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Photon Parameterisation for Robust Relaxation Constraints

B. Spencer and M. W. Jones

Visual and Interactive Computing Group, Swansea University, UK

Abstract

This paper presents a novel approach to detecting and preserving fine illumination structure within photon maps.
Data derived from each photon’s primal trajectory is encoded and used to build a high-dimensional kd-tree.
Incorporation of these new parameters allows for precise differentiation between intersecting ray envelopes, thus
minimizing detail degradation when combined with photon relaxation. We demonstrate how parameter-aware
querying is beneficial in both detecting and removing noise. We also propose a more robust structure descriptor
based on principal components analysis that better identifies anisotropic detail at the sub-kernel level. We illustrate
the effectiveness of our approach in several example scenes and show significant improvements when rendering
complex caustics compared to previous methods.

1. Introduction

Caustics, or the family of light transport paths that contain a
S+D sub-path, are responsible for some of the most complex
and distinctive visual phenomena found in nature. As a com-
ponent of the rendering equation, however, they often prove
challenging to solve owing to the relatively tiny proportion
which carry a significant contribution of energy between the
emitter and the eye. Consequently, caustics require the use
of bi-directional and multi-pass rendering techniques which
simulate energy flow both forwards from the light source and
backwards from the eye. Among the most popular of these is
photon mapping [Jen96b]: a two-pass approach that has seen
widespread adoption thanks to its speed, robustness and ex-
tensibility.

A typical photon map stores packets of radiant flux at dif-
fuse surfaces which have first undergone specular reflection
and refraction. The exitant radiance from the caustic compo-
nent at any given point can be reconstructed from the photon
distribution using a density estimation kernel. This approach
capitalises on the correlation between the integral of inci-
dent illumination at each point on a surface, transforming
the sparse photon point set into a continuous function of il-
lumination. The principal drawback of the photon mapping
method is the relatively low fidelity of the cached dataset
which generally results in error being introduced into the ra-
diance reconstruction.

Error reduction strategies for density estimation algo-
rithms have been rigorously researched and a large body

of work now exists which addresses nuances of the prob-
lem specific to the photon mapping framework. Photon re-
laxation [SJ09] represents a recent contribution that aims to
reduce error by directly diffusing the underlying point dis-
tribution. Though shown to be effective at smoothing out
multi-frequency noise, this approach can significantly de-
grade intricate, subtle or high frequency detail.

After covering the background literature in Section 2 and
introducing the problem in Section 3, this paper:

• Discusses the advantages of augmenting the standard pho-
ton map with information about each photon’s initial tra-
jectory. After motivation in Section 4, the chosen param-
eters are proposed in Section 4.1.

• Explores the new k-NN query enabled by this approach
(Section 4.2) along with the idea that the photon kd-tree
can be extended to a higher-dimensional space thereby al-
lowing efficient, parameter-aware querying. These com-
bine to effectively isolate overlapping or interfering illu-
mination.

• Introduces a new method of identifying anisotropic struc-
ture within the photon distribution using principal compo-
nents analysis (Section 4.3).

• Presents and discusses the resulting denoised images in
Section 5. Due to the low kernel bandwidths made prac-
tical by this approach, low render times and low bias are
achievable whilst still yielding low noise images.
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(a) Standard photon mapping (b) Photon relaxation (c) Our method
[Jen01] [SJ09]

Figure 1: Cognac Glass. (a) An unmodified photon map rendered with 15 photons in the radiance estimate exhibits high levels of noise. (b)
Photon relaxation as proposed by Spencer and Jones virtually eliminates noise, however overlapping filaments of the caustic are also degraded.
(c) Our approach separates photons in a parametrised domain, correctly inhibiting migration even across interlaced boundaries.

2. Background

Error in the radiance reconstruction from the photon map
is the sum of two constituent components: noise and bias
[Sil86]. Noise appears as a speckling artefact arising from
discrepancy within the underlying point distribution cou-
pled with variance in the stored flux between photons. The
radiance estimator acts as a filter for noise, the upper fre-
quency of which is bounded by the bandwidth and support
of the kernel. Naïve estimators adapt poorly to changes in
the flux density function and result in undesirable smooth-
ing known as bias. These conditions result in a trade-off
where a decrease in noise yields an increase in bias and
vice versa. Despite this correlation, bias and noise are only
weakly codependent. This implies that a well-designed ker-
nel can adapt to the underlying density function, reducing
noise while minimising the penalties from bias.

