3). If there was a

decrease of 50% cell viability or less at a genotoxic (i.e. clastogenic)

effect, then the MOA was said to potentially be a cytotoxicity

related secondary mechanism and not a true genotoxic response

[11]. However, there was only a decrease of 10%–20%

cytotoxicity and/or cytostasis when a 2–36 fold increase in MN

is observed, which indicated that E2 was genotoxic through a non-

cytotoxicity related MOA. The NOEL was defined as the lowest

value produced between the Td-L-CI and BMCL10 in both the

chromosome loss (MN) and spindle formation effects. This was

justified because non-disjunction is known to occur at lower

concentrations than chromosome loss ([4](Table 3). With this

criterion, the NOEL for E2 was 0.02 mM. The most sensitive

carcinogenicity endpoint with the lowest BMDL10 was observed in

the mammary gland with a BMDL10 of 0.28 mg/kg/day

(1.03 mM/day; Tables 2 and 3).

Discussion

The goal of this analysis was to investigate whether carcinogenic

potency information (i.e. cancer potency ranking) could be derived

from in vitro MN data. For this, several quantitative dose-response

methods were investigated for the selection of a suitable in vitro

MN POD for BPA, E2, and Rotenone. In order to investigate

which method was more appropriate for POD derivation, the

traditional method for analysing in vitro genotoxicity data (i.e.

derivation of no-observed-effect-level (NOEL) or a lowest-

observed-effect-level (LOEL)) was compared to more recent

quantitative methods. First, a summary of BPAs effects in different

genetic toxicology tests is represented in Table 1. From Table 1, it

was clear that the NOELs vary significantly between the different

Figure 7. Mammalian cells treated with bisphenol-a (BPA) using the following endpoints. (a) MN (AHH-1), (b) MI (V79) and (c) Tripolar
(V79), and (d) multi+tetrapolar (V79). Graphs shown are from the Lutz and Lutz (2009, [23]) hockey stick model for R, with the dotted line being the
lower 95% confidence interval. The x-axis ‘dose’ is in mM, and y-axis ‘response’ is % cells.
doi:10.1371/journal.pone.0064532.g007
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Figure 8. BMD analysis of studies by Johnson and Parry (2008, [14]) for (a) E2, (b) BPA and (c) Rotenone; by Elhajouji et al. (1997,
[3]) (d) nocodazole, (e) colchicine, (f) mebendazole, (g) carbendazim, and (h) MMS; by Clare et al. (2006 [19]) for (i) colchicine, (j)
DES, (k) cytosine arabinoside, (l), 5-fluorouracil, (m) bleomycin (n) urethane, and (o) thiabendazole; and by Efthimiou et al. (2007,
[20]) for (p) chlorambucil and (q) melphalan.
doi:10.1371/journal.pone.0064532.g008
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in vitro genotoxic endpoint ranging from 25 to 250 mM. The

NOEL or LOEL are not the ideal method for performing

concentration-response analysis. Comparison of the NOELs from

chromosomal aberrations in Chinese Hamster Ovary (CHO) cells

between Hilliard et al. (1998) [28]350 mM and Ivett et al. 1989 [29]

220 mM clearly demonstrates how deriving the NOEL using the

traditional method is highly dependent on experimental condi-

tions. In addition, NOEL only used one concentration and not the

entire data set, and no confidence limits can be derived. In

contrast, quantitative methods such as the Td and BMD approach

use all the data, are not so dependent on experimental conditions

and provide confidence limits [26]. For this reason, the Td and

BMD approach were selected for the derivation of POD from

in vitro MN studies. The lowest reported NOEL observed was

50 mM or 11.5 mg/ml for metaphase arrest in the V79 cell line

(Table 1) [30]. For the current study in which we carried out

extensive statistical modelling on our previously published BPA

data [14], the td-L-CI for MN-induction and disruption in spindle

formation was observed at 2.58 and 15.42 mM, respectively

(Table 3). Similarly, BMCL10 were 5.48 and 3.13 for MN and

spindle effects, respectively. Therefore, the POD for in vitro MN

for BPA was 2.58 mM.

E2 and BPA (xenoestrogens) are spindle poisons with well-

characterised thresholds for genotoxic activity [3,4], while no

concentration-response was observed with Rotenone (Table 3). E2

and BPA showed clear thresholds for MN, mitotic index (MI) and

tripolarity. This is to be expected as hormones are presumed to

have non-linear concentration and dose-responses [1], and this

study confirms these observations (Figures 4–7). In addition,

comparisons of PODs between in vitro MN and carcinogenicity

were made. Table 3 demonstrated that the BMCL10s for in vitro

MN were ranked as E2.BPA..Rotenone. The carcinogenicity

ranking of the most sensitive tumour endpoint (Table 2) was also

E2.BPA..Rotenone (Table 3). These results, although with

limited number of compounds, were very promising indicating the

potential for deriving carcinogenic potency information from

in vitro MN studies.

Given the promising ranking results observed with E2, BPA and

Rotenone, we extended our analysis and performed a literature

search for in vitro MN data in human lymphocytes [3,14,19,20].

With this analysis we wanted to explore the applicability of using

concentration-response analysis to extrapolate information in

regards to linear versus non-linear concentration-responses and

carcinogenic potency. Based on the concentration-response curves

in Figures 8a–q, a clear distinction in the shape of the

concentration-response curves from in vitro MN for aneugens

(Figure 8: a, E2; b, BPA; c, Rotenone; d, nocodazole; e, colchicine;

f, mebendazole; g, carbendazim; i, colchicine; and j, DES) and

clastogens (Figure 8: m, bleomycin; p, chlorambucil; and q,

melphalan). The in vitro MN concentration dose-response curves

were clearly non-linear for aneugens and linear from clastogens.