Jensen and Christensen [JC95] were the first to address
intelligent bandwidth selection within the photon mapping
framework with the introduction of differential checking.
Later, Schregle [Sch03] defined a bias compensation oper-
ator using the statistical properties of random numbers to
differentiate between noise and bias. Hey and Purgathofer
[HP02] proposed utilising data from the underlying polygo-
nal mesh to address the twin problems of boundary and topo-
logical bias.

Havran et al. [HBHS05] demonstrated how storing the
photon ray paths could be used to more accurately estimate
radiance on intricate geometry. Herzog et al. [HHK∗07]
sought a solution by splatting photons directly onto eye sam-
ples projected from the image plane. Chen et al. [CTC10]
used a clustering strategy to group photons with coherent
ray paths into small, individual photon maps analogous to
light beams.

Progressive photon mapping [HOJ08] solves the prob-
lem of bias by reducing the kernel radii of a series of pre-
cached estimates as energy from successive passes of inci-
dent photons is accumulated. Given sufficient time, the bias

of each estimate converges asymptotically to zero thus mak-
ing the algorithm consistent in the limit [HJ09]. Knaus and
Zwicker [KZ11] proposed a memoryless adaptation of pro-
gressive photon mapping which also extended the algorithm
to support arbitrary kernels and participating media.

More diverse methods of bias reduction have also been
developed for the kernel density estimation framework
[SWH∗95]. Myszkowski [Mys97] proposed calculating the
error due to bias from an array of neighbouring estimates
adjacent to the sample positions. Walter et al. [WHSG97]
addressed the problem with a solution based on polynomial
regression and augmented with a perceptually-driven band-
width selector [Wal98] to account for variance both in lumi-
nosity and chromaticity.

Schjøth et al. [SOS05] demonstrated the limitations of
isotropic, variable bandwidth kernels and proposed that fil-
tering the estimate anisotropically could dramatically im-
prove results. Later, Schjøth et al. [SFES07] adapted the ray
differential framework [Ige99] to shape the filter based on
photon ray footprints. Jakob et al. [JRJ11] used a hierarchi-
cally accelerated expectation-maximisation algorithm to de-
compose the photon map into a series of anisotropic Gaus-
sians, thus allowing more efficient rendering of participating
media.

Photon relaxation [SJ09] addresses the problem of noise
by directly redistributing the underlying point distribution
via an intermediate pass between particle tracing and render-
ing. Using iterative point repulsion, noise is diffused away
leaving a locally equidistributed point set with a blue noise
spectral signature. Research has shown that blue noise dis-
tributions are optimal in many sampling applications [Uli88]
and their low-noise properties have also been found to apply
to the photon map. The relaxed photon map is of a sufficient
fidelity to allow very low bandwidth radiance estimates. This
has the effect of minimising topology, proximity and bound-
ary bias and reduces render time. Spencer and Jones later de-
veloped a progressive approach to photon relaxation [SJ13]

c© 2013 The Author(s)
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Relax

(a) (b) (c) (d) (e) (f)

Figure 2: The discontinuity problem. (a) A sample PDF (inverted for clarity) of flux density, B. (b) Plotting B along a slice through the PDF
reveals its discontinuous structure. (c) An analytical differential is analogous to a series of delta functions at the discontinuities. Here, the
magnitude of the gradient is infinite indicating the need to maximally constrain photons at these points. (d) The estimate of B reconstructed
from the photon distribution is biased, yielding finite values of ∂B̂ proportional to the change in flux density. These estimates do not reliably
indicate discontinuities. (e - f) Mapping |∇B̂| to photon constraints and relaxing the distribution results in the interior structure of the PDF
becoming severely degraded.

by using successive passes of temporarily stored photons to
refine an estimate of flux density over the Voronoi cells of a
conventional photon map. A capacity constraint equation is
used to iteratively refine cell areas yielding an accurate es-
timate of per-photon flux density encoded by an optimised
blue noise distribution.

3. Problem Definition

Photon relaxation as defined by Spencer and Jones [SJ09]
uses iterative point repulsion to progressively remove noise
from a photon distribution. Though effective, the process of
compound diffusion can also act negatively to degrade the
encoded flux density function, B. By selectively constrain-
ing photon migration, the undesirable effects of diffusion can
be counteracted, preserving important visual structure while
still effectively removing noise.

In determining the degree of constraint to apply to an indi-
vidual photon, we refer to general models of diffusion for a
correspondence. In particular, Fick’s first law states that the
flux of a diffusive system is proportional to the gradient of
the density [Fic55]. In the context of photon relaxation, this
is analogous to the rate of migration of photons across a sur-
face. Hence, photons should be constrained in the direction
of and proportional to the magnitude of the gradient, ∇B,
measured from the flux density function.

Since B and by extension ∇B are unknown, they must
be reconstructed from the photon distribution. It is this pro-
cess of estimation that introduces an intrinsic limitation in
the photon relaxation algorithm and which our new approach
attempts to address. To demonstrate the problem, we sketch
a sample PDF with a piecewise, discontinuous profile and
plot it in Figures 2a and b. Analytically differentiating to ob-
tain an exact value of ∂B yields the plot in Figure 2c. Note
how the infinite gradient on each discontinuity yields a series
of delta functions with antiderivatives equal to the absolute
change in flux density. Photons at these locations will lie
on a transition at the highest possible spatial frequency and
should therefore be maximally constrained.

In the absence of an analytical derivative of B, the estimate

B̂ is used instead. This must be derived from the photon dis-
tribution local to the query point and is therefore intrinsically
biased. Estimator bias effectively acts to convolve or smooth
the flux density function. We depict this effect in Figure 2d
where the energy at the singularity of each delta function has
been redistributed along the spatial axis by the kernel. This
serves to weaken the estimated gradient which is now always
finite. Critically, the estimate is also ambiguous since there
is no way of separating the bias from the original function.
For example, it is impossible to determine whether a weak
gradient estimate is the product of a relatively shallow yet
still discontinuous transition that has been smoothed by the
kernel, or else a legitimately weak slope of B.

The impact of this effect is demonstrated in Figure 2e
where a photon distribution seeded using the PDF in Figure
2a is constrained according the biased gradient estimate. No-
tice that weak or non-existent constraints on interior bound-
aries lead to degradation of the density function after relax-
ation (Figure 2f). A practical example of this phenomenon
appears in Figure 1 where photons are propagated through a
model of a glass containing agitated liquid. In Figure 1a we
render the unmodified photon map using 15-nearest neigh-
bours in the radiance estimate. Using a low-bandwidth ker-
nel maximises the fidelity and detail of the caustic but intro-
duces noise as a result of the discrepancy in the distribution.

In Figure 1b the photon map has been diffused by 14 iter-
ations of photon relaxation [SJ09]. Although this technique
preserves sharp caustic boundaries, overlapping filaments of
the caustic are blurred excessively due to the diffusion of
photons. We note that this can be superficially addressed by
turning up the gain on the gradient detection. Amplifying
the constraints around shallow discontinuities curbs the ef-
fects seen in the Figure 1b but also amplifies error due to
noise. This is a significant problem since photon maps are
inherently noisy. Overzealous constraint in otherwise uni-
form regions of illumination introduces an undesirable con-
touring effect, examples of which can be seen in [SJ09]. Fur-
thermore, the user-specified parameters required to optimise
gain for individual photon maps makes this approach diffi-
cult to control.

c© 2013 The Author(s)
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A

B Relax Relax

(a) (b) (c) (d) (e) (f)

Figure 3: (a - b) Our method seeks to address the discontinuity problem by storing additional information at each photon - in this case
whether it belong to set A or B. (c) This effectively separates gradient estimation into two different domains for each set. (d) When applied to
the photon map, we can see that the boundary of each set is now properly constrained. (e) Parameter-aware relaxation rapidly removes noise
but generates a sub-optimal distribution where the sets overlap. (f) Collapsing the extra dimensions and relaxing again results in the correct
blue noise signature.

What is needed is a means by which to treat all discon-
tinuities with equal salience, thus allowing appropriate mi-
gration constraints even when the biased gradient estimate
is unreliable. Most importantly, the system must be resilient
to noise in order to avoid rendering artefacts. To accomplish
this, we propose separating features within the photon dis-
tribution within a new, parametrised domain so as to make
feature detection more resilient to kernel bias. This concept
is illustrated in Figure 3b where the PDF from Figure 2a
has been broken up into two individual sets. Feature detec-
tion on these sets individually yields more consistent gra-
dient estimates and allows more robust photon constraints.
In the following section, we explore a practical method of
parameterising the photon map so that caustic illumination
may be dissociated in the same fashion.

4. Our Method - High-Dimensional Parameterisation

In order to devise a more robust method by which to break
down and separate the complex visual structure found in
many caustics, it is useful to consider the physical model
behind their formation. This allows us to define new pa-
rameters which can be used to differentiate between distinct
structural elements like those found in the cognac caustic in
Figure 1.