Substances which were more mutagenic than clastogenic and

require metabolic activation such as urethane (Figure 8 n) showed

no concentration-response. The concentration-response curves

from the in vitro MN from mutagenic substances such as methyl

methanse sulfonate (MMS; Figure 8 h) and cytosine arabinoside

Table 4. Summary of BMDL10s derived from different human lymphocyte and AHH-1 cell line studies [3,14,19,20].

Compound Classification
CP, Most sensitive tissue/
endpoint

CP,
BMDL10
(mM/day)

In vitro,
BMCL10 (mM)
MN (%MN) In vitro cell line Reference

E2 aneugen mammary gland
adenocarcinoma

1.03 0.40 AHH-1 cell line Johnson and Parry (2008)

BPA aneugen leukemia 91.73 5.48 AHH-1 cell line Johnson and Parry (2008)

Rotenone aneugen parathyroid gland adenoma? no DR no CR AHH-1 cell line Johnson and Parry (2008)

Nocodazole aneugen N/A N/A 0.0026 human lymphocytes Elhajouji et al. (1997)

Colchicine aneugen promoter in two-stage skin
tumor model

N/A 0.004 human lymphocytes Elhajouji et al. (1997)

Mebendazole aneugen N/A N/A 0.107 human lymphocytes Elhajouji et al. (1997)

Carbendazim aneugen hepatocellular adenomas and
carcinomas

62.08 0.26 human lymphocytes Elhajouji et al. (1997)

MMS alkylating agent N/A N/A 7.51 human lymphocytes Elhajouji et al. (1997)

Colchicine aneugen N/A N/A 0.005 human lymphocytes Clare et al. (2006)

DES aneugen mammary gland carcinoma 0.0001 6.90 human lymphocytes Clare et al. (2006)

Cytosine
arabinoside

nucleoside analogue N/A N/A 0.53 human lymphocytes Clare et al. (2006)

5-Fluorouracil nucleoside analogue lung and lymphoreticular
system

22.76 48.20 human lymphocytes Clare et al. (2006)

Bleomycin clastogen N/A N/A 0.0002 human lymphocytes Clare et al. (2006)

Urethane clastogen (requires
metabolic activation)

lung alveolar-bronchiolar
adenoma

0.11 no CR human lymphocytes Clare et al. (2006)

Thiabendazole clastogen no positive in CPD no DR no CR human lymphocytes Clare et al. (2006)

Chlorambucil clastogen Lymphosarcoma 0.0007 0.006 human lymphocytes Efthimiou et al. (2007)

Melphalan clastogen tumor-bearing animals mixed 0.013 0.002 human lymphocytes Efthimiou et al. (2007)

CP, carcinogenic potency was derived from studies carcinogenic potency database (www.berkley.org) and National Toxicology Program (NTP); POD, point of departure;
MI, mitotic index; MN, frequency of micronuclei formation, DR, dose-response; CR, concentration response.
doi:10.1371/journal.pone.0064532.t004
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(Figure 8 k) seemed to have non-linear concentration-response

curves. This has been previosly demonstrated for MMS [25] but

more research on the MOA of cytosine arabinoside is needed to

verify our observation. Other genotoxic substances such as 5-

fluorouracil (Figure 8 l) had concentration-response curves which

were clearly linear at the concentrations tested. Thus, similar

concentration-response curves could be used to group substances

in terms of their genotoxic MOA and further obtain potency

information.

In terms of carcinogenic potency, it was very difficult to make

any inferences given the limited in vitro MN and carcinogenicity

data (Figure 8 a–q). For the study of Elhajouji et al. (1997) [3], only

carbendazim had carcinogenicity data. The study by Clare et al.

(2006) [19] showed a carcinogenicity ranking of BMDL10a of

DES.urethane.5-fluorouracil. The BMCL10s from in vitro MN

showed a genotoxicity ranking of bleomycin.colchicine.cytosine

arabinoside.DES.5-fluorouracil (Table 4). For compounds

which had both MN and carcinogenicity data, the rankings did

not differ significantly, with the exception of urethane which

requires metabolic activation and had no concentration-response.

For the study by Efthimiou et al. (2007) [20], the carcinogenicity

ranking was chlorambucil.melphalan while the genotoxicity

ranking was melphalan.chlorambucil. No true conclusions can

be made until more substances are tested. To the best of our

knowledge, this is the firt study to try to attempt to investigate

whether carcinogenic potency information can be derived from

in vitro MN studies in human lymphocytes using quantitative

approaches. Atlhough inconclusive, these results were promising

and more in vitroMN studies under the same conditions (treatment

schedule and recovery) and carcinogenicity studies are needed.

Conclusions
Here we demonstrated that combining the micronucleus assay

along with aberrant mitotic analysis in AHH-1 and V79 cells, has

risk assessment applications for the identification of aneugens, and

the derivation of PODs using Td and BMD statistical modelling

approaches. The traditional NOEL method for deriving POD is

less suitable for analyzing in vitro genotoxicity data and quantita-

tive approaches such as the Td and BMD are recommended for

future POD derivation. The concentration-response curves from

the in vitro MN in AHH-1 and human lymphocytes provide useful

information on linear versus non-linear concentration-response

which has risk assessment implications. Comparison of POD

ranking between the in vitro MN and carcinogenicity were

comparable with E2, BPA and Rotenone but comparisons with

other clastogens and mutagens were inconclusive.

Further analysis is needed to investigate whether POD

derivation from in vitro MN studies may provide carcinogenic

potency information.
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