A discontinuity within a caustic may be formed in one of
two ways. The first is through occlusion where one piece of
geometry physically obscures another. Photons are captured
by the occluding surface thereby creating a shadow on any
surface beneath it. The second type of discontinuity appears
as the result of an intersection between a photon ray enve-
lope and a diffuse surface. This concept is demonstrated in
Figure 4b where collimated light from an overhead source
is refracted by a transparent dielectric interface in the shape
of a wave. Two ray envelopes are visible to the left and to
the right which together form an inverted, V-shaped curve
directly below the apex of the dielectric. The discontinuity
in photon density defines the locus where each ray envelope
intersects the surface. In order to prevent migration across
these features during relaxation, photons should be maxi-
mally constrained along each boundary.

We introduce our method with the observation that specu-
lar caustics represent a warping of the primal distribution by
intermediate geometry. Groups of photons that are sequen-
tial at the point of emission may subsequently become folded
together as they are reflected and refracted. By isolating and
grouping stored photons based upon a parameterisation of
their initial trajectories, we can effectively unfold complex,
overlapped caustic elements in a meaningful way. Specif-
ically, interference from non-local photons can be excluded
while still preserving discontinuities which arise from occlu-
sion and ray envelopes. This facilitates more effective edge
detection since only the region of the distribution paramet-
rically local to the photon being queried is considered for
feature extrapolation.

Algorithm 1 PHOTONRELAXATION()
1: N← GENERATEPHOTONMAP()
2: REBUILDKDTREE(N,{x,y, z,θ,φ})
3: for all n ∈ N do
4: SETPARAMETERSPACERANGE(rθφ(n)) Eq. 1
5: Kc← GATHERNEARESTPHOTONS(n)
6: P̂1, 2,λ1, 2← COMPUTEPRINCIPALCOMPONENTS(Kc)
7: ~ub(n) = P̂1
8: ~vb(n) = P̂2[1− 3π

4 M(λ2)Φ(λ2)] Eq. 7
9: end for

10: for i = 1 to R do
11: for n ∈ N do
12: ~x(n) =~x(n)+ ~fb(n) Eq. 9
13: end for
14: end for
15: REBUILDKDTREE(N,{x,y, z})
16: Repeat relaxation step (lines 10 to 14)

In Figures 4c and 4d, the incident rays have been mapped
to a one-dimensional parameterisation in the range [0,1]
based upon their origin. The value of this parameter is subse-
quently encoded at each stored photon. Computing the gra-
dient at the photon marked in red requires that we not only
search for photons local in world space, but also in parame-
ter space (highlighted in blue). When the path of the queried
photon lies on the ray envelope, parameter localisation has
the effect of excluding those photons that are not part of its
structure. Furthermore, when a photon from a low density

c© 2013 The Author(s)
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Transparent dielectric

Parallel incident photons

Diffuse plane Structure query Isolated structure query

Ray envelope

Search range

Origin parameterisation
0 1 0 1

Emitter plane

Bounding sphere

[θ,φ]

(a) (b) (c) (d) (e)

Figure 4: (a) Light passes from a vacuum into a transparent dielectric before being diffusely reflected. (b) Photons are focussed toward the
centre of the ground plane producing a prominent discontinuity in flux density at the point marked in red. Querying the gradient of the photon
map at this point results in photons outside of the envelope also being included, weakening the boundary constraint. (c) Parameterising the
incident ray origin means we can restrict which photons are included in the gradient estimate to those that are local to the queried photon in
parameter space, thus preventing non-local photons from interfering with the structure extrapolation. (d) Furthermore, photons lying near but
not on features are not affected. (e) Collimated emitters use the same parameterisation but over the 2-dimensional space of photon origins,
[θ,φ].

Emitter 

Trajectory parameterisation
over unit hemisphere

[θ,φ]

Trajectory space
search range

Queried photon

Photon positions in 
trajectory space

(a) (b) (c)

Figure 5: Parameter space constraints. (a) For a Lambertian point
emitter, the primal photon trajectory over the unit hemisphere yields
a pair of spherical coordinates, [θ, φ]. (b) During feature detec-
tion, k-NN querying is restricted to a fixed range in parameter space
(Equation 1) which aids in separating individual caustic filaments.
(c) The colour encoding used to visualise photon parameter space
positions in Figures 6e and 8d.

region is queried, proximity bias from the adjacent high den-
sity region does not affect the gradient estimate (Figure 4d).

In the next section we discuss suitable parameterisations
for common light sources that will enable us to appropriately
separate distinct caustic filaments.

4.1. Photon Emitter Parameterisations

The parameterisation of incident illumination in Figure 4
is derived from the relative origin of each photon and can
be extended to two dimensions to handle illumination from
collimated light sources such as the sun. This is illustrated
in Figure 4e where photons are cast from an emitter plane
which has been parametrised into two orthogonal axes. We
designate these parameters θ and φ.

For emitters at a finite distance we are forced to use a dif-
ferent mapping since the origin of each photon path is likely
to be relatively invariable. We observe that the change in po-
sition of absorption of photons from a point source is a func-
tion of the exitant angle of emission which can summarily

be mapped onto the spherical coordinates of the unit space
around the light source. This is depicted in Figure 5a where
the unit hemisphere above a Lambertian point emitter has
been parametrised based upon the inclination and azimuth
angles. Omni-directional emitters can use the same parame-
terisation based on the unit sphere.

Photons stored in the photon map are encoded with the
(x,y,z) tuple of their spatial position together with their coor-
dinates in parameter space. For collimated emitters this adds
two extra dimensions. For Lambertian and omni-directional
emitters it adds three since their 2-dimensional spherical co-
ordinates must be embedded in 3-dimensional space. In Al-
gorithm 1, kd-tree construction is encapsulated by the func-
tion REBUILDKDTREE(N,{. . .}). The first parameter, N, is
the set of all photons. The second parameter indicates the
set of dimensions partitioned by the tree; {x,y,z} for world
space position and {θ,φ} for emitter parameterisation.

4.2. Feature Detection and Relaxation

K-nearest neighbour searching is performed for the lower
three Euclidean dimensions while constrained to a range in
parameter space (Figure 5b). The extent of the neighbour-
hood in parameter space within which to search determines
the effectiveness at isolating intersecting ray envelopes. Too
large a radius and overlapping regions of the caustic may
not be correctly differentiated. Too small and feature detec-
tion may incorrectly interpret warping between parameter
and world spaces as structure.

We determine the search radius on a per-photon basis
from the local photon density, ρ. We define ρ as the number
of photons per unit area of the 2-manifold parameter space of
the emitter which we measure a priori to feature detection.
Hence, for a given photon, i, its search range in parameter
space is equal to:

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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rθφ(i) = β

√
Kc

πρθφ(i)
, (1)

where Kc is the number of nearest neighbours used to deter-
mine the structure of the photon distribution. The scale fac-
tor, β, allows vital flexibility to account for warping and dis-
tortion in the mapping between parameter and world spaces.
In our implementation, we found a value of β = 3 consis-
tently differentiated between ray envelopes while avoiding
incorrect constraint.

We perform feature detection at every photon by gather-
ing its Kc-nearest neighbours in world space and constrain-
ing the search within radius rθφ to the parameter space coor-
dinate of the photon being analysed (illustrated by Figure 5b
and encapsulated by SETPARAMETERSPACERANGE() and
GATHERNEARESTPHOTONS() in Algorithm 1). An orthog-
onal basis, b, is then computed into which the force of repul-
sion at every iteration is projected. We explore this process
in detail in the following section.

4.3. An Improved Anisotropic Structure Descriptor

A second effect of the bias introduced by the gradient es-
timator is unpredictable behavior on or near structures that
are both anisotropic and radially symmetric within the span
of the kernel. Prominent examples can be seen in Figure
6a where the distribution exhibits fine filaments only one
or two photons wide. Basing the gradient estimate, ∇B̂, on
the density derivative fails to detect these structures because
the relative mean cancels to zero in all directions (Figure
6b). Significantly, the problem is not addressed by our high-
dimensional parameterisation because the structures we are
trying to detect exist at a frequency above that of the kernel
used to estimate them.

4.3.1. Principal Components Analysis

As a solution we propose a more robust structure descriptor
based upon principal components analysis [Pea01]. PCA is
useful because the transformation defines both a scalar mea-
sure and dominant axis of anisotropy. Most importantly, it is
not rendered ineffective by radially-symmetric distributions.

The principal components for the k-nearest neighbors lo-
cal to some photon, i, are found by computing the eigen-
decomposition of the covariance matrix derived from the
zero-mean point set. To reduce the dimensionality and sub-
sequent complexity of the decomposition, we project each
nearest neighbor into 2-dimensional tangent space derived
from the surface normal of the photon for which we are
computing the constraint. The resulting pair of eigenvectors,
~P1,2, form an orthogonal basis into which the photon’s repul-
sion vector is projected during relaxation. The correspond-
ing eigenvalues, λ1,2, indicate the degree of anisotropy of the
distribution from which we compute the level of constraint.

Throughout the text, values of λ are normalised to the ra-
dius of the kernel, r. This entire process is encapsulated by
COMPUTEPRINCIPALCOMPONENTS() in Algorithm 1.

Regions where the photon distribution is highly isotropic
indicate low variation in incident illumination. Under these
conditions, photons can migrate freely as required by the re-
laxation function. Increasing anisotropy corresponds to an
increasingly steep gradient. The magnitude of the eigenvalue
of the second principal component, λ2, indicates the degree
of anisotropy and can be used to specify the level of con-
straint along the axis defined by its corresponding eigenvec-
tor.

We aim to limit the motion of photons in the gradient di-
rection so that the degree of constraint is proportional to the
pressure exerted upon them by their nearest neighbors. We
first restate that the migration pressure applied to each pho-
ton is proportional to the density derivative,∇B̂. To this end,
we establish a bijective mapping,M, between λ2 and |∇B̂|
of the distribution within the k-NN kernel around photon i:

|∇B̂| ∝M(λ2) =

√
1
4
−λ2 . (2)

Equation 2 is plotted in red in Figure 7b over the range [0,
0.25]. The limit marked "maximum constraint" corresponds
to the migration pressure on a photon on the edge of a maxi-
mal discontinuity. At this point, in order to prevent blurring,
no movement in the gradient direction should be permissi-
ble. A full proof of the derivation of Equation 2 is given in
section A of the supplementary material.

4.3.2. Filtering Noise

We also consider the signal noise floor and its effect on
feature detection. Photon maps are intrinsically noisy and
artefacts may be introduced if the algorithm misidentifies
noise as structure. To ensure robust noise removal while pre-
serving important visual features, we propose a statistical
method of filtering erroneous results.

We first acknowledge that the measure of anisotropy de-
fined by λ2 is a function of both the background noise in
the local photon distribution and the underlying flux density
function. Since we do not know either with exact certainty,
these components are not explicitly separable. However, we
can draw upon certain properties of random numbers to in-
fer a statistical likelihood that a detected feature is merely a
result of noise and not a change in flux density.

The central limit theorem states that the sum of a set, ξ,
of K independent and identically distributed random vari-
ables will be normally distributed. The usefulness of this rule
lies in the fact that each variable may have an arbitrary PDF.
Thus the eigenvalues of the PCA decomposition of photons
seeded using independent and identically distributed random
numbers should also exhibit the same distribution. We con-
firm this experimentally by introducing a test case whereby

c© 2013 The Author(s)
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(a) Standard PM (b) Photon relaxation (c) Diffusion-based PM (d) Our method

(e) Parameter space (f) Path edges (g) Derived constraints (h) Reference

Figure 6: A glass prism illuminated by a strong point light. Caustic illumination is encoded by approximately 880,000 photons. 15-nearest
neighbours were used in the radiance estimate except in the case of (c) where the minimum diameter of the anisotropic kernel is adjusted to
yield comparable levels of bias.
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Figure 7: (a) The histogram of samples of λ2 measured from
100,000 unique sets of an isotropic test distribution. (b) The plot
of λ2 against the magnitude of the resulting constraint computed by
our mapping function. In both frames, Kc is set to 100.

a set of photons of size Kc are seeded within a unit circle
according to a continuous uniform distribution. In Figure 7a
we plot the histogram of λ2 measured from 100,000 unique
sets of our test case, each containing 100 photons. The mean
of these data is measured to be approximately 0.2219 and
the standard deviation 1.88× 10−2. We overlay a Gaussian
function,N , with equal mean and variance and see that they
correspond with only a marginal degree of error.

We can use the properties of the central limit theorem to
determine the attributes of the normal distribution for arbi-
trary values of Kc in the feature detection kernel. The prob-
ability of the sum of random variables, Σξ, being less than
real value, x, converges to the CDF, Φ, of a standard normal
random variable:

lim
K→∞

Pr
(

Σξ−Kµ
σ
√

K
≤ x
)
≡Φn(x) , (3)

where µ and σ are the mean and standard deviation respec-
tively. Crucially, this shows us that as K grows large, the

magnitude of σ relative to µ diminishes asymptotically ac-
cording the reciprocal of

√
K. Since σN is measured as

1.88× 10−2 when Kc = 100, the general equation for stan-
dard deviation becomes:

σN (K) =
0.188√

K
. (4)

The equation for the mean, µN , can be computed us-
ing a similar relationship. Figure 7a demonstrates that E(λ2)
when Kc <∞ does not equal λ2 as Kc→∞. This is due to
the interdependence of the two principal components which,
by definition, require that λ2 be no greater than λ1. We
can prove analytically that λ2 = 0.25 when Kc is infinitely
large (section A in the supplementary material). Applying
the same principal as Equation 4 and observing that λ2 con-
verges asymptotically to 0.25, we express µN as:

µN (K) = 0.25− 0.2809√
K

. (5)

We restate our goal of attenuating the constraint applied
to a photon according to the likelihood that the estimate of
local anisotropy has been affected by noise. To achieve this,
we compute one minus the integral of N between −∞ and
λ2. This is equal to the probability, Φ, that λ2 is less than or
equal to the second eigenvector from a random sample set
from the isotropic test case. The corollary is the estimated
likelihood that the value of λ2 is not attributable to noise.
This integral is defined as:

Φ(λ2) =
1
2

1− erf

λ2−µN (Kc)√
2σ2
N (Kc)

 , (6)

c© 2013 The Author(s)
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where erf is the error function. Equation 6 can now be ap-
plied as a continuous attenuation function that we use to de-
constrain photons according to the detected degree of noisi-
ness. We elaborate on this concept in the following section.

4.3.3. Defining a Constraining Basis

Thus far we have derived a continuous correspondence be-
tween the force acting on a given photon and its PCA eigen-
values. From this we can derive its constraint as the u and v
components of orthogonal basis, b:

~ub = P̂1

~vb = P̂2

[
1− 3π

4
M(λ2)Φ(λ2)

]
, (7)

where P̂ are the unit eigenvectors of the first and second prin-
cipal components. Equation 7 is derived from Equation 2,
adjusted for noise by Equation 6. Note that to prevent migra-
tion constraints outside the range [0,1], the computed value
of λ2 must be clamped to [ 1

4 −
16
9π2 ,

1
4 ] (see section A in the

supplementary material for details). Given that the principal
components, ~P1,2 are computed in 2-dimensional photon tan-
gent space,~ub and~vb must be re-embedded into world space
before being stored in the photon.

In Figure 7 we plot the migration constraints derived from
Equation 7. The red curve effectively represents the unfil-
tered mapping,M, from Equation 2. Applying noise com-
pensation, Φ, attenuates the constraint as λ2 approaches its
isotropic limit of 0.25 (green curve).

4.4. Relaxation

Once orthogonal bases have been found for every photon,
the photon map is iteratively relaxed. We define the force, ~f ,
applied to every photon i at each iteration as:

~f (i) =
1

Kf

Kf

∑
j=1

(~x(i)−~x( j))

[
‖~x(i)−~x(Kf )‖
‖~x(i)−~x( j)‖+ ε

−1
]
, (8)

where x is the position of i in world space, ε is a arbitrarily
small constant and Kf is the set of nearest neighbours to i
which we set to a value to 16. ~f is summarily projected into
basis b to enforce migration constraint:

~fb(i) = ûb(i)[~ub(i) · ~f (i)]+ v̂b(i)[~vb(n) · ~f (i)] (9)

where û and v̂ are the normalised basis vectors.

In this step, we take further advantage of the high-
dimensional kd-tree by breaking the process down into two
separate stages. The first stage relaxes the distribution by
gathering photons within the high-dimensional constraints
used by the feature detection algorithm. In the second stage,

(d) Parameter space (e) Derived constraints

(a) Standard PM

(b) Photon relaxation

(c) Diffusion-based PM

(f) Our method

Figure 8: A halogen reading lamp illuminating a chair. All illu-
mination in this scene is caustic since it has first passed through a
glass shield covering the bulb. The intricate patterns are caused by
a faceted parabolic reflector mounted above the bulb.

all dimensions extraneous to world space are summarily col-
lapsed and the kd-tree rebuilt. Iterative relaxation is then re-
peated.

We demonstrate this progression in Figure 3e–f. We ob-
serve that the rate of noise diffusion is proportional to the
relative density of the photon distribution. Hence, by relax-
ing the two sets independently, noise is diffused more uni-
formly than if they are treated as a single group. The draw-
back of this approach is that the desirable property of pho-
ton equidistribution is not attained where two or more sets
intersect (as evident in frame d). To address this, we col-
lapse the tree so the relaxation operator can no longer make
the distinction between photon positions in parameter space.
Because the component distributions, A and B, are already
denoised, only a small number of iterations are required to
yield an optimised point set (frame e).

5. Results

We compare our algorithm against the classic photon map-
ping algorithm introduced by Jensen, the original photon
relaxation method [SJ09], diffusion-based photon mapping
[SOS08] and, for reference, progressive photon mapping
[HOJ08]. All tests were performed using an Intel Core i7

c© 2013 The Author(s)
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(a)

(b)

(c)

(d)

Figure 9: Rings and Coins Redux. Close-up on our method using
(a) 134k, (b) 670k and (c) 3.3M photons. (d) Rendered with PPM us-
ing 1B integrated photons. Wide shot was rendered using the photon
map from frame b.

with 8GB of RAM running Windows 7. Both feature detec-
tion and relaxation were well-suited to vectorisation so we
were able to utilise a total of 7 cores running in parallel.
Timings for Figure 6 are listed in Table I (see section B in
the supplementary material for further timings).

With the exception of the reference images, exitant radi-
ance was reconstructed using an Epanechnikov kernel fil-
ter [Sil86]. When casting photons, the domain of each emit-
ter was sampled using a low discrepancy, quasi-random Hal-
ton sequence. We use a value of Kc = 50 in the feature detec-
tion kernel from which are derived the principal components.
For our method, the number of relaxation iterations (param-
eter R in Algorithm 1) is set at 7 in high-dimensional space
followed by a further 7 in collapsed world space. For the
original photon relaxation method, 14 iterations were per-
formed in collapsed world space.

When rendering with diffusion-based photon mapping,
we used 500-nearest neighbours to achieve comparable lev-
els of noise removal. Schjøth et al. [SOS08] specify a diffu-
sivity function [PM90] which controls the anisotropy of the
kernel filter. To yield visually comparable levels of blurring
due to kernel bias we set the control parameter, q, to 0.02.
This yields similarly sharp edges around discontinuities in
illumination, although it also introduces artefacts from noise
(Figures 6c and 8c). Increasing q alleviates these effects at
the expense of increased smoothing on overlapping caustic
filaments.

Figure 1 is based on Jensen’s classic Cognac glass
[Jen96a] which has been shaken to agitate the liquid within
it. This scene highlights the advantages of high-dimensional
feature detection over its low-dimensional counterpart. Our
method successfully constrains photons on weak discontinu-

ities unlike the previous method which allows them to dif-
fuse away.

In Figure 6, a glass prism generates intricate shards of
caustic illumination when lit from behind. In frame c we
use the anisotropic, shape-adapting kernel introduced by
Schjøth et al. [SOS08]. The visible contouring effect is due
to noise being misidentified as structure. Frame d has been
denoised by our method. Note how caustic filaments are
well-preserved, even those that are visually difficult to dis-
tinguish in frame a. Frames e and f are rendered using colour
encodings of photon parameter space and path length. In
frame g, highly constrained photons are highlighted in red.
Finally, frame h depicts a reference image rendered with pro-
gressive photon mapping.

Figure 8 depicts a halogen reading lamp illuminating a
chair. The complex pattern is caused by the faceted parabolic
reflector above the bulb mounted behind a glass filter. The
subtle faceting is barely represented by the noisy photon map
(Figure 8a), however our trajectory space parameterisation
(Figure 8d) successfully separates and preserves its internal
structure (Figure 8f).

Finally, Figure 9 demonstrates the performance of our ap-
proach using variable numbers of photons.

6. Conclusion

In this paper we have demonstrated how a high-dimensional
kd-tree built using data parametrised from each photon’s pri-
mal trajectory is more effective at differentiating between
complex visual structure that naturally occurs in caustic illu-
mination. We have also introduced a more robust approach
to feature detection that correctly handles anisotropic distri-
butions and is tolerant to noise. Our method has been shown
to be effective at removing noise while preserving important
visual detail.

As future work we would like to explore other potential
parameterisations besides those of the light source, for ex-
ample, angle of photon incidence, path length and number
of edges (Figure 6f). Also of interest is the ray differentials
framework as adapted to photon mapping by Igehy [Ige99].
We would also like to extend our technique to work with vol-
ume photon maps and investigate temporally coherent pho-
ton relaxation for applications in animation.
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Standard PM Photon Relax. Diff-Based PM Our method Progressive PM
M / Absrbd. M 20M / 863k 20M / 863k 20M / 863k 20M / 863k 4.6B / 200M
Photon cast t 12.3s 12.3s 12.3s 12.3s 47m 21s
Radiance K 15 15 500 15 Variable
Feature detect t - 9.1s 3.3s 5.3s -
Relaxation t - 27.3s - 28.4s -
Render t 4.3s 4.3s 1m 29s 4.3s -
Total t 14.8s 48.2s 1m 44s 50.3s 47m 21s

Table I: Render timings for the close-up of the Prism scene (Figure 6) for the various demonstrated techniques. Image resolution is 600 x 600
with 4x supersampling.
